Het Lot Van Endozoöchoor Verbreide Zaden
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Relationships of Iberian Dung Beetles Coleoptera: Scarabaeinae): Insights on the Evolution of Nesting Behavior
J Mol Evol +2002) 55:116±126 DOI: 10.1007/s00239-002-2314-4 Phylogenetic Relationships of Iberian Dung Beetles Coleoptera: Scarabaeinae): Insights on the Evolution of Nesting Behavior Soraya Villalba,Jorge M. Lobo,Fermõ  n Martõ n-Piera,* Rafael Zardoya Museo Nacional de Ciencias Naturales, CSIC, Jose Gutie rrez Abascal 2, 28006 Madrid, Spain Received: 22 October 2001 / Accepted: 25 January 2002 Abstract. A phylogeny of the main lineages of dung Introduction beetles +Coleoptera: Scarabaeinae) from the Iberian Peninsula was based on partial nucleotide sequences The Scarabaeinae +dung beetles) are a worldwide- +about 1221 bp) of the mitochondrial cytochrome distributed, highly successful subfamily of Coleoptera oxidase I and II genes of 33 taxa. Our phylogenetic with nearly 5000 species grouped in 234 genera analyses con®rmed the validity and composition of +Hanski and Cambefort 1991). Ever since Linnaeus' most of the recognized tribes within the subfamily. Systema Naturae, dung beetles have received wide Interestingly, the Onitini showed an evolutionary rate attention from entomologists because of their singu- signi®cantly higher than that of the other tribes. The lar adaptations in exploiting vertebrate dung pads molecular phylogeny supports a sister-group rela- +e.g., Fabre 1897, 1899; Heymons and von Lengerken tionship of the tribes Onitini and Oniticellini + On- 1922; Burmeister 1930; Heymons 1930; Prasse 1957; thophagini. A close relationship of Scarabaeini, Rommel, 1961; Balthasar 1963; Halter and Matth- Gymnopleurini, and Sisyphini is also suggested but ews 1966; Halter and Edmonds 1982). Scarabaeids lacks bootstrap support. Surprisingly, the Coprini, are one of the best-studied groups of beetles in terms which had always been related to the Oniticellini and of taxonomy +Janssens 1949; Balthasar 1963; Iablo- Onthophagini, were placed closer to the Scarabaeini, kov-Khnzorian 1977; Zunino 1984; Browne and Gymnopleurini, and Sisyphini. -
Systematics of the Dung Beetle Tribe Sisyphini Mulsant (Scarabaeidae: Scarabaeinae) Inferred from a Molecular Phylogeny and Biogeography of Southern African Species
Systematics of the dung beetle tribe Sisyphini Mulsant (Scarabaeidae: Scarabaeinae) inferred from a molecular phylogeny and biogeography of southern African species GIMO M. DANIEL1*, CATHERINE L. SOLE1**, ADRIAN L.V. DAVIS1, WERNER P. STRÜMPHER2 & CLARKE H. SCHOLTZ1 1Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa. Corresponding authors: Email: *[email protected]; **[email protected] 2Agricultural Research Council (ARC), Plant Health and Protection, Private Bag X134, Queenswood, 0121 South Africa. Running title: Sisyphini: assessment of evolution and systematics Abstract. The tribe Sisyphini Mulsant was recently redefined following the transfer of the endemic southern African genus Epirinus Dejean from the polyphyletic tribe Deltochilini Lacordaire. A molecular phylogeny of the southern African members of Sisyphini supports Epirinus as sister to Sisyphus Latreille and recovered three major clades in Sisyphus classified here as subgenera Sisyphus (Neosisyphus Müller) stat. rev., Sisyphus (Parasisyphus Barbero, Palestrini & Zunino) stat. n. and Sisyphus (Sisyphus) stat. n. A molecular clock analysis suggests that Sisyphus and Epirinus diverged from their last common ancestor during the Lower to Middle Oligocene (ca. 29.37 Ma). Biogeographical analysis indicated that southern African Sisyphus species are centred in the east and northeast in Highveld grassland and warmer savannah regions. By contrast, Epirinus species are largely restricted to the southwest and southeast in -
CATAIR Appendix
CBP and Trade Automated Interface Requirements Appendix: PGA April 24, 2020 Pub # 0875-0419 Contents Table of Changes ............................................................................................................................................4 PG01 – Agency Program Codes .................................................................................................................... 18 PG01 – Government Agency Processing Codes ............................................................................................. 22 PG01 – Electronic Image Submitted Codes.................................................................................................... 26 PG01 – Globally Unique Product Identification Code Qualifiers .................................................................... 26 PG01 – Correction Indicators* ...................................................................................................................... 26 PG02 – Product Code Qualifiers.................................................................................................................... 28 PG04 – Units of Measure .............................................................................................................................. 30 PG05 – Scie nt if ic Spec ies Code .................................................................................................................... 31 PG05 – FWS Wildlife Description Codes ..................................................................................................... -
Evaluation of Beetles Scarabaeus Sacer Derived- Chitosan, Anti-Cancer and Anti-Bacterial Potentials: in Vitro Study
Vol. 6(1), pp. 1-7, October 2018 DOI: 10.14662/ARJB2018.038 Academic Research Copy © right 2018 Author(s) retain the copyright of this article Journal of Biotechnology ISSN: 2384-616X https://www.academicresearchjournals.org/ARJB/Index.htm Full Length Research Evaluation of beetles Scarabaeus Sacer Derived- Chitosan, Anti-Cancer and Anti-bacterial Potentials: In Vitro Study Amr Abdelkader A.1*, Mohamed Maged1**, Aly Fahmy Mohamed2*** 1,2Faculty of Biotechnology, MSA university 3Head of International Center of Advanced Researches (ICTAR-Egypt) Cairo, Egypt. [email protected]* [email protected]** [email protected] /[email protected]*** Accepted 26 September 2018 Lung and colorectal cancer represent a major health problem all over the world, in addition, bacterial infections impose a serious medical and health concern. Thus, in this study, we evaluate the cytotoxic effect, anti-cancer and anti-bacterial properties of beetles derived chitosan. The study conducted using lung (A549) and colorectal (HCT-116) cancer cell lines to identify the anti-cancer effect and antimicrobial activity against gram-positive bacteria (Streptococcus pyogenes, streptococcus Aureas) and gram- negative bacteria (Salmonella typhimurium). Cytotoxicity was evaluated by describing and measuring recoding morphological changes. The viability and related IC50 were cell type and concentration dependent. Also, related cell apoptosis was monitored using PI stain where early and late apoptosis of treated A549 cells was significantly elevated than in case of HCT-116 cell line (P<0.05). In the meantime, the necrosis % of treated cells didn't perform any changes between the two cell lines but significantly elevated than that of cell control (P<0.05). -
Ecological Indicators of the Effects of Multiple Farming Activities in a Mediterranean High Nature Value Farmland
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Ecological indicators of the effects of multiple farming activities in a Mediterranean High Nature Value Farmland Bernardo Reis Rocha Mestrado em Ecologia e Gestão Ambiental Dissertação orientada por: Doutor Mário Boieiro (cE3c-FCUL) Doutora Paula Matos (cE3c-FCUL) 2017 Agradecimentos / Acknowlegments Primeiramente gostaria de agradecer à Doutora Cristina Branquinho, ao Doutor Mário Boieiro à Doutora Paula Matos e ao Doutor Pedro Pinho pela oportunidade que me concederam para desenvolver a minha tese de mestrado sob a sua alçada. Este ano que passou sob a vossa orientação permitiu-me abrir horizontes de conhecimento e criar dinâmicas de trabalho novas, que vou levar comigo no futuro. Apesar de oficialmente apenas o Doutor Mário Boieiro e a Doutora Paula Matos serem meus orientadores, também a Doutora Cristina Branquinho e o Doutor Pedro Pinho foram importantíssimos para a concretização deste estudo. Obrigado pelo auxílio, partilha de conhecimentos, orientação e amizade. Foram pessoas muito importantes nesta caminhada e espero que continuem a sê-lo no futuro. A vossa dedicação à ciência é uma inspiração para qualquer iniciante na “modalidade”. Às minhas companheiras de campo, as quase doutoras Clara Wendt e Joana Vieira. À Clara pelo auxílio na montagem e recolha dos pitfalls dos escaravelhos e à Joana pelas horas infindáveis, de lupa na mão, a identificar e contar líquenes. Sem ambas ainda hoje estaria na Companhia das Lezírias a trabalhar. Aproveito também para vos desejar boa sorte nos vossos doutoramentos. À Cristiana Aleixo, pela ajuda relativamente à recolha de informação sobre diversas variáveis ambientas e na construção dos mapas, sendo indispensável para que este trabalho fosse concretizado com sucesso. -
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
Ivermectin Residues Disrupt Dung Beetle Diversity, Soil Properties and Ecosystem Functioning: an Interdisciplinary field Study
Science of the Total Environment 618 (2018) 219–228 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study José R. Verdú a,⁎, Jorge M. Lobo b, Francisco Sánchez-Piñero c, Belén Gallego a, Catherine Numa d, Jean-Pierre Lumaret e, Vieyle Cortez a, Antonio J. Ortiz f,MattiaTonellia, Juan P. García-Teba a, Ana Rey b, Alexandra Rodríguez g, Jorge Durán g a I.U.I. CIBIO, Universidad de Alicante, Alicante E-03690, Spain b Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales-CSIC, José Abascal 2, Madrid E-28006, Spain c Departamento de Zoología, Universidad de Granada, Granada E-18071, Spain d IUCN-Centre for Mediterranean Cooperation, Marie Curie 22, Campanillas, Málaga E-29590, Spain e UMR 5175 CEFE, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier 3 – EPHE, Université Paul-Valéry Laboratoire Zoogéographie, Route de Mende, 34199 cedex 5 Montpellier, France f Departamento de Química Inorgánica y Química Orgánica, Universidad de Jaén, Campus Las Lagunillas, Jaén E-23071, Spain g Center for Functional Ecology (CEF), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal HIGHLIGHTS GRAPHICAL ABSTRACT • At the short term, ivermectin residues cause a strong decrease in dung reloca- tion and dung spreading by dung beetles. • Conventional use of ivermectin disrupts diversity by affecting species richness, abundance and biomass of dung beetles. • Reduction in the functional efficiency of dung degradation resulted in the long- term accumulation of manure. -
Scarabaeidae) in Finland (Coleoptera)
© Entomologica Fennica. 27 .VIII.1991 Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera) Olof Bistrom, Hans Silfverberg & Ilpo Rutanen Bistrom, 0., Silfverberg, H. & Rutanen, I. 1991: Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera).- Entomol. Fennica 2:53-66. The distribution and occmTence, with the time-factor taken into consideration, were monitored in Finland for the mainly dung-living histerid genera Margarinotus, Hister, and Atholus (all predators), and for the Scarabaeidae genera Onthophagus and Aphodius, in which almost all species are dung-feeders. All available records from Finland of the 54 species studied were gathered and distribution maps based on the UTM grid are provided for each species with brief comments on the occmTence of the species today. Within the Histeridae the following species showed a decline in their occurrence: Margarinotus pwpurascens, M. neglectus, Hister funestus, H. bissexstriatus and Atholus bimaculatus, and within the Scarabaeidae: Onthophagus nuchicornis, 0. gibbulus, O.fracticornis, 0 . similis , Aphodius subterraneus, A. sphacelatus and A. merdarius. The four Onthophagus species and A. sphacelatus disappeared in the 1950s and 1960s and are at present probably extinct in Finland. Changes in the agricultural ecosystems, caused by different kinds of changes in the traditional husbandry, are suggested as a reason for the decline in the occuJTence of certain vulnerable species. Olof Bistrom & Hans Si!fverberg, Finnish Museum of Natural Hist01y, Zoo logical Museum, Entomology Division, N. Jarnviigsg. 13 , SF-00100 Helsingfors, Finland llpo Rutanen, Water and Environment Research Institute, P.O. Box 250, SF- 00101 Helsinki, Finland 1. -
Insect Remains from Various Sites in Southwark: Draft for Consultation
Insect remains from various sites in Southwark: Draft for consultation H. K. Kenward Environmental Archaeology Unit, University of York, York YO1 5DD. [NB: This report was reformatted from a Runoff file on 18th March 2008. The only changes have been to preserve internal consistency and to correct typographical errors. HK. The original was an archive report deposited in the former Environmental Archaeology Unit, York, and the Ancient Monuments Laboratory, and allocated post hoc as Reports from the Environmental Archaeology Unit, York 90/10.] Introduction This report is an account of insect remains from a large number of samples from several sites in Southwark. The material was provided in processed form. The majority of the assemblages were dry in plastic tubes, and the remainder in IMS in glass vials. In some cases, material in both forms was available for a sample. Almost all the groups of insects were, by comparison with the material normally used for interpretation, very small, often only one to a few fragments. In a few cases some twenty or so individuals of beetles and bugs were represented by the remains; the largest group was perhaps twice this size, still less than half the number of individuals generally taken as a reasonable working minimum for interpretation of a mixed assemblage (Kenward 1978). The dry material appeared to be biassed in favour of large taxa, and presented considerable difficulty in handling because of the effect of static attraction between fossils and the plastic vials. Many fossils were damaged while attempting to remove them, and others sprang away as a result of static repulsion as soon as they were taken from the tubes. -
Assessing Changes in the Agricultural Productivity of Upland Systems in the Light of Peatland Restoration
Assessing changes in the agricultural productivity of upland systems in the light of peatland restoration Volume 1 of 1 Submitted by Guy William Freeman, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences, June 2017. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Thesis abstract Human activity has had a profound negative impact on the structure and function of the earth’s ecosystems. However, with a growing awareness of the value of the services provided by intact ecosystems, restoration of degraded land is increasingly used as a means of reviving ecosystem function. Upland landscapes offer an excellent example of an environment heavily modified by human land use. Agriculture has been the key driver of ecosystem change, but as upland habitats such as peatlands can provide a number of highly valuable services, future change may focus on restoration in order to regain key ecosystem processes. However, as pastoral farming continues to dominate upland areas, ecosystem restoration has the potential to conflict with existing land use. This thesis attempts to assess differences in the agricultural productivity of the different habitat types present in upland pastures. Past and present land use have shaped the distribution of different upland habitat types, and future changes associated with ecosystem restoration are likely to lead to further change in vegetation communities. -
New Locality for the Endemic Mauritian Dung Beetle Nesosisyphus Pygmaeus (Coleoptera: Scarabaeidae)
Phelsuma 15; 63-64 A wider range than suspected: new locality for the endemic Mauritian dung beetle Nesosisyphus pygmaeus (Coleoptera: Scarabaeidae) Saoud M. Motala 1,2 & Frank-Thorsten Krell 2 1 54, Mere Barthelemy street, Port-Louis, MAURITIUS [[email protected]] 2 Soil Biodiversity Programme, Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. [[email protected]] Abstract: A second locality for the endemic Mauritian dung beetle Nesosisyphus pygmaeus Vinson (Coleoptera: Scarabaeidae) is recorded. The disjunct range of this species comprises Mt Ory and Brise Fer. Keywords: Scarabaeidae, Sisyphini, dung beetles, distribution, Brise Fer The endemic Mauritian dung beetle genus Nesosisyphus Vinson was well studied by its author some fifty years ago (Vinson 1946, 1951). The four known species have restricted ranges in the mountainous parts of the island. With 2.3-3.2 mm body length, Nesosisyphus pygmaeus (Fig. 1) is the smallest member of the genus and the smallest roller dung beetle of the world (Haaf 1955, 1959). Despite being alate, the species has previously only been recorded from Mt Ory (Vinson 1958). Vinson (1951) presumed the cause of this restricted distribution to be the rapid loss of the surrounding pristine forest over the last century (e.g. Vaughan & Wiehe 1937). Recently, one of us (S.M.) found another population of Nesosisyphus pygmaeus in a new locality approximately 24 kilometres away from the already known locality Mt Ory, the details of which are as follows: MAURITIUS, Brise Fer Forest; 20°22’S, 57°26’W; 35 individuals, 01-06.vii.2003, using baited pitfall trap (suspended chicken manure). -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.