Ivermectin Residues Disrupt Dung Beetle Diversity, Soil Properties and Ecosystem Functioning: an Interdisciplinary field Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Evaluation of Beetles Scarabaeus Sacer Derived- Chitosan, Anti-Cancer and Anti-Bacterial Potentials: in Vitro Study
Vol. 6(1), pp. 1-7, October 2018 DOI: 10.14662/ARJB2018.038 Academic Research Copy © right 2018 Author(s) retain the copyright of this article Journal of Biotechnology ISSN: 2384-616X https://www.academicresearchjournals.org/ARJB/Index.htm Full Length Research Evaluation of beetles Scarabaeus Sacer Derived- Chitosan, Anti-Cancer and Anti-bacterial Potentials: In Vitro Study Amr Abdelkader A.1*, Mohamed Maged1**, Aly Fahmy Mohamed2*** 1,2Faculty of Biotechnology, MSA university 3Head of International Center of Advanced Researches (ICTAR-Egypt) Cairo, Egypt. [email protected]* [email protected]** [email protected] /[email protected]*** Accepted 26 September 2018 Lung and colorectal cancer represent a major health problem all over the world, in addition, bacterial infections impose a serious medical and health concern. Thus, in this study, we evaluate the cytotoxic effect, anti-cancer and anti-bacterial properties of beetles derived chitosan. The study conducted using lung (A549) and colorectal (HCT-116) cancer cell lines to identify the anti-cancer effect and antimicrobial activity against gram-positive bacteria (Streptococcus pyogenes, streptococcus Aureas) and gram- negative bacteria (Salmonella typhimurium). Cytotoxicity was evaluated by describing and measuring recoding morphological changes. The viability and related IC50 were cell type and concentration dependent. Also, related cell apoptosis was monitored using PI stain where early and late apoptosis of treated A549 cells was significantly elevated than in case of HCT-116 cell line (P<0.05). In the meantime, the necrosis % of treated cells didn't perform any changes between the two cell lines but significantly elevated than that of cell control (P<0.05). -
A Chromosomal Analysis of 15 Species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae)
A chromosomal analysis of 15 species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae) R. B. Angus, C. J. Wilson & D. J. Mann The karyotypes of one species of Gymnopleurini, two Scarabaeini, five Onitini and seven Coprini are described and illustrated. Gymnopleurus geoffroyi, Scarabaeus cristatus, S. laticollis, Bubas bison, B. bubalus, B. bubaloides, Onitis belial, O. ion, Copris lunaris, Microcopris doriae, M. hidakai and Helopcopris gigas all have karyotypes with 2n=18 + Xy. Copris hispanus and Paracopris ����������ramosiceps have karyotypes with 2n=16 + Xy and Copris sinicus has a karyotype comprising 2n=12 + Xy. Heterochromatic B-chromosomes have been found in Bubas bubalus. Spanish material of Bubas bison lacks the distal heterochromatic blocks found in most of the chromosomes of Italian specimens. The karyotype of Heliocopris gigas is unusual in that the autosomes and X chromosome are largely heterochromatic. R. B. Angus* & C. J. Wilson, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. [email protected] D. J. Mann, Hope Entomological Collections, Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. [email protected] Introduction of chromosome preparation and C-banding are given A previous publication (Wilson & Angus 2005) gave by Wilson (2001). In some cases it has been possible information on the karyotypes of species of Oniticel- to C-band preparations after they have been photo- lini and Onthophagini studied by C. J. Wilson in her graphed plain, giving a very powerful set of data for Ph. D. research (Wilson 2002). The present paper re- preparation of karyotypes. -
Heteronychus Arator
Heteronychus arator Scientific Name Heteronychus arator (Fabricius) Synonyms: Heteronychus arator australis Endrödi, Heteronychus indenticulatus Endrodi, Heteronychus madagassus Endrodi, Heteronychus sanctaehelenae Blanchard, Heteronychus transvaalensis Peringuey, Scarabaeus arator Fabricius Common Name(s) Black maize beetle, African black beetle, black lawn beetle, black beetle Type of Pest Beetle Figure 1. Illustration of each stage of the life Taxonomic Position cycle of the black maize beetle, showing a close up view of each stage and a Insecta, Coleoptera, Class: Order: background view showing that the eggs, Family: Scarabaeidae larvae, and pupae are all underground stages with the adults being the only stage Reason for Inclusion appearing above ground. Illustration CAPS Target: AHP Prioritized Pest List- courtesy of NSW Agriculture. http://www.ricecrc.org/Hort/ascu/zecl/zeck11 2006 – 2009 3.htm Pest Description Life stages are shown in Figures 1 and 2. 1 Eggs: White, oval, and measuring approximately 1.8 mm (approx. /16 in) long at time of oviposition. Eggs grow larger through development and become more 3 round in shape. Eggs are laid singly at a soil depth of 1 to 5 cm (approx. /8 to 2 in). Females each lay between 12 to 20 eggs total. In the field, eggs hatch after approximately 20 days. Larvae can be seen clearly with the naked eye (CABI, 2007; Matthiessen and Learmoth, 2005). Larvae: There are three larval instars. Larvae are creamy-white except for the brown head capsule and hind segments, which appear dark where the contents of the gut show through the body wall. The head capsule is smooth textured, 1 1 measuring 1.5 mm (approx. -
Dimensional Limits for Arthropod Eyes with Superposition Optics
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Vision Research 44 (2004) 2213–2223 www.elsevier.com/locate/visres Dimensional limits for arthropod eyes with superposition optics Victor Benno Meyer-Rochow a,*,Jozsef Gal b a School of Engineering and Sciences, International University Bremen (IUB), Campus Ring 6, Research II, D-28759 Bremen, Germany b Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt. 62, H-6701 Szeged, Hungary Received 10 December 2003; received in revised form 16 April 2004 Abstract An essential feature of the superposition type of compound eye is the presence of a wide zone, which is transparent and devoid of pigment and interposed between the distal array of dioptric elements and the proximally placed photoreceptive layer. Parallel rays, collected by many lenses, must (through reflection or refraction) cross this transparent clear-zone in such a way that they become focused on one receptor. Superposition depends mostly on diameter and curvature of the cornea, size and shape of the crystalline cone, lens cylinder properties of cornea and cone, dimensions of the receptor cells, and width of the clear-zone. We examined the role of the latter by geometrical, geometric-optical, and anatomical measurements and concluded that a minimal size exists, below which effective superposition can no longer occur. For an eye of a given size, it is not possible to increase the width of the clear-zone cz ¼ dcz=R1 and decrease R2 (i.e., the radius of curvature of the distal retinal surface) and/or c ¼ dc=R1 without reaching a limit. -
Review of the Genus Chironitis Lansberge, 1875 I: Taxonomy, Phylogeny and Zoogeography of the Palearctic Species (Col
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomologische Arbeiten Museum G. Frey Jahr/Year: 1987 Band/Volume: 35-36 Autor(en)/Author(s): Piera Fermin Martin Artikel/Article: Review of the Genus Chironitis Lansberge, 1875 I: Taxonomy, Phylogeny and Zoogeography of the Palearctic Species (Col. Scarabaeoidea, Onitini). 203-245 download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Ent. Arb. Mus. Frey 35/36, 1987 203 Review of the Genus Chironitis Lansberge, 1875 I: Taxonomy, Phylogeny and Zoogeography of the Palearctic Species (Col. Scarabaeoidea, Onitini) By F. Martin-Piera Museo Nacional de Ciencias Naturales, Madrid Abstract The taxonomical importance of the genitalia (cf and 9) within the genus Chironitis Lansberge, 1875, is studied. In agreement with the results of this study, the Status of twelve palearctic taxa pres- ently included in this genus is discussed. The conclusions obtained are summarized in the following list of species, subspecies, and new Synonyms: Ch. hungaricus hungaricus (Herbst, 1789) ssp. nov.; Ch. hungaricus irroratus (Rossi, 1790) st. nov. (= Ch. pamphilus (Menetries, 1849) syn. nov. and = Ch. phoehus Reitter, 1893 syn. nov.); Ch. furcifer (Rossi, 1792) (= Ch. klapperichi Balthasar, 1956 syn. nov.); Ch. moeris (Pallas, 1781); Ch. haroldi (Ballion, 1870); Ch. sterculms (Ballion, 1781); Ch. hauseri Reitter, 1893 and Ch. candezei Lansberge, 1875. Likewise, Ch. granulipennis Reitter, 1909 is considered to be a probably good species. The Status of Ch. klapperichi Balthasar, 1956 is also discussed. In agreement with these taxonomical conclusions, the corological data and current ideas about the paleogeographic evolution of the mediterranean basin, an hypothesis about the taxonomical (subspecific) divergence within Ch. -
Spineless Spineless Rachael Kemp and Jonathan E
Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world. -
Copyrighted Material
9781444332599_6_ind.qxd 11/4/09 14:12 Page 233 Index Abax parallelopepidus 159, 175 Abies balsamica 99 bait traps 25 Abroscelis anchoralis 55 bark beetles 18, 46, 89, 125 Aciphylla dieffenbachia 112, 113 Batrisodes texanus 114 accumulation curves 28 Beauveria 191 activity patterns 27 beetle banks 173–174 Adalia bipunctata 54, 190 beetlephilia 2 Aderidae 28 Bembidion atrocaeruleum 66 Adonis blue butterfly 133 bess beetles 5, 130 Adoretus 125 Betula pendula 85 adventitious species 128 biological control 7, 182, 189, 190 Agonum ericeti 93 Bledius 86 Agrilus 83 blind cave beetle 115 A. hyperici 189 Bolitophagus reticulata 26, 77 A. planipennis 127, 189 bracket fungus 26 Aleocharinae 116 brownfield sites 62, 117 alien species 92, 122–130 Brychius hungerfordi 62, 117 Allocasuarina 181, 182 Bubas bubalus 181 Amara tricuspidata 109 Buprestidae 3, 40, 83, 105, 133, 163 ambrosia beetles 125 burning 84, 153–155 American burying beetle 7, 67 bycatch 121 Ammophorus insularis 112 Anophthalmus hitleri 74 Calathus ruficollis 120 Anoplophora glabripennis 26, 126 Callitris glaucophylla 93 ants 116, 128 Calluna 96 Aphis fabae 191 COPYRIGHTEDcanestriniid MATERIAL mites 129 Aphodius 177, 178, 185 canopy fogging 10, 80 A. fossor 186 Cantharidae 40, 133 A. pusillus 186 Cantharoidea 133 aquifers 10 Canthon acutus 20 Argentine ant 128 captive breeding 142–145 Asian longhorn 26 Carabidae 2, 6, 7, 8, 10, 13, 14, 15, 20, assemblages 4, 9, 18, 50, 68, 69, 73, 80, 165 24, 28, 43, 44, 47, 50, 51, 58, 64, 68, Atomaria alpina 51 73, 76, 78, 86, 87, 93, 94, 99, 102, A. subangulata 157 108, 109, 114, 116, 124, 126, 128, attractants 25 132, 133, 135, 146, 147, 149, 150, avermectins 132 154, 165, 200 9781444332599_6_ind.qxd 11/4/09 14:12 Page 234 234 Index Carabus auronitens 64, 66, 68, 100, 144 Coptodactylus subaenea 182 C. -
Biological Control of Dung-Breeding Flies Affecting Pastured Cattle
Beef Cattle Handbook BCH-3810 Product of Extension Beef Cattle Resource Committee Biological Control of Dung-Breeding Flies Affecting Pastured Cattle G. T. Fincher, Food Animal Protection Research Laboratory, USDA, ARS, College Station, TX The horn fly, Haematobia irritans, and face fly, Musca States. Several species of natural enemies of dung- autumnalis, are important pests of pastured cattle in the breeding flies have been imported to try to fill these US. These flies cost livestock producers millions of dol- non-activity gaps by endemic natural enemies. lars each year for insecticides, equipment and labor for insecticide applications, and production losses. Both Parasites species reproduce in fresh cattle dung (cowpats) Several species of parasites (tiny wasps) are known to par- dropped on pasture. Most efforts to control these pests asitize immature stages of horn flies and face flies in cow- have involved the use of insecticides. However, during pats. However, the parasitism rate of both species of flies the last 10–15 years, the horn fly has developed resis- is usually low, and only occasionally is the rate adequate tance to insecticides commonly used for its control. to reduce fly populations. Parasitism rates as high as 43 Since both species of flies are introduced pests, and 45 percent have been reported for the horn fly in they lack the natural enemies they had in their native Mississippi and Texas, respectively, and 17–20 percent in countries. However, a variety of natural enemies (para- Nebraska, but the yearly average is usually less than 5 sites, predators, and competitors) of dung-breeding flies percent. -
Clean‐Up Crew
Bugs on Wheels Clean‐Up Crew Organisms and Environments TEKS for Activities and Presentation Second Grade: 2.9(A), 2.9(B), 2.9(C) Third Grade: 3.9(A), 3.9(B), 3.10(A) Fourth Grade: 4.9(A), 4.9(B), 4.10(A) Fifth Grade: 5.9(A), 5.9(B), 5.10(A), 5.10(C) Seventh Grade: 7.10(A), 7.12(A) Eighth Grade: 8.11(A), 8.11(B) Program Vocabulary Aeration, Antenna, Arthropod, Bacteria, Chemical reaction, Colony, Compost, Crime scene investigation, Crustacean, Debridement, Decomposer, Decomposition, Detritus, Detritivore, Dung, Element, Entomology, Feces, Fertilizer, Forensic, Forest; Fungi, Grub, Guano, Herbivores, Insect, Isopod, Larva, Leaf litter, Maggot, Microorganism, Mimic, Navigate, Necrotic, Nitrogen cycle, Nutrient, Organic matter, Organism, Ovipositor, Parts of an insect (Head, Thorax, and Abdomen), Protozoan, Pupa, Recycle, Salmonella, Scarab beetle, Scavenger, Segment, Social insect, Spiracle, Sterile, Terrestrial, Tropical Pre‐Visit Activity Experimenting with Decomposition Students Will: Understand that decomposition is the natural process of dead animal or plant tissue being decomposed or broken down Make predictions on the probability that an item will decompose Conduct experiments to test their predictions Understand the basics of composting and the role decomposers play in the process Materials: Scale, Garbage bag – one per group, Twist ties, Soil (must be collected from outside), Items to test such as: Soda can, Slice of bread, Styrofoam cup, Plastic shopping bag, Brown paper lunch bag, Newspaper, Glass bottle, Strawberry or other fruit, Walnut or peanut shells, Toilet paper, Leaf, Copies of Data Sheet, Pencils Bugs on Wheels Procedure: 1. Explain to the class that they will be placing various items into a sealed trash bag with soil collected from outside. -
Potential Effects of Climate Change on the Distribution of Scarabaeidae Dung Beetles in Western Europe
J Insect Conserv DOI 10.1007/s10841-013-9590-8 ORIGINAL PAPER Potential effects of climate change on the distribution of Scarabaeidae dung beetles in Western Europe E. Dortel • W. Thuiller • J. M. Lobo • H. Bohbot • J. P. Lumaret • P. Jay-Robert Received: 18 March 2013 / Accepted: 29 August 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Dung beetles are indispensable in pasturelands, with little difference between scenarios. The potential especially when poor efficiency of earthworms and irreg- enrichment of northern regions depends on the achieve- ular rainfall (e.g. under a Mediterranean climate) limit pad ment of the northward shift of thermophilous species, and decomposition. Although observed and projected species climate change is generally likely to reduce the current range shifts and extinctions due to climate change have distribution of the majority of species. Under these con- been documented for plants and animals, little effort has ditions, the distribution of resource—i.e. the extent and focused on the response of keystone species such as the distribution of pastures—will be a key factor limiting scarab beetles of dung beetle decomposers. Our study aims species’ responses to climate change. The dramatic aban- to forecast the distribution of 37 common Scarabaeidae donment of extensive grazing across many low mountains dung beetle species in France, Portugal and Spain (i.e. of southern Europe may thus represent a serious threat to more than half of the western European Scarabaeidae dung beetle distribution changes. fauna) in relation to two climate change scenarios (A2 and B1) for the period leading to 2080. On average, 21 % of the Keywords Dung beetles Á Scarabaeidae Á Climate species should change in each 50-km UTM grid cell. -
Annales 2014 Volume
ANNALES de la SOCIÉTÉ D’HORTICULTURE et D’HISTOIRE NATURELLE de L’HÉRAULT Volume 154 Année 2014 Annales SHHNH - Vol. 154 ANNALES DE LA SOCIÉTÉ D'HORTICULTURE ET D'HISTOIRE NATURELLE DE L'HÉRAULT Reconnue d'utilité publique par décret du 14 avril 1933 C.C.P. Montpellier 628-95 K Présidence : M. Daniel Mousain, 11 rue Démians - 30000 Nîmes, tél. pers. 04 66 67 81 88/06 27 25 29 66. Siège social : Parc à Ballon 1, bât. B - 125 rue du Moulin de Sémalen - 34000 Montpellier. Adresse postale : SHHNH, Parc à Ballon 1, bât. B - 125 rue du Moulin de Sémalen - 34000 Montpellier. Site internet : http://www.shhnh.com et adresse électronique : [email protected]. Téléphone du local : 04 67 99 05 36 (message délivré). Activités : sorties, conférences, documentation, expositions, participation à des manifestations. Les sections se réunissent régulièrement (sauf juillet et août). Sauf indications contraires, les diverses activités ont lieu au local, 125, rue du Moulin de Sémalen, Parc à Ballon 1, bât. B (à droite en entrant, au rez-de-chaussée). Elles sont por- tées sur les tableaux d'affichage au local et sur le site internet. Botanique / horticulture : déterminations au local de la Société, le lundi après-midi, conférences, excursions. Contacts M. Jean-Marie Coste, 04 67 92 53 92 / [email protected] et M. Frédéric Andrieu, 04 99 23 22 11 /[email protected]. Entomologie : réunions et sorties. Réunion le premier mardi de chaque mois, au local. Contacts M. Gérard Duvallet / [email protected] et/ou M. Jacques Taïb / [email protected] Géologie : des sorties sont organisées sous la direction de différents intervenants.