Clean‐Up Crew

Total Page:16

File Type:pdf, Size:1020Kb

Clean‐Up Crew Bugs on Wheels Clean‐Up Crew Organisms and Environments TEKS for Activities and Presentation Second Grade: 2.9(A), 2.9(B), 2.9(C) Third Grade: 3.9(A), 3.9(B), 3.10(A) Fourth Grade: 4.9(A), 4.9(B), 4.10(A) Fifth Grade: 5.9(A), 5.9(B), 5.10(A), 5.10(C) Seventh Grade: 7.10(A), 7.12(A) Eighth Grade: 8.11(A), 8.11(B) Program Vocabulary Aeration, Antenna, Arthropod, Bacteria, Chemical reaction, Colony, Compost, Crime scene investigation, Crustacean, Debridement, Decomposer, Decomposition, Detritus, Detritivore, Dung, Element, Entomology, Feces, Fertilizer, Forensic, Forest; Fungi, Grub, Guano, Herbivores, Insect, Isopod, Larva, Leaf litter, Maggot, Microorganism, Mimic, Navigate, Necrotic, Nitrogen cycle, Nutrient, Organic matter, Organism, Ovipositor, Parts of an insect (Head, Thorax, and Abdomen), Protozoan, Pupa, Recycle, Salmonella, Scarab beetle, Scavenger, Segment, Social insect, Spiracle, Sterile, Terrestrial, Tropical Pre‐Visit Activity Experimenting with Decomposition Students Will: Understand that decomposition is the natural process of dead animal or plant tissue being decomposed or broken down Make predictions on the probability that an item will decompose Conduct experiments to test their predictions Understand the basics of composting and the role decomposers play in the process Materials: Scale, Garbage bag – one per group, Twist ties, Soil (must be collected from outside), Items to test such as: Soda can, Slice of bread, Styrofoam cup, Plastic shopping bag, Brown paper lunch bag, Newspaper, Glass bottle, Strawberry or other fruit, Walnut or peanut shells, Toilet paper, Leaf, Copies of Data Sheet, Pencils Bugs on Wheels Procedure: 1. Explain to the class that they will be placing various items into a sealed trash bag with soil collected from outside. The bags will then be left undisturbed for one month. After a month, they will open the bags and observe how the items have changed over time. 2. Separate the class in to working groups of 2‐4 students. Distribute a data collection sheet to each student. 3. Show each of the items that will be placed in the bags and instruct students to fill out the first column of the data chart with the name of each item. 4. Allow groups time to discuss what they think will happen to each of the items in the bag and what each item may look like after a month. Encourage students to use prior knowledge and experience to make predictions. Then, instruct students to fill out the second and third columns of the table with their predictions and rationale. 5. Allow students to share their predictions and rationales with the class. Preparing the Bag: 1. Instruct groups to fill their bag with 1‐2 gallons of damp (not wet) soil. 2. Explain that the soil has many microscopic decomposers in it, like bacteria and fungi. Explain that it may also have some invertebrate decomposers like worms or insects. 3. Direct groups to weigh each item using the scale and record the weights in the fourth column on their data sheets. 4. Instruct students to distribute each of the items throughout the soil in the bag. Encourage them to be gentle with the items so they are not damaged before the experiment begins. 5. Then, tell them to blow air into the bag and then seal it tightly using a twist tie. 6. Lastly, instruct groups to place a note on the bag with the date it was created. 7. Collect data sheets. They will be used again, in one month’s time. One Month Later… 1. Review the experiment and the role of decomposers in soil production. Then, hand out the data sheets the students used last month. 2. Instruct groups to retrieve their bags and carefully open them. Warn students not to hold the bag or items from the bag close to their face or to put dirty hands near their nose or mouth. This will protect them from inhaling mold spores. It is best to do this portion of the activity outside, if possible. 3. Encourage students to carefully sift through the contents and look for the original items they placed in the soil. In addition, encourage them to look for any decomposers that may be visible to the naked eye. 4. As a class, create a master list of each item. After students have had an opportunity to observe each item, create a description of the degree of decomposition for each item, based on general consensus from all the groups. Bugs on Wheels 5. Next, direct students to weigh each item from the bag and record this data in the last column of the data sheet. 6. Encourage students to compare the predictions they made a month ago to the master record the class created today. 7. Instruct students to calculate the weight difference for each item. Ask students to consider what weight loss indicates. 8. Invite students to share their observations and findings with the class. Questions to Ask: Why did some of the items break down well and others did not? Did all the items that decomposed turn into compost? What did all of the items that did not decompose have in common? What did all of the items that did decompose have in common? If an item weighs less than it did originally, what does that suggest? Background: Microorganisms, like bacteria and fungi, along with larger organisms, such as worms, insects, and arthropods, are all a part of the amazing process of decomposition. These fungi, bacteria, and invertebrates break down organic matter, which is composed of organisms that are dead, into smaller and smaller particles that we call compost. This compost is actually the waste matter produced by the decomposers and is a vital source of nutrients for the soil. Healthy topsoil is typically dark brown in color and smells somewhat fresh. Compost is an all‐natural fertilizer and is the product of nature’s recycling “program”. Without the work of the decomposers, dead matter would cover the entire Earth! Item Will it Explain your Original Ending Weight decompose? prediction Weight Weight Difference Bugs on Wheels Pre‐Visit Activity: Anatomy of an Insect Students will: Know insects have three main parts (also called segments); the head, the thorax, and the abdomen Be able to identify the parts of an insect, including the head, thorax, abdomen, antennae, and wings Understand that insects have an exoskeleton that provides them structure and protection Materials: Pencils, Paper, Markers or crayons, Pictures of various insects, Scissors, Craft stems, Craft feathers, Toothpicks, Clay, Other craft supplies as needed Procedure: 1. Allow students time to observe the various pictures of insects. Help students to identify the head, thorax, and abdomen of the insects in each of the pictures. Are there any additional parts found on the insects that they can identify (antennae, legs, wings, etc.)? 2. Encourage students to describe the insect; the shape of wings, size ratios of head, thorax, and abdomen in relation to each other. 3. Instruct students to make a sketch of their favorite insect and to label the head, thorax, and abdomen. Allow them to color the insect, if time allows. 4. Provide various craft materials such as clay, feathers, craft stems, and toothpicks. Model how to make a head, thorax, and abdomen. Then, model how to attach the three parts together and to add legs, wings, and antennae. 5. Allow students time to create their own unique insect using the craft materials. 6. Check for understanding by having each student identify the head, thorax, abdomen, antennae, and wings on their creations. Background: Insects are arthropods. Arthropods are known for their exoskeletons, a hard protective exterior case that covers the entire body. The insect’s muscles are attached to the inside of the exoskeleton, much like the way our muscles are attached to our bones. This exoskeleton provides protection for the insect. All insects have three main body parts; the head, thorax, and abdomen. The main features of the head are large compound eyes and antennae. The mouthparts are also located on the head. The mid‐portion of the insect’s body is called the thorax. The jointed legs and wings, if present, are attached to the thorax. Breathing holes, called spiracles, are also located on the thorax. Insects breathe through these holes instead of their mouths. Bugs on Wheels The abdomen often looks segmented. The reproductive organs of the insect can be found here, and many female insects have a conspicuous ovipositor. If you look closely, there are spiracles for breathing located here, as well as on the thorax. Grasshopper Bugs on Wheels Patent‐leather Beetle Ladybug Bugs on Wheels Post Visit Activity: Food Webs: Making the Connection Students will: Understand how animals are interconnected by feeding relationships Distinguish between producers (plants) and consumers: herbivores (plant eaters), carnivores (animal eaters), omnivores (eat both plants and animals) and decomposers (break down dead animals and plants) Design a food web and explain how energy flows through the web Materials: Cork board, Push pins, various colors of ribbon or yarn, Pictures of animals (in a single food web) – you will want to make several sets using different food webs (you may find your own examples or use the animals in the food webs provided) Prep‐work Research different food webs and download pictures of the animals you have chosen to use for this activity or use the ones provided. Laminate and cut out sets of the different food web animals. Cut strips of different colors of ribbon or yarn. Pin the food webs to the cork boards before class. Procedure: 1. After learning the basics of food chains and food webs, show the class the animals that make up the food web on the corkboard.
Recommended publications
  • Evaluation of Beetles Scarabaeus Sacer Derived- Chitosan, Anti-Cancer and Anti-Bacterial Potentials: in Vitro Study
    Vol. 6(1), pp. 1-7, October 2018 DOI: 10.14662/ARJB2018.038 Academic Research Copy © right 2018 Author(s) retain the copyright of this article Journal of Biotechnology ISSN: 2384-616X https://www.academicresearchjournals.org/ARJB/Index.htm Full Length Research Evaluation of beetles Scarabaeus Sacer Derived- Chitosan, Anti-Cancer and Anti-bacterial Potentials: In Vitro Study Amr Abdelkader A.1*, Mohamed Maged1**, Aly Fahmy Mohamed2*** 1,2Faculty of Biotechnology, MSA university 3Head of International Center of Advanced Researches (ICTAR-Egypt) Cairo, Egypt. [email protected]* [email protected]** [email protected] /[email protected]*** Accepted 26 September 2018 Lung and colorectal cancer represent a major health problem all over the world, in addition, bacterial infections impose a serious medical and health concern. Thus, in this study, we evaluate the cytotoxic effect, anti-cancer and anti-bacterial properties of beetles derived chitosan. The study conducted using lung (A549) and colorectal (HCT-116) cancer cell lines to identify the anti-cancer effect and antimicrobial activity against gram-positive bacteria (Streptococcus pyogenes, streptococcus Aureas) and gram- negative bacteria (Salmonella typhimurium). Cytotoxicity was evaluated by describing and measuring recoding morphological changes. The viability and related IC50 were cell type and concentration dependent. Also, related cell apoptosis was monitored using PI stain where early and late apoptosis of treated A549 cells was significantly elevated than in case of HCT-116 cell line (P<0.05). In the meantime, the necrosis % of treated cells didn't perform any changes between the two cell lines but significantly elevated than that of cell control (P<0.05).
    [Show full text]
  • Ivermectin Residues Disrupt Dung Beetle Diversity, Soil Properties and Ecosystem Functioning: an Interdisciplinary field Study
    Science of the Total Environment 618 (2018) 219–228 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study José R. Verdú a,⁎, Jorge M. Lobo b, Francisco Sánchez-Piñero c, Belén Gallego a, Catherine Numa d, Jean-Pierre Lumaret e, Vieyle Cortez a, Antonio J. Ortiz f,MattiaTonellia, Juan P. García-Teba a, Ana Rey b, Alexandra Rodríguez g, Jorge Durán g a I.U.I. CIBIO, Universidad de Alicante, Alicante E-03690, Spain b Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales-CSIC, José Abascal 2, Madrid E-28006, Spain c Departamento de Zoología, Universidad de Granada, Granada E-18071, Spain d IUCN-Centre for Mediterranean Cooperation, Marie Curie 22, Campanillas, Málaga E-29590, Spain e UMR 5175 CEFE, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier 3 – EPHE, Université Paul-Valéry Laboratoire Zoogéographie, Route de Mende, 34199 cedex 5 Montpellier, France f Departamento de Química Inorgánica y Química Orgánica, Universidad de Jaén, Campus Las Lagunillas, Jaén E-23071, Spain g Center for Functional Ecology (CEF), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal HIGHLIGHTS GRAPHICAL ABSTRACT • At the short term, ivermectin residues cause a strong decrease in dung reloca- tion and dung spreading by dung beetles. • Conventional use of ivermectin disrupts diversity by affecting species richness, abundance and biomass of dung beetles. • Reduction in the functional efficiency of dung degradation resulted in the long- term accumulation of manure.
    [Show full text]
  • Spineless Spineless Rachael Kemp and Jonathan E
    Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world.
    [Show full text]
  • Potential Effects of Climate Change on the Distribution of Scarabaeidae Dung Beetles in Western Europe
    J Insect Conserv DOI 10.1007/s10841-013-9590-8 ORIGINAL PAPER Potential effects of climate change on the distribution of Scarabaeidae dung beetles in Western Europe E. Dortel • W. Thuiller • J. M. Lobo • H. Bohbot • J. P. Lumaret • P. Jay-Robert Received: 18 March 2013 / Accepted: 29 August 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Dung beetles are indispensable in pasturelands, with little difference between scenarios. The potential especially when poor efficiency of earthworms and irreg- enrichment of northern regions depends on the achieve- ular rainfall (e.g. under a Mediterranean climate) limit pad ment of the northward shift of thermophilous species, and decomposition. Although observed and projected species climate change is generally likely to reduce the current range shifts and extinctions due to climate change have distribution of the majority of species. Under these con- been documented for plants and animals, little effort has ditions, the distribution of resource—i.e. the extent and focused on the response of keystone species such as the distribution of pastures—will be a key factor limiting scarab beetles of dung beetle decomposers. Our study aims species’ responses to climate change. The dramatic aban- to forecast the distribution of 37 common Scarabaeidae donment of extensive grazing across many low mountains dung beetle species in France, Portugal and Spain (i.e. of southern Europe may thus represent a serious threat to more than half of the western European Scarabaeidae dung beetle distribution changes. fauna) in relation to two climate change scenarios (A2 and B1) for the period leading to 2080. On average, 21 % of the Keywords Dung beetles Á Scarabaeidae Á Climate species should change in each 50-km UTM grid cell.
    [Show full text]
  • Het Lot Van Endozoöchoor Verbreide Zaden
    The fate of endozoochorously dispersed seeds Het lot van endozoöchoor verbreide zaden Tanja Milotić Promotor: Prof. Dr. Maurice Hoffmann Ghent University Faculty of Sciences Academic Year 2016-2017 Submitted to the faculty of Sciences of Ghent University, in fulfilment of the requirements for the degree of Doctor (PhD) in Sciences Members of the examination committee Prof. Dr. Maurice Hoffmann (Ghent University/INBO, Belgium): promotor Prof. Dr. Dries Bonte (Ghent University, Belgium): chair Prof. Dr. Annemieke Verbeken (Ghent University, Belgium): secretary Dr. Bram D'hondt (Ghent University/ANB, Belgium) Dr. Amy Eycott (University of Bergen, Norway) Prof. Dr. Robin Pakeman (James Hutton Institute, UK) Prof. Dr. Kris Verheyen (Ghent University, Belgium) Date of public defence: February, 24th 2017 For citation of published work reprinted in this thesis, please cite the original publication as mentioned at the first page of each chapter. Please cite this thesis as: Milotić, T. (2017) The fate of endozoochorously dispersed seeds. PhD dissertation. Ghent University, Ghent, Belgium. pp 360. The research in this thesis was conducted at the Terrestrial Ecology Unit (TEREC), Biology Department, Faculty of Sciences, Ghent University K.L. Ledeganckstraat 35, 9000 Ghent, Belgium Pictures taken by Tanja Milotić unless stated otherwise Acknowledgments Na zes jaar zweten en zwoegen ligt het er eindelijk: mijn doctoraat! Ontelbaar vaak heb ik op vragen moeten antwoorden met "neen, mijn doctoraat is nog niet af, maar ik heb nog massa's tijd" of "neen, ik ben helemaal geen post-doc maar gewoon een overjaarse (?) doctoraatsstudent" (jaja, ik ben er iets rijper aan begonnen dan gebruikelijk). Ondertussen leek die 'massa tijd' exponentieel af te nemen terwijl het met het aantal ideeën over extra toe te voegen hoofdstukken eerder de omgekeerde richting uitging.
    [Show full text]
  • Scarab Beetles in Human Culture
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State November 2006 SCARAB BEETLES IN HUMAN CULTURE Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Ratcliffe, Brett C., "SCARAB BEETLES IN HUMAN CULTURE" (2006). Papers in Entomology. 94. https://digitalcommons.unl.edu/entomologypapers/94 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Coleopterists Society Monograph Number 5:85–101. 2006. SCARAB BEETLES IN HUMAN CULTURE BRETT C. RATCLIFFE Systematics Research Collections W-436 Nebraska Hall University of Nebraska Lincoln, NE 68588-0514, U.S.A. [email protected] Abstract The use of scarab beetles (Coleoptera: Scarabaeidae) by primarily pre- and non-industrial peoples throughout the world is reviewed. These uses consist of (1) religion and folklore, (2) folk medicine, (3) food, and (4) regalia and body ornamentation. The use of scarabs in religion or cosmology, once widespread in ancient Egypt, exists only rarely today in other cultures. Scarabs have a minor role in folk medicine today although they may have been more important in the past. The predominant utilization of these beetles today, and probably in the past as well, is as food with emphasis on the larval stage. Lastly, particularly large or brightly colored scarabs (or their parts) are used (mostly in the New World) to adorn the body or as regalia.
    [Show full text]
  • Beetles in Stone: the Egyptian Scarab Author(S): William A
    Beetles in Stone: The Egyptian Scarab Author(s): William A. Ward Source: The Biblical Archaeologist, Vol. 57, No. 4 (Dec., 1994), pp. 186-202 Published by: The American Schools of Oriental Research Stable URL: http://www.jstor.org/stable/3210428 . Accessed: 10/09/2011 22:54 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The American Schools of Oriental Research is collaborating with JSTOR to digitize, preserve and extend access to The Biblical Archaeologist. http://www.jstor.org ile a biologist may appreci- Scarab Origins, Beetles in ate the beauty of the beetle's Manufacture, and Use physical structure and the wonder and precision of its life cycle, Origins Stone: The to most of us the beetle is simply a pest, Around 2500 BCE,a class of small stone certainly not a creature to be endowed design amulets began to appear in Egyptian with awe and respect. The Egyptian Egypt, found primarily with women attitude toward the beetle was quite and children buried in cemeteries of the the opposite of the attitudes of most ordinary people of Egypt. The earliest Scarab people today.1The beetle is an extraor- examples are shaped like a tiny pyra- dinarily common motif in Egyptian art, mid and have geometric and animal By William A.
    [Show full text]
  • Dung Pad Size and Ball Production by Scarabaeus Sacer (Coleoptera: Scarabaeidae: Scarabaeinae)
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 70–75, 2016 http://www.eje.cz doi: 10.14411/eje.2016.008 ORIGINAL ARTICLE Does one size suit all? Dung pad size and ball production by Scarabaeus sacer (Coleoptera: Scarabaeidae: Scarabaeinae) GREGORY T. SULLIVAN 1, SEBAHAT K. OZMAN-SULLIVAN 2, JEAN-PIERRE LUMARET 3, MYRON P. ZALUCKI 4 and GREG BAXTER 1 1 The University of Queensland, School of Geography, Planning and Environmental Management, 4072 Brisbane, Australia; e-mails: [email protected], [email protected] 2 Ondokuz Mayis University, Faculty of Agriculture, Department of Plant Protection, 55139 Samsun, Turkey; e-mail: [email protected] 3 CEFE UMR 5175, CNRS – Université de Montpellier, Université Paul-Valéry Montpellier 3 – EPHE, Laboratoire Zoogéographie, route de Mende, 34199 Montpellier cedex 5, France; e-mail: [email protected] 4 The University of Queensland, School of Biological Sciences, 4072 Brisbane, Australia; e-mail: [email protected] Key words. Coleoptera, Scarabaeidae, Scarabaeus sacer, ball roller, diel cycle, dung pad, intraspecies competition, nocturnal, seasonal, telecoprid Abstract. Large, ball rolling dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) are competitively dominant and can strongly infl uence community succession in dung pads. Ball production by Scarabaeus sacer Linnaeus was recorded in the Kizilirmak Delta on the Black Sea coast of Turkey by using artifi cial dung pads from 125 g to 2,000 g. Utilisation of pads across the 16-fold range of pad sizes demonstrated behavioural variation that may reduce intraspecies competition. Ball production was highly concentrated, with 66 balls (61%) produced from 8 pads of the 3 largest pad sizes, which may be related to chemical attraction between males and females.
    [Show full text]
  • Download Transcript
    Ask A Biologist Transcript – Vol 059 – (Guest: Mary Liz Jameson) Ask A Biologist Vol 059 (Guest: Mary Liz Jameson) Been There Dung That Are there really flesh-eating scarab beetles, or is it a movie myth? Just what are dung beetles doing with all the poop they gather in big balls? These are a few of the questions that biologist Mary Liz Jameson answers on this fun-filled podcast. Transcript Dr. Biology: This is "Ask A Biologist," a program about the living world, and I'm Dr. Biology. My guest today is Mary Liz Jameson, a research associate professor in the Department of Biological Sciences at Wichita State University. Her work is with an insect that has family members that love to take a bite out of plants. OK, that's not that unusual. But there are also other members of the family that prefer a nice ball of dung. That's right. Some folks might call it poop or feces. Well, this is the food of choice for dung beetles, which are part of the family Scarabaeidae. While talking about food, we'll also be learning about some tasty treats made from insects that you might want to try. So stick around, and maybe you can pick up a great recipe for your next dinner or potluck. Welcome to the show, Mary Liz, and thank you for visiting with me today. Professor Mary Liz Jameson: Hi, Dr. Biology. Great to be here. Dr. Biology: You've got this passion for these really cool scarab beetles, and you have a pretty good list of recipes that we're going to be able to talk about later.
    [Show full text]
  • An Ecological Study of Two Dung Beetles (Coleoptera, Scarabaeninae) with Contrasting Phenologies
    ResearchOnline@JCU This file is part of the following reference: Tyndale-Biscoe, Marina (1985) An ecological study of two dung beetles (Coleoptera, Scarabaeninae) with contrasting phenologies. PhD thesis, James Cook University of North Queensland. Access to this file is available from: http://researchonline.jcu.edu.au/33795/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://researchonline.jcu.edu.au/33795/ An ecological study of two dung beetles (Coleoptera, Scarabaeinae) with contrasting phenologies. Thesis submitted by Marina Tyndale-Biscoe BSc (Hons) (Tas.) in March 1985 for the degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland. i Access to thesis. I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: "In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it." Beyond this, I do not wish to place any restriction on access to this thesis. "ig igr (date) (signature) ii Declaration I declare that this thesis is my own work and has not been submitted by me in any form for another degree or diploma at any university or other institution of tertiary education.
    [Show full text]
  • Scarab Beetles Scarabaeidae (Latreille, 1802) Natural History Summary by Jacob Egge, Phd
    SCARAB BEETLES SCARABAEIDAE (LATREILLE, 1802) NATURAL HISTORY SUMMARY BY JACOB EGGE, PHD Classification Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Family: Scarabaeidae Description The family Scarabaeidae is comprised of a diverse assemblage of beetle species with over 27,000 described. Shape varies widely, but most are stout-bodied with antennae that have 10 segments and a 3-7 segment opposable club (Ratcliffe and Jameson 2005). The pronotum may or may not be ornamented with horns or tubercles. Front legs are often broad and adapted for digging. Well-known representatives include Japanese beetles (Popillia japonica) (an agricultural pest), Dung Beetles (Scarabaeinae and Aphodiinae), June Beetles (Cetoniinae and Melolonthinae), Rhinoceros Beetles (Dynastinae), and the Goliath Beetle (Goliathus goliathus) (one of the heaviest insects) (Ratcliffe and Jameson 2005). Distribution Scarabs are globally distributed with the exception of Antarctica and marine environments. Diet The so-called “Dung Beetles” feed on the dung of large herbivores. Some species live in the dung while others roll perfectly spherical dung balls over large distances to bury them. However, not all scarabs feed on dung. Diets vary widely and include carrion, fungi, vegetation, pollen, fruits, compost, roots (Ratcliffe and Jameson 2005). Habitat and Ecology Many Scarabs are nocturnal, but some are diurnal. The Dung Beetle, in particular, can be placed into one of three functional groups: Rollers, dwellers, and tunnellers. Rollers gather dung into a ball, roll it to a brood chamber and lay their eggs in the dung ball. Tunnellers dig vertical tunnels below a dung pile and bring the dung into these tunnels where they also lay their eggs.
    [Show full text]
  • M Ed Iter R a N E
    THE CONSERVATION STATUS AND DISTRIBUTION OF MEDITERRANEAN DUNG BEETLES Catherine Numa, Mattia Tonelli, Jorge M. Lobo, José R. Verdú, Jean-Pierre Lumaret, Francisco Sánchez-Piñero, José L. Ruiz, Marco Dellacasa, Stefano Ziani, Alfonsina Arriaga, Francisco Cabrero, Imen Labidi, Violeta Barrios, Yakup Şenyüz and Sinan Anlaş MEDITERRANEAN The IUCN Red List of Threatened Species™ – Regional Assessment THE CONSERVATION STATUS AND DISTRIBUTION OF MEDITERRANEAN DUNG BEETLES About IUCN IUCN is a membership Union uniquely composed of both government and civil society organisations. It provides public, private and non-governmental organisations with the knowledge and tools that enable human progress, economic development and nature conservation to take place together. Created in 1948, IUCN is now the wor- ld’s largest and most diverse environmental network, harnessing the knowledge, resources and reach of 1,400 Member organisations and some 15,000 experts. It is a leading provider of conservation data, assessments and analysis. Its broad membership enables IUCN to fill the role of incubator and trusted repository of best practices, tools and international standards. IUCN provides a neutral space in which diverse stakeholders including govern- ments, NGOs, scientists, businesses, local communities, indigenous peoples’ organisations and others can work together to forge and implement solutions to environmental challenges and achieve sustainable development. Working with many partners and supporters, IUCN implements a large and diverse portfolio of
    [Show full text]