1997-Problem Structure in the Presence of Perturbations

Total Page:16

File Type:pdf, Size:1020Kb

1997-Problem Structure in the Presence of Perturbations From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved. Carla P. Gomes Bart Selman Rome Laboratory* AT&T Laboratories 25 Brooks Rd. Murray Hill, NJ 07974 Rome Lab, NY 13441-4505 [email protected] .com [email protected] Abstract certain structure that is often present in realistic prob- lems. On the other hand, the highly structured mathe- Recent progress on search and reasoning procedures matical problems contain too much structure from the has been driven by experimentation on computation- ally hard problem instances. Hard random prob- perspective of realistic applications. lem distributions are an important source of such in- We propose a new benchmark domain that bridges stances. Challenge problems from the area of finite the gap between the purely random problems and the algebra have also stimulated research on search and highly structured problems.’ We consider structured reasoning procedures. Nevertheless, the relation of problems from the area of combinatorics for which di- such problems to practical applications is somewhat rect constructive solution methods are known. Our unclear. Realistic problem instances clearly have more goal is to study the properties of such structured do- structure than the random problem instances, but, mains in the presence of perturbations to their struc- on the other hand, they are not as regular as the ture. The properties of the resulting problems are structured mathematical problems. We propose a new benchmark domain that bridges the gap between the closer to those of real-world problem instances, in the purely random instances and the highly structured sense that the underlying structure of practical prob- problems, by introducing perturbations into a struc- lem instances is also often perturbed by an element of tured domain. We will show how to obtain interesting randomness or uncertainty. search problems in this manner, and how such prob- As our starting point, we selected the quasigroup, a lems can be used to study the robustness of search discrete structure that can be characterized by a set of control mechanisms. Our experiments demonstrate simple properties. As we will see, finding basic quasi- that the performance of search strategies designed to groups is a relatively easy problem, for which direct mimic direct constructive methods degrade surpris- constructions are known. However, the nature of the ingly quickly in the presence of even minor pertur- problem changes dramatically if we impose additional bations. constraints that are locally consistent but not neces- sarily globally consistent. In particular, we perturb Introduction the structure of the quasigroup by requiring that it In recent years, we have seen significant progress in the satisfies an incomplete initial pattern. Even though area of search and constraint satisfaction. Using ran- this initial pattern is consistent with the properties of dom instance distributions, hard search problems have quasigroups, there are no guarantees that a complete been identified. Such instances have pushed the devel- quasigroup can be derived from it. opment of new search methods both in terms of sys- The quasigroup completion problem enables us to tematic and stochastic procedures (Hogg et al. 1996). study the impact of perturbations on the complexity The study of highly structured problems, such as those of the underlying well-structured problem. Our ex- from various finite algebra domains, has also driven the periments will show that for general search procedures development of search procedures. For example, the small perturbations actually facilitate the search for question of the existence and non-existence of certain solutions. However, when the perturbations become discrete structures with intricate mathematical prop- larger, the search problems become exponentially hard erties gives rise to some of the most challenging search on average. problems (Fujita et al. 1993). Using this spectrum of difficulty of the quasigroup An important question is to what extent real-world completion problem, we study the performance of var- search and reasoning tasks are represented by such ious forms of search control. In particular, we investi- problems. It seems clear that random instances lack gate the robustness of search procedures, i.e., whether procedures that work well on the structured problems *Carla P. Gomes works for Rome Laboratory as a Re- search Associate. ‘See also http:// www.ai.rl.af.mil/quasi/quasi.html. Copyright 0 1997, Amerun Assoclatlon fOf ArMiclal Intelligence (www.naai.org). All rights rcscrved. EFFICIENT REASONING 221 degrade gracefuZZy in the presence of perturbation. We Evans (1960) conjectured that every N by N par- find that the performance of a search heuristic that tial latin square with at most N - 1 cells occupied can mimics a direct constructive method for quasigroups be completed to a latin square of order N. This is degrades rapidly in the presence of even the small- known as the Evans conjecture. Despite the fact that est possible perturbations. On the other hand, more the problem received much attention, and many par- generic heuristics, which do not perform so well on tial solutions were published, it took until 1981 for the the original problem, degrade more gracefully in the conjecture to be proved correct (Smetaniuk 1981). presence of perturbations, and quickly outperform the Andersen and Hilton (1983)) through independent more specialized search method. work, proved Evans conjecture with stronger results. This finding suggests that it can be counterproduc- They give a complete characterization of those par- tive to design search control strategies that specifically tial latin squares of order N with N non-empty cells mimic constructive methods. Of course, specialized that cannot be completed to a full latin square. How- search control has been shown to be quite effective ever, it appears unlikely that one can characterize in certain domains. Our results merely question the non-completable partial latin squares with an urbi- robustness of such customized -search I methods. Ap- trury number of pre-assigned elements. This is be- parently, even small perturbations can “throw off” the cause the completion problem has been shown to be specialized search control, making it inferior to a more NP-complete (Colbourn 1983, 1984). Of course, this general method. These results are consistent with the makes the problem computationally interesting from empirical finding that simple generic search methods the perspective of search and constraint satisfaction. often outperform more sophisticated ones when applied An interesting application area of latin squares is to a range of problem instances. the design of statistical experiments. The purpose of The paper is structured as follows. In the next sec- latin squares is to eliminate the effect of certain system- tion, we introduce quasigroups and define the quasi- atic dependency among the data (Denes and Keedwell group completion problem. We also discuss the the- 1974). Another interesting application is in scheduling oretical complexity of the problem. We then present and timetabling. For example, latin squares are useful empirical results on the quasigroup completion task, in determining intricate schedules involving pairwise followed by the evaluation of search strategies and their meetings among the members of a group (Anderson scaling properties. And, finally, we summarize our re- 1985). A natural perturbation of this problem is the sults and discuss future directions. problem of completing a schedule given a set of pre- assigned meetings. The Quasigroup Completion Problem Quasigroups with additional mathematical proper- ties are studied in the area of automated theorem prov- A quasigroup is an ordered pair (Q, e), where Q is a ing (Fujita et al. 1993; Lam et al. 1989). One interest- set and (v) is a binary operation on Q such that the ing question is to what extent special search heuristic equations a . x = b and y . a = b are uniquely solvable that can guide the search to find general unrestricted for every pair of elements a, b in Q. The order N of quasigroups is also of use in finding special quasigroup the quasigroup is the cardinality of the set Q. A good with interesting mathematical properties. way to understand the structure of a quasigroup is to Finally, the notion of completing partial solutions is consider the N by N multiplication table as defined by useful in exploring the total space of solutions, since its binary operation. (For each pair of elements x and the completion problem provides insights into the den- y, the table gives the result of x . y.) The constraints sity of solutions. For example, easy completion of par- on a quasigroup are such that its multiplication table tial structures does suggest a high density of solutions. defines a Latin square. This means that in each row of the table, each element of the set Q occurs exactly Computational Results for the once; similarly, in each column, each element occurs exactly once (Denes and Keedwell 1974). Completion Problem An incomplete or partial lath square P is a partially We now consider the practical computational difficulty filled N by N table such that no symbol occurs twice of the quasigroup completion problem. There is a nat- in a row or a column. The Quasigroup Completion ural formulation of the problem as a Constraint Satis- Problem is the problem of determining whether the faction Problem. We have a variable for each of the N2 remaining entries of the table can be filled in such a entries in the multiplication table of the quasigroup, way that we obtain a complete latin square, that is, and we use constraints to capture the requirement of a full multiplication table of a quasigroup. We view having no repeated values in any row or column. All the pre-assigned values of the latin square as a pertur- variables have the same domain, namely the set of el- bation to the original problem of finding an arbitrary ements Q of the quasigroup.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • Arxiv:2011.04704V2 [Cs.LO] 22 Mar 2021 Eain,Bttre Te Opttoal Neetn Oessuc Models Interesting Well
    Domain Semirings United Uli Fahrenberg1, Christian Johansen2, Georg Struth3, and Krzysztof Ziemia´nski4 1Ecole´ Polytechnique, Palaiseau, France 2 University of Oslo, Norway 3University of Sheffield, UK 4University of Warsaw, Poland Abstract Domain operations on semirings have been axiomatised in two different ways: by a map from an additively idempotent semiring into a boolean subalgebra of the semiring bounded by the additive and multiplicative unit of the semiring, or by an endofunction on a semiring that induces a distributive lattice bounded by the two units as its image. This note presents classes of semirings where these approaches coincide. Keywords: semirings, quantales, domain operations 1 Introduction Domain semirings and Kleene algebras with domain [DMS06, DS11] yield particularly simple program ver- ification formalisms in the style of dynamic logics, algebras of predicate transformers or boolean algebras with operators (which are all related). There are two kinds of axiomatisation. Both are inspired by properties of the domain operation on binary relations, but target other computationally interesting models such as program traces or paths on digraphs as well. The initial two-sorted axiomatisation [DMS06] models the domain operation as a map d : S → B from an additively idempotent semiring (S, +, ·, 0, 1) into a boolean subalgebra B of S bounded by 0 and 1. This seems natural as domain elements form powerset algebras in the target models mentioned. Yet the domain algebra B cannot be chosen freely: B must be the maximal boolean subalgebra of S bounded by 0 and 1 and equal to the set Sd of fixpoints of d in S. The alternative, one-sorted axiomatisation [DS11] therefore models d as an endofunction on a semiring S that induces a suitable domain algebra on Sd—yet generally only a bounded distributive lattice.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • EXAMPLES of CHAIN DOMAINS 1. Introduction In
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 3, March 1998, Pages 661{667 S 0002-9939(98)04127-6 EXAMPLES OF CHAIN DOMAINS R. MAZUREK AND E. ROSZKOWSKA (Communicated by Ken Goodearl) Abstract. Let γ be a nonzero ordinal such that α + γ = γ for every ordinal α<γ. A chain domain R (i.e. a domain with linearly ordered lattices of left ideals and right ideals) is constructed such that R is isomorphic with all its nonzero factor-rings and γ is the ordinal type of the set of proper ideals of R. The construction provides answers to some open questions. 1. Introduction In [6] Leavitt and van Leeuwen studied the class of rings which are isomorphic with all nonzero factor-rings. They proved that forK every ring R the set of ideals of R is well-ordered and represented by a prime component∈K ordinal γ (i.e. γ>0andα+γ=γfor every ordinal α<γ). In this paper we show that the class contains remarkable examples of rings. Namely, for every prime component ordinalK γ we construct a chain domain R (i.e. a domain whose lattice of left ideals as well as the lattice of right ideals are linearly ordered) such that R and γ is the ordinal type of the set of proper ideals of R. We begin the construction∈K by selecting a semigroup that has properties analogous to those we want R to possess ( 2). The desired ring R is the Jacobson radical of a localization of a semigroup ring§ of the selected semigroup with respect to an Ore set ( 3).
    [Show full text]
  • Free Medial Quandles
    Algebra Univers. 78 (2017) 43–54 DOI 10.1007/s00012-017-0443-2 Published online May 23, 2017 © 2017 The Author(s) Algebra Universalis This article is an open access publication Free medial quandles Premyslˇ Jedlicka,ˇ Agata Pilitowska, and Anna Zamojska-Dzienio Abstract. This paper gives the construction of free medial quandles as well as free n-symmetric medial quandles and free m-reductive medial quandles. 1. Introduction A binary algebra (Q, ) is called a rack if the following conditions hold, for · every x, y, z Q: ∈ x(yz)=(xy)(xz) (we say Q is left distributive), • the equation xu = y has a unique solution u Q (we say Q is a left • ∈ quasigroup). An idempotent rack is called a quandle (we say Q is idempotent if xx = x for every x Q). A quandle Q is medial if, for every x, y, u, v Q, ∈ ∈ (xy)(uv)=(xu)(yv). An important example of a medial quandle is an abelian group A with an operation defined by a b = (1 h)(a)+h(b), where h is an automorphism ∗ ∗ − of A. This construction is called an affine quandle (or sometimes an Alexander quandle) and denoted by Aff(A, h). In the literature [6, 7], the group A is 1 usually considered to be a Z[t, t− ]-module, where t a = h(a), for each a A. · ∈ We shall adopt this point of view here as well and we usually write Aff(A, r) instead, where r is a ring element. Note that in universal algebra terminology, an algebra is said to be affine if it is polynomially equivalent to a module.
    [Show full text]
  • Unique Factorization Monoids and Domains
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 28, Number 2, May 1971 UNIQUE FACTORIZATION MONOIDS AND DOMAINS R. E. JOHNSON Abstract. It is the purpose of this paper to construct unique factorization (uf) monoids and domains. The principal results are: (1) The free product of a well-ordered set of monoids is a uf-monoid iff every monoid in the set is a uf-monoid. (2) If M is an ordered monoid and F is a field, the ring ^[[iW"]] of all formal power series with well-ordered support is a uf-domain iff M is naturally ordered (i.e., whenever b <a and aMp\bM¿¿0, then aMQbM). By a monoid, we shall always mean a cancellative semigroup with identity element. All rings are assumed to have unities, and integral domains and fields are not assumed to be commutative. If R is an integral domain, then the multiplicative monoid of nonzero elements is denoted by i?x. For any ring or monoid A, U(A) will denote its group of units. A monoid M is called a unique factorization monoid (uf-monoid) iff for every mEM — U(M), any two factorizations of m have a common refinement. That is, if m=aia2 ■ ■ ■ ar = bib2 ■ ■ ■ bs, then the a's and 6's can be factored, say ai = ci • • • c,, a2 = a+i ■ ■ ■Cj, ■ ■ ■ , 61 = di ■ ■ ■dk, b2=dk+i ■ ■ • dp, ■ ■ ■ , in such a way that cn=dn for all n. An integral domain R is called a unique factorization domain (uf-domain) iff Rx is a uf-monoid. A monoid M with relation < is said to be ordered by < iff < is a transitive linear ordering such that whenever a<b then ac<bc and ca<cb for all cEM.
    [Show full text]
  • On Strategy-Proofness and Semilattice Single-Peakedness Jordi Massó April 2019
    On Strategy-Proofness and Semilattice Single-Peakedness Jordi Massó April 2019 Barcelona GSE Working Paper Series Working Paper nº 1087 On strategy-proofness and semilattice single-peakedness∗ Agust´ın G. Bonifacio† Jordi Mass´o‡ April 11, 2019 Abstract We study social choice rules defined on the domain of semilattice single- peaked preferences. Semilattice single-peakedness has been identified as the necessary condition that a set of preferences must satisfy so that the set can be the domain of a strategy-proof, tops-only, anonymous and unanimous rule. We characterize the class of all such rules on that domain and show that they are deeply related to the supremum of the underlying semilattice structure. Keywords: Strategy-proofness; Unanimity; Anonymity; Tops-onlyness; Single-peakedness. JEL Classification Numbers: D71. 1 Introduction We characterize the class of all strategy-proof and simple rules defined on the domain of semilattice single-peaked preferences. A rule is a systematic procedure to select ∗We thank Salvador Barber`a, Shurojit Chatterji and Bernardo Moreno for helpful comments and suggestions. Bonifacio acknowledges financial support received from the UNSL, through grant 319502, and from the Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET), through grant PIP 112-200801-00655. Mass´oacknowledges financial support received from the Span- ish Ministry of Economy and Competitiveness, through grant ECO2017-83534-P and through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563), and from the Gener- alitat de Catalunya, through grant SGR2017-711. †Instituto de Matem´atica Aplicada San Luis, Universidad Nacional de San Luis and CONICET, San Luis, Argentina; e-mail: [email protected] ‡Departament d’Economia i d’Hist`oria Econ`omica, Universitat Aut`onoma de Barcelona, and Barcelona GSE, Spain; e-mail: [email protected] 1 an alternative as a function of the declared profile of agents’ preferences.
    [Show full text]
  • Modal Semirings Revisited
    Modal Semirings Revisited Jules Desharnais1 and Georg Struth2 1 D´epartement d’informatique et de g´enie logiciel, Pavillon Adrien-Pouliot, 1065, avenue de la M´edecine, Universit´e Laval, Qu´ebec, QC, Canada G1V 0A6 [email protected] 2 Department of Computer Science University of Sheffield, S1 4DP, United Kingdom [email protected] Abstract. A new axiomatisation for domain and codomain on semirings and Kleene algebras is proposed. It is much simpler, more general and more flexible than a predecessor, and it is particularly suitable for pro- gram analysis and program construction via automated deduction. Dif- ferent algebras of domain elements for distributive lattices, (co-)Heyting algebras and Boolean algebras arise by adapting this axiomatisation. Modal operators over all these domain algebras are then easy to define. The calculus of the previous axiomatisation arises as a special case. An application in terms of a fully automated proof of a modal correspon- dence result for L¨ob’s formula is also presented. 1 Introduction Kleene algebras are foundational structures in computing with applications rang- ing from program semantics, construction and refinement to rewriting and con- currency control. Most current variants are close relatives of Kozen’s elegant axiomatisation [17, 18], and share some important features: They focus on the essential operations for modelling programs and similar discrete systems. They support abstract and concise reasoning about such systems within first-order equational calculi. They have rich model classes that include relations, languages, paths in graphs, program traces and predicate transformers. And they enable a new kind of automated program analysis and construction that is supported by automated theorem provers (ATP systems) [10, 11, 13, 25].
    [Show full text]
  • Windows Domain and Workgroup Planning Guide
    EXPERION PKS RELEASE 516 Windows Domain and Workgroup Planning Guide EPDOC-X250-en-516A August 2020 Disclaimer This document contains Honeywell proprietary information. Information contained herein is to be used solely for the purpose submitted, and no part of this document or its contents shall be reproduced, published, or disclosed to a third party without the express permission of Honeywell International Sàrl. While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a purpose and makes no express warranties except as may be stated in its written agreement with and for its customer. In no event is Honeywell liable to anyone for any direct, special, or consequential damages. The information and specifications in this document are subject to change without notice. Copyright 2020 - Honeywell International Sàrl - 2 - Contents 3 Chapter 1 - About this document 7 1.1 Revision History 7 1.2 Intended audience 7 1.3 Prerequisite skills 7 1.4 Related documents 7 Chapter 2 - Planning a Windows domain/workgroup 9 2.1 Overview of Windows domain 9 2.2 Overview of a Windows workgroup 10 2.3 Overview of a domain controller 10 2.4 Overview of a Read-only Domain Controller 11 2.5 Overview of a peer domain controller 11 2.5.1 Multiple domain controllers in a domain 12 2.6 Overview of Active Directory and its components 13 2.6.1 Overview of Forests 13 2.6.2 Overview of domain trees 14 2.6.3 Overview of Organizational Units 15 2.6.4 Using a single domain with
    [Show full text]
  • Definition and Examples of Rings 50
    LECTURE 14 Definition and Examples of Rings Definition 14.1. A ring is a nonempty set R equipped with two operations ⊕ and ⊗ (more typically denoted as addition and multiplication) that satisfy the following conditions. For all a; b; c 2 R: (1) If a 2 R and b 2 R, then a ⊕ b 2 R. (2) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (3) a ⊕ b = b ⊕ a (4) There is an element 0R in R such that a ⊕ 0R = a ; 8 a 2 R: (5) For each a 2 R, the equation a ⊕ x = 0R has a solution in R. (6) If a 2 R, and b 2 R, then ab 2 R. (7) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. (8) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (b ⊗ c) Definition 14.2. A commutative ring is a ring R such that (14.1) a ⊗ b = b ⊗ a ; 8 a; b 2 R: Definition 14.3. A ring with identity is a ring R that contains an element 1R such that (14.2) a ⊗ 1R = 1R ⊗ a = a ; 8 a 2 R: Let us continue with our discussion of examples of rings. Example 1. Z, Q, R, and C are all commutative rings with identity. Example 2. Let I denote an interval on the real line and let R denote the set of continuous functions f : I ! R. R can be given the structure of a commutative ring with identity by setting [f ⊕ g](x) = f(x) + g(x) [f ⊗ g](x) = f(x)g(x) 0R ≡ function with constant value 0 1R ≡ function with constant value 1 and then verifying that properties (1)-(10) hold.
    [Show full text]
  • Endomorphism Bialgebras of Diagrams and of Non-Commutative Algebras and Spaces
    1 Endomorphism Bialgebras of Diagrams and of Non-Commutative Algebras and Spaces BODO PAREIGIS Department of Mathematics, UniversityofMunich Munich, Germany Bialgebras and Hopf algebras havea very complicated structure. It is not easy to construct explicit examples of suchandcheck all the necessary prop erties. This gets even more complicated if wehavetoverify that something like a como dule algebra over a bialgebra is given. Bialgebras and como dule algebras, however, arise in a very natural way in non-commu- tative geometry and in representation theory.Wewant to study some general principles on how to construct such bialgebras and como dule algebras. The leading idea throughout this pap er is the notion of an action as can b een seen most clearly in the example of vector spaces. Given a vector space V we can asso ciate with it its endomorphism algebra End(V ) that, in turn, de nes an action End (V ) V ! V . There is also the general linear group GL (V ) that de nes an action GL (V ) V ! V . In the case of the endomorphism algebra we are in the pleasant situation that End(V )isavector space itself so that we can write the action also as End (V ) V ! V . The action of GL (V )on V can also b e describ ed using the tensor pro duct by expanding the group GL(V ) to the group algebra K (GL (V )) to obtain K (GL (V )) V ! V . We are going to nd analogues of End (V )or K (GL (V )) acting on non-commutative geometric spaces or on certain diagrams.
    [Show full text]