Algebraic Structures in Comodule Categories Over Weak Bialgebras

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Structures in Comodule Categories Over Weak Bialgebras Algebraic structures in comodule categories over weak bialgebras AMS Western Sectional Meeting Virtual (formerly at University of Utah) Robert Won University of Washington October 25, 2020 1 / 20 Joint work with Chelsea Walton (Rice University) Elizabeth Wicks (Microsoft) arXiv:1911.12847 October 25, 2020 2 / 20 Big picture • Fix a field k. Goal. Study the symmetries of k-algebras A. A = (A; m : A ⊗k A ! A; u : k ! A) satisfying associativity and unit constraints. • Classically, study group actions of G on A such that g · (ab) = (g · a)(g · b) and g · 1A = 1A; i.e., A is a G-module and m and u are G-module morphisms. October 25, 2020 Symmetry 3 / 20 Bialgebras • A bialgebra H over k is a k-algebra (H; m; u) and a k-coalgebra (H; ∆;") such that (a) m and u are coalgebra morphisms ∆(ab) = ∆(a)∆(b) and ∆(1) = 1 ⊗ 1 (a’) ∆ and " are algebra morphisms ∆(ab) = ∆(a)∆(b) and "(ab) = "(a)"(b): • Sweedler Notation. ∆(a) = a1 ⊗ a2. • A Hopf algebra is a bialgebra with a k-linear antipode S S(a1)a2 = a1S(a2) = "(a): October 25, 2020 Symmetry 4 / 20 Quantum symmetries • Bialgebra (co)actions capture quantum symmetries. • Let HM be the category of left H-modules. • A is called a left H-module algebra if A 2 HM such that h · (ab) = (h1 · a)(h2 · b) h · 1A = "(h)1A: Theorem. [Etingof–Walton, 2013] Let H be a semisimple Hopf algebra over an algebraically closed field of characteristic zero. If A is a commutative domain that is an H-module algebra, then the H-action factors through a group action. October 25, 2020 Symmetry 5 / 20 Hopf algebras as quantum symmetries Theorem. [Etingof–Walton] Semisimple Hopf actions on commutative domains are captured by group actions. Motivating question. How do we enlarge this picture? Path algebras of quivers? October 25, 2020 Symmetry 6 / 20 Symmetries as objects in categories • A an associative unital k-algebra. Symmetries captured by: • G a group g · (ab) = (g · a)(g · b) and g · 1A = 1A: A an object, m : A ⊗ A ! A and u : k ! A morphisms in the monoidal category kGM. • H a bialgebra (or Hopf algebra) h · (ab) = (h1 · a)(h2 · b) and h · 1A = "(h)1A: A an object, m and u morphisms in the monoidal category HM. October 25, 2020 Symmetry 7 / 20 Symmetries as objects in categories • (C; ⊗; 1) a monoidal category. An algebra object in C is (A; m : A ⊗ A ! A; u : 1 ! A) where A is an object, m and u are morphisms satisfying: αA;A;A Id ⊗m (A ⊗ A) ⊗ A / A ⊗ (A ⊗ A) / A ⊗ A m⊗IdA m ⊗ A A m / A u⊗Id Id ⊗u 1 ⊗ A / A ⊗ A o A ⊗ 1 m r lA % A y • Can define a coalgebra object by flipping arrows. October 25, 2020 Symmetry 8 / 20 Symmetries as objects in categories H H • If H is a bialgebra, then HM, MH, M , and M are all monoidal. • A right H-comodule algebra is an algebra object in MH. • Equivalently, A 2 MH ρ : A ! A ⊗ H; ρ(a) = a[0] ⊗ a[1] such that ρ(ab) = a[0]b[0] ⊗ a[1]b[1] and ρ(1A) = 1A ⊗ 1H: October 25, 2020 Symmetry 9 / 20 A more general framework? H Look for H with HM or M monoidal. Many generalizations of Hopf algebras: 1. Weak Hopf algebras 2. Quasi-bialgebras with antipode 3. Hopf algebroids 4. Hopf bimonoids in duoidal categories 5. Hopfish algebras October 25, 2020 Symmetry 10 / 20 Weak Hopf algebras • A weak bialgebra H over k is a k-algebra (H; m; u) and a k-coalgebra (H; ∆;") such that (1) ∆(ab) = ∆(a)∆(b), (2) (∆ ⊗ Id) ◦ ∆ = (∆(1) ⊗ 1)(1 ⊗ ∆(1)) = (1 ⊗ ∆(1))(∆(1) ⊗ 1), (3) "(abc) = "(ab1)"(b2c) = "(ab2)"(b1c). • Bialgebra if and only if ∆(1) = 1 ⊗ 1 if and only if "(ab) = "(a)"(b). • A weak Hopf algebra is a weak bialgebra with antipode S: S(a1)a2 = 11"(a12); a1S(a2) = "(11a)12; S(a1)a2S(a3) = S(a): October 25, 2020 Weak bialgebras 11 / 20 Why weak Hopf algebras? • Introduced by [Bohm–Nill–Szlachanyi¨ 1999], motivated by physics: study symmetries in conformal field theory. • Axioms are self-dual, so the dual of a finite-dimensional weak Hopf algebra is again a weak Hopf algebra. Example. If H; K are bialgebras, then H ⊕ K is an algebra as usual and a coalgebra under ∆(h; k) = (h1; 0) ⊗ (h2; 0) + (0; k1) ⊗ (0; k2) "(h; k) = "H(h) + "K(k) But ∆(1; 1) = (1; 0) ⊗ (1; 0) + (0; 1) ⊗ (0; 1) 6= (1; 1) ⊗ (1; 1). So H ⊕ K not a bialgebra, only a weak bialgebra. October 25, 2020 Weak bialgebras 12 / 20 Why weak Hopf algebras? • If G; H are groups, then G t H is not a group, but a groupoid. Example. G is a groupoid. kG the groupoid algebra is a weak Hopf algebra. For g 2 G: ∆(g) = g ⊗ g;"(g) = 1; S(g) = g−1: α G = 1 2 α−1 Then 1 = e1 + e2 but ∆(1) = e1 ⊗ e1 + e2 ⊗ e2 6= 1 ⊗ 1. • There is a natural coaction of a weak bialgebra H(Q) on the path algebra kQ [Hayashi]. October 25, 2020 Weak bialgebras 13 / 20 Why weak Hopf algebras? Example. [Hayashi] p q Q a finite quiver (e.g., Q = 1 2 3 ). Define a weak bialgebra H(Q): k • -basis: fxa;b j a; b 2 Q`; ` 2 Ng. ( xac;bd; if ac and bd compose • Multiplication: xa;bxc;d = 0; otherwise • ∆( ) = P ⊗ Comultiplication: xa;b c2Q` xa;c xc;b P • Unit:1 H(Q) = xi;j • Counit: "(xa;b) = δa;b. • Coacts naturally on the path algebra kQ: X a 7! b ⊗ xb;a: b2Q` October 25, 2020 Weak bialgebras 14 / 20 Why weak Hopf algebras? Theorem. [Hayashi 1999, Szlachanyi 2001] Every fusion category is equivalent to HMfd for some weak Hopf algebra H. • If (H; m; u; ∆;") is an algebra and coalgebra such that ∆(ab) = ∆(a)∆(b), then ∆ axiom ) HM and MH are monoidal, " axiom ) HM and MH are monoidal. • But not ⊗k! [Nill 1998], [Bohm–Caenepeel–Janssen¨ 2011] October 25, 2020 Weak bialgebras 15 / 20 The puzzle • (Co)module categories are monoidal, but not ⊗k. αA;A;A Id ⊗m (A ⊗ A) ⊗ A / A ⊗ (A ⊗ A) / A ⊗ A m⊗IdA m ⊗ A A m / A u⊗Id Id ⊗u 1 ⊗ A / A ⊗ A o A ⊗ 1 m r lA % A y • Algebra objects come with A ⊗ A ! A and 1 ! A. • But k-algebras come with A ⊗k A ! A and k ! A. October 25, 2020 Weak bialgebras 16 / 20 The puzzle • H a weak bialgebra. • Define AH, the category of right H-comodule algebras: • k-algebras A which are right H-comodules ρ : A ! A ⊗ H; ρ(a) = a[0] ⊗ a[1] such that (ab)[0](ab)[1] = a[0]b[0] ⊗ a[1]b[1] and ρ(1A) 2 A ⊗ Ht: • k-algebra morphisms which are H-comodule morphisms. Theorem. [Brzezinski–Caenepeel–Militaru,´ 2002] There is an isomorphism of categories between AH and algebra objects in MH. October 25, 2020 Weak bialgebras 17 / 20 Toward weak quantum symmetry Theorem. [Walton–Wicks–W] H a weak bialgebra. Define categories • CH of right H-comodule coalgebras, and • F H of right H-comodule Frobenius algebras. There are (explicitly given) isomorphisms of categories • CH and coalgebra objects in MH • F H and Frobenius algebra objects in MH. October 25, 2020 Weak bialgebras 18 / 20 Toward weak quantum symmetry • We provide new examples of “weak quantum symmetry” (weak Hopf algebra coactions) from “ordinary quantum symmetry” (Hopf algebra coactions). • Hayashi’s H(Q)-coaction on kQ makes kQ an H(Q)-comodule algebra. • In fact, H(Q) coacts universally on kQ: [Huang–Walton–Wicks–W, arXiv:2008.00606]. October 25, 2020 Weak bialgebras 19 / 20 Thank you! October 25, 2020 Weak bialgebras 20 / 20.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • QUIVER BIALGEBRAS and MONOIDAL CATEGORIES 3 K N ≥ 0
    QUIVER BIALGEBRAS AND MONOIDAL CATEGORIES HUA-LIN HUANG (JINAN) AND BLAS TORRECILLAS (ALMER´IA) Abstract. We study the bialgebra structures on quiver coalgebras and the monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed monoidal categories. 1. Introduction This paper is devoted to the study of natural bialgebra structures on the path coalgebra of an arbitrary quiver and monoidal structures on the category of its locally nilpotent and locally finite representations. A further purpose is to establish a quiver setting for general pointed bialgebras and pointed monoidal categories. Our original motivation is to extend the Hopf quiver theory [4, 7, 8, 12, 13, 25, 31] to the setting of generalized Hopf structures. As bialgebras are a fundamental generalization of Hopf algebras, we naturally initiate our study from this case. The basic problem is to determine what kind of quivers can give rise to bialgebra structures on their associated path algebras or coalgebras. It turns out that the path coalgebra of an arbitrary quiver admits natural bial- gebra structures, see Theorem 3.2. This seems a bit surprising at first sight by comparison with the Hopf case given in [8], where Cibils and Rosso showed that the path coalgebra of a quiver Q admits a Hopf algebra structure if and only if Q is a Hopf quiver which is very special.
    [Show full text]
  • Arxiv:2011.04704V2 [Cs.LO] 22 Mar 2021 Eain,Bttre Te Opttoal Neetn Oessuc Models Interesting Well
    Domain Semirings United Uli Fahrenberg1, Christian Johansen2, Georg Struth3, and Krzysztof Ziemia´nski4 1Ecole´ Polytechnique, Palaiseau, France 2 University of Oslo, Norway 3University of Sheffield, UK 4University of Warsaw, Poland Abstract Domain operations on semirings have been axiomatised in two different ways: by a map from an additively idempotent semiring into a boolean subalgebra of the semiring bounded by the additive and multiplicative unit of the semiring, or by an endofunction on a semiring that induces a distributive lattice bounded by the two units as its image. This note presents classes of semirings where these approaches coincide. Keywords: semirings, quantales, domain operations 1 Introduction Domain semirings and Kleene algebras with domain [DMS06, DS11] yield particularly simple program ver- ification formalisms in the style of dynamic logics, algebras of predicate transformers or boolean algebras with operators (which are all related). There are two kinds of axiomatisation. Both are inspired by properties of the domain operation on binary relations, but target other computationally interesting models such as program traces or paths on digraphs as well. The initial two-sorted axiomatisation [DMS06] models the domain operation as a map d : S → B from an additively idempotent semiring (S, +, ·, 0, 1) into a boolean subalgebra B of S bounded by 0 and 1. This seems natural as domain elements form powerset algebras in the target models mentioned. Yet the domain algebra B cannot be chosen freely: B must be the maximal boolean subalgebra of S bounded by 0 and 1 and equal to the set Sd of fixpoints of d in S. The alternative, one-sorted axiomatisation [DS11] therefore models d as an endofunction on a semiring S that induces a suitable domain algebra on Sd—yet generally only a bounded distributive lattice.
    [Show full text]
  • Characterization of Hopf Quasigroups
    Characterization of Hopf Quasigroups Wei WANG and Shuanhong WANG ∗ School of Mathematics, Southeast University, Jiangsu Nanjing 210096, China E-mail: [email protected], [email protected] Abstract. In this paper, we first discuss some properties of the Galois linear maps. We provide some equivalent conditions for Hopf algebras and Hopf (co)quasigroups as its applications. Then let H be a Hopf quasigroup with bijective antipode and G be the set of all Hopf quasigroup automorphisms of H. We introduce a new category CH(α, β) with α, β ∈ G over H and construct a new braided π-category C (H) with all the categories CH (α, β) as components. Key words: Galois linear map; Antipode; Hopf (co)quasigroup; Braided π-category. Mathematics Subject Classification 2010: 16T05. 1. Introduction The most well-known examples of Hopf algebras are the linear spans of (arbitrary) groups. Dually, also the vector space of linear functionals on a finite group carries the structure of a Hopf algebra. In the case of quasigroups (nonassociative groups)(see [A]) however, it is no longer a Hopf algebra but, more generally, a Hopf quasigroup. In 2010, Klim and Majid in [KM] introduced the notion of a Hopf quasigroup which was arXiv:1902.10141v1 [math.QA] 26 Feb 2019 not only devoted to the development of this missing link: Hopf quasigroup but also to under- stand the structure and relevant properties of the algebraic 7-sphere, here Hopf quasigroups are not associative but the lack of this property is compensated by some axioms involving the antipode S. This mathematical object was studied in [FW] for twisted action as a gen- eralization of Hopf algebras actions.
    [Show full text]
  • TENSOR TOPOLOGY 1. Introduction Categorical Approaches Have Been Very Successful in Bringing Topological Ideas Into Other Areas
    TENSOR TOPOLOGY PAU ENRIQUE MOLINER, CHRIS HEUNEN, AND SEAN TULL Abstract. A subunit in a monoidal category is a subobject of the monoidal unit for which a canonical morphism is invertible. They correspond to open subsets of a base topological space in categories such as those of sheaves or Hilbert modules. We show that under mild conditions subunits endow any monoidal category with a kind of topological intuition: there are well-behaved notions of restriction, localisation, and support, even though the subunits in general only form a semilattice. We develop universal constructions complet- ing any monoidal category to one whose subunits universally form a lattice, preframe, or frame. 1. Introduction Categorical approaches have been very successful in bringing topological ideas into other areas of mathematics. A major example is the category of sheaves over a topological space, from which the open sets of the space can be reconstructed as subobjects of the terminal object. More generally, in any topos such subobjects form a frame. Frames are lattices with properties capturing the behaviour of the open sets of a space, and form the basis of the constructive theory of pointfree topology [35]. In this article we study this inherent notion of space in categories more general than those with cartesian products. Specifically, we argue that a semblance of this topological intuition remains in categories with mere tensor products. For the special case of toposes this exposes topological aspects in a different direction than considered previously. The aim of this article is to lay foundations for this (ambitiously titled) `tensor topology'. Boyarchenko and Drinfeld [10, 11] have already shown how to equate the open sets of a space with certain morphisms in its monoidal category of sheaves of vector spaces.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Left Hopf Algebras
    JOURNAL OF ALGEBRA 65, 399-411 (1980) Left Hopf Algebras J. A. GREEN Mathematics Institute, University of Warwick, Coventry CV4 7AL, England WARREN D. NICHOLS Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802; and Department of Mathematics, Florida State University, Tallahassee, Florida 32306 AND EARL J. TAFT Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903; and School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540 Communicated by N. Jacobson Received March 5, 1979 I. INTRODUCTION Let k be a field. If (C, A, ~) is a k-coalgebra with comultiplication A and co- unit ~, and (A, m,/L) is an algebra with multiplication m and unit/z: k-+ A, then Homk(C, A) is an algebra under the convolution productf • g = m(f (~)g)A. The unit element of this algebra is/zE. A bialgebra B is simultaneously a coalgebra and an algebra such that A and E are algebra homomorphisms. Thus Homk(B, B) is an algebra under convolution. B is called a Hopf algebra if the identify map Id of B is invertible in Homk(B, B), i.e., there is an S in Homk(B, B) such that S * Id =/zE = Id • S. Such an S is called the antipode of the Hopf algebra B. Using the notation Ax = ~ x 1 @ x~ for x ~ B (see [8]), the antipode condition is that Y'. S(xa) x 2 = E(x)l = • XlS(X~) for all x E B. A bialgebra B is called a left Hopf algebra if it has a left antipode S, i.e., S ~ Homk(B, B) and S • Id =/,E.
    [Show full text]
  • Quasitriangular Structure of Myhill–Nerode Bialgebras
    Axioms 2012, 1, 155-172; doi:10.3390/axioms1020155 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Article Quasitriangular Structure of Myhill–Nerode Bialgebras Robert G. Underwood Department of Mathematics/Informatics Institute, Auburn University Montgomery, P.O. Box 244023, Montgomery, AL 36124, USA; E-Mail: [email protected]; Tel.: +1-334-244-3325; Fax: +1-334-244-3826 Received: 20 June 2012; in revised form: 15 July 2012 / Accepted: 17 July 2012 / Published: 24 July 2012 Abstract: In computer science the Myhill–Nerode Theorem states that a set L of words in a finite alphabet is accepted by a finite automaton if and only if the equivalence relation ∼L, defined as x ∼L y if and only if xz 2 L exactly when yz 2 L; 8z, has finite index. The Myhill–Nerode Theorem can be generalized to an algebraic setting giving rise to a collection of bialgebras which we call Myhill–Nerode bialgebras. In this paper we investigate the quasitriangular structure of Myhill–Nerode bialgebras. Keywords: algebra; coalgebra; bialgebra; Myhill–Nerode theorem; Myhill–Nerode bialgebra; quasitriangular structure 1. Introduction ^ Let Σ0 be a finite alphabet and let Σ0 denote the set of words formed from the letters in Σ0. Let ^ L ⊆ Σ0 be a language, and let ∼L be the equivalence relation defined as x ∼L y if and only if xz 2 L ^ exactly when yz 2 L; 8z 2 Σ0. The Myhill–Nerode Theorem of computer science states that L is accepted by a finite automaton if and only if ∼L has finite index (cf.
    [Show full text]
  • EXAMPLES of CHAIN DOMAINS 1. Introduction In
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 3, March 1998, Pages 661{667 S 0002-9939(98)04127-6 EXAMPLES OF CHAIN DOMAINS R. MAZUREK AND E. ROSZKOWSKA (Communicated by Ken Goodearl) Abstract. Let γ be a nonzero ordinal such that α + γ = γ for every ordinal α<γ. A chain domain R (i.e. a domain with linearly ordered lattices of left ideals and right ideals) is constructed such that R is isomorphic with all its nonzero factor-rings and γ is the ordinal type of the set of proper ideals of R. The construction provides answers to some open questions. 1. Introduction In [6] Leavitt and van Leeuwen studied the class of rings which are isomorphic with all nonzero factor-rings. They proved that forK every ring R the set of ideals of R is well-ordered and represented by a prime component∈K ordinal γ (i.e. γ>0andα+γ=γfor every ordinal α<γ). In this paper we show that the class contains remarkable examples of rings. Namely, for every prime component ordinalK γ we construct a chain domain R (i.e. a domain whose lattice of left ideals as well as the lattice of right ideals are linearly ordered) such that R and γ is the ordinal type of the set of proper ideals of R. We begin the construction∈K by selecting a semigroup that has properties analogous to those we want R to possess ( 2). The desired ring R is the Jacobson radical of a localization of a semigroup ring§ of the selected semigroup with respect to an Ore set ( 3).
    [Show full text]
  • From Combinatorial Monoids to Bialgebras and Hopf Algebras, Functorially
    From combinatorial monoids to bialgebras and Hopf algebras, functorially Laurent Poinsot Abstract. This contribution provides a study of some combinatorial monoids, namely finite decomposition and locally finite monoids, using some tools from category theory. One corrects the lack of functoriality of the construction of the large algebras of finite decomposition monoids by considering the later as monoid objects of the category of sets with finite-fiber maps. Moreover it is proved that an algebraic monoid (i.e., a commutative bialgebra) may be as- sociated to any finite decomposition monoid, and that locally finite monoids furthermore provide algebraic groups (i.e., commutative Hopf algebras), by attaching in the first case a monoid scheme to the large algebra, and in the second case a group scheme to a subgroup of invertible elements in the large algebra. 1. Introduction The field of algebraic combinatorics deals with the interface between algebra and combinatorics, i.e., it solves problems from algebra with help of combinatorial methods, and vice versa. The algebras considered are often algebras of \combinato- rial" monoids or their deformations. A combinatorial monoid is roughly speaking a usual monoid together with an informal notion of a natural integer-valued size. The size may be the length of elements of a monoid (when this makes sense), but also the number of decompositions of an element into a product of \smaller" pieces. Hence in some sense in a combinatorial monoid the construction or the decomposition of the elements is combinatorially controlled. Two main classes of such combinatorial monoids have been recognized, namely finite decomposition and locally finite monoids.
    [Show full text]
  • Free Medial Quandles
    Algebra Univers. 78 (2017) 43–54 DOI 10.1007/s00012-017-0443-2 Published online May 23, 2017 © 2017 The Author(s) Algebra Universalis This article is an open access publication Free medial quandles Premyslˇ Jedlicka,ˇ Agata Pilitowska, and Anna Zamojska-Dzienio Abstract. This paper gives the construction of free medial quandles as well as free n-symmetric medial quandles and free m-reductive medial quandles. 1. Introduction A binary algebra (Q, ) is called a rack if the following conditions hold, for · every x, y, z Q: ∈ x(yz)=(xy)(xz) (we say Q is left distributive), • the equation xu = y has a unique solution u Q (we say Q is a left • ∈ quasigroup). An idempotent rack is called a quandle (we say Q is idempotent if xx = x for every x Q). A quandle Q is medial if, for every x, y, u, v Q, ∈ ∈ (xy)(uv)=(xu)(yv). An important example of a medial quandle is an abelian group A with an operation defined by a b = (1 h)(a)+h(b), where h is an automorphism ∗ ∗ − of A. This construction is called an affine quandle (or sometimes an Alexander quandle) and denoted by Aff(A, h). In the literature [6, 7], the group A is 1 usually considered to be a Z[t, t− ]-module, where t a = h(a), for each a A. · ∈ We shall adopt this point of view here as well and we usually write Aff(A, r) instead, where r is a ring element. Note that in universal algebra terminology, an algebra is said to be affine if it is polynomially equivalent to a module.
    [Show full text]