Modal Semirings Revisited

Total Page:16

File Type:pdf, Size:1020Kb

Modal Semirings Revisited Modal Semirings Revisited Jules Desharnais1 and Georg Struth2 1 D´epartement d’informatique et de g´enie logiciel, Pavillon Adrien-Pouliot, 1065, avenue de la M´edecine, Universit´e Laval, Qu´ebec, QC, Canada G1V 0A6 [email protected] 2 Department of Computer Science University of Sheffield, S1 4DP, United Kingdom [email protected] Abstract. A new axiomatisation for domain and codomain on semirings and Kleene algebras is proposed. It is much simpler, more general and more flexible than a predecessor, and it is particularly suitable for pro- gram analysis and program construction via automated deduction. Dif- ferent algebras of domain elements for distributive lattices, (co-)Heyting algebras and Boolean algebras arise by adapting this axiomatisation. Modal operators over all these domain algebras are then easy to define. The calculus of the previous axiomatisation arises as a special case. An application in terms of a fully automated proof of a modal correspon- dence result for L¨ob’s formula is also presented. 1 Introduction Kleene algebras are foundational structures in computing with applications rang- ing from program semantics, construction and refinement to rewriting and con- currency control. Most current variants are close relatives of Kozen’s elegant axiomatisation [17, 18], and share some important features: They focus on the essential operations for modelling programs and similar discrete systems. They support abstract and concise reasoning about such systems within first-order equational calculi. They have rich model classes that include relations, languages, paths in graphs, program traces and predicate transformers. And they enable a new kind of automated program analysis and construction that is supported by automated theorem provers (ATP systems) [10, 11, 13, 25]. To connect the algebraic approach with traditional logics of programs such as dynamic, temporal or Hoare logics, modal operators have been added to semirings and Kleene algebras by axiomatising a concept of domain [8]. In this approach—henceforth referred to as the DMS approach—the domain function d maps elements of an idempotent semiring S, which can be assumed to model the actions of some system, to elements of a certain Boolean subalgebra B of S, which models the state space of the system. This two-sorted approach seems very natural since domain elements d(x) represent precisely those states at which the action x is enabled. The resulting modal semirings and modal Kleene algebras have widely been applied since [5, 7, 10, 22, 24]. But despite its evident merits, the DMS approach shows some deficiencies. First, the domain algebra B in the range of d cannot be freely chosen: the DMS axioms imply that B must be the maximal Boolean subalgebra embedded into S in a certain way [8]. So the axioms determine B rather inelegantly and indirectly. Second, experiments show that the performance of ATP systems sig- nificantly suffers from the intricacies of the two-sorted setting [10]: an annoying obstacle to verification tasks. But are these deficiencies unavoidable? This paper proposes a one-sorted approach to domain semirings and Kleene algebras with domain that solves the problems mentioned. More precisely, our main contributions are as follows. – We provide a new one-sorted equational axiomatisation of domain for ar- bitrary semirings. It induces distributive lattices as domain algebras and supports the definition of modal operators on these lattices. – We extend domain semirings by an antidomain function that induces a Boolean domain algebra. We then reduce this axiomatisation to three simple equations plus the semiring axioms. We also show that all DMS theorems can be recovered in this much simpler and more pristine setting. – The flexibility of the approach is further demonstrated by extending domain semirings to Heyting and co-Heyting algebras with modal operators. – Finally, the improved applicability of the approach follows from proof ex- periments that include an automated modal correspondence proof for L¨ob’s formula, which has an immediate impact for automated termination analysis. These results show that the new approach presents a significant improvement: It is much simpler, more general and more flexible that the DMS approach with- out sacrificing the underlying intuitions. Its most important benefit, however, is its superior suitability for ATP systems in the context of automated program analysis and program construction. ATP systems also played an important role in the development of this ap- proach, in particular for analysing dependencies, redundancies and reducibilities of axiom systems and for developing the basic calculi. This technology allowed us to greatly accelerate the otherwise tedious and time-consuming search for proofs and counterexamples and to focus entirely on the conceptual work. We used the following tools: – Waldmeister [3], which is currently the most powerful system for unit equa- tional logic and which outputs equational proofs; – Prover9 [2], which is currently the most powerful ATP for full first-order reasoning with Kleene algebras [13] (but does not produce readable proofs); – Mace4 [2], which generates finite (counter)models from first-order axioms. All calculational proofs and counterexample searches in this paper have been fully automated with these tools, using a PC under Linux with an Intel Pentium 1.73GHz processor with 6.5 MB memory. The input templates in the appendices should put any reader in the position to easily reproduce them. Unfortunately, however, the granularity of Waldmeister proofs is too fine for publication. We therefore present comprehensive proofs of our main theorems in the paper. 2 The remainder of this text is organised as follows. Section 2 to Section 5 introduce domain semirings which induce distributive lattices as domain alge- bras and develop their basic calculus. Section 6 provides conditions that relate the domain algebras with Boolean algebras. Section 7 sets up the link between domain semirings, Kleene algebras with domain and distributive lattices with operators. Section 8 to Section 10 introduce antidomain operations that turn domain algebras into Boolean algebras. In Section 11, the domain algebras of domain semirings are extended to (co-)Heyting algebras. Section 12 presents an application of the new axiomatisation in automated termination analysis. Sec- tion 13 presents a conclusion. Additional material is collected in five appendices. 2 Domain Semirings Semirings are essentially rings without subtraction. Formally, a semiring is a structure (S, +, ·, 0, 1) such that (S, +, 0) is a commutative monoid, (S, ·, 1) is a monoid, multiplication distributes over addition from the left and right and 0 is a left and right zero of multiplication. As usual in algebra, variants without 0 and 1 can easily be defined, but they are less interesting for our purpose. The explicit semiring axioms (as ATP input) can be found in Appendix B and Appendix C. As usual in algebra, we stipulate that multiplication binds more strongly than addition and omit the multiplication symbol. A standard semiring duality is opposition. It is obtained by swapping the or- der of multiplication (or by reading expressions from right to left). The opposite So of a semiring S is again a semiring and Soo = S. A semiring S is idempotent if 1 + 1 = 1 or, equivalently, if x + x = x holds for all x ∈ S. For idempotent semirings, the relation ≤ defined, for all x, y ∈ S, by x ≤ y ⇔ x + y = x is a partial order; (S, ≤) is a semilattice with addition corresponding to join and with least element 0. Addition and multiplication are isotone with respect to that order. It is well known that idempotent semirings have many computational mean- ingful models. We will refer to two standard models to motivate our approach: – Relation semirings are idempotent semirings formed by binary relations un- der union, relational product, the empty relation and the unit relation. – Trace semirings are idempotent semirings formed by sets of traces of a pro- gram or transition system under union, trace products, the empty set of traces and the set of states from which traces are built. As usual, traces are words over a state alphabet and an action alphabet in which the first an the last letter are state symbols and in which state and action symbols alternate. Language and path semirings arise as special cases of trace semirings. We axiomatise a domain function on arbitrary semirings. It can be motivated in several ways. First, trace and relation semirings can be taken as starting points and some natural properties of domain can be selected. Alternatively, the DMS axioms (cf. Appendix A) can be translated into the one-sorted setting. In addition, the notion axiomatised can be tested on the algebra of domain elements 3 that is induced. We first present the axioms and then motivate them from all these points of view. A domain semiring is a semiring S extended by the domain operation d : S → S which, for all x, y ∈ S, satisfies the following axioms: x + d(x)x = d(x)x, (D1) d(xy)=d(xd(y)), (D2) d(x)+1=1, (D3) d(0) = 0, (D4) d(x + y)=d(x)+d(y). (D5) The following fact can easily be shown by an ATP system, and we present the proof generated by Waldmeister as an example in Appendix D. Proposition 2.1. Domain semirings are idempotent. Hence every domain semiring can be ordered. Let us discuss the particular choice of axioms. The axioms (D1) and (D2) correspond to the DMS axioms (20) and (22) in Appendix A. The axioms (D3), (D4) and (D5) follow from the DMS axioms, but, as we will see below, not from (D1) and (D2). DMS axiom (21) is particular to the two-sorted setting and cannot directly be expressed here. This will further be discussed below. By Proposition 2.1, axiom (D1) can be rewritten as x ≤ d(x)x. We say more generally that an element y of an idempotent semiring is a left preserver of an element x if x ≤ yx.Sod(x) is a left preserver of x and we call this axiom the preservation axiom.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • Arxiv:2011.04704V2 [Cs.LO] 22 Mar 2021 Eain,Bttre Te Opttoal Neetn Oessuc Models Interesting Well
    Domain Semirings United Uli Fahrenberg1, Christian Johansen2, Georg Struth3, and Krzysztof Ziemia´nski4 1Ecole´ Polytechnique, Palaiseau, France 2 University of Oslo, Norway 3University of Sheffield, UK 4University of Warsaw, Poland Abstract Domain operations on semirings have been axiomatised in two different ways: by a map from an additively idempotent semiring into a boolean subalgebra of the semiring bounded by the additive and multiplicative unit of the semiring, or by an endofunction on a semiring that induces a distributive lattice bounded by the two units as its image. This note presents classes of semirings where these approaches coincide. Keywords: semirings, quantales, domain operations 1 Introduction Domain semirings and Kleene algebras with domain [DMS06, DS11] yield particularly simple program ver- ification formalisms in the style of dynamic logics, algebras of predicate transformers or boolean algebras with operators (which are all related). There are two kinds of axiomatisation. Both are inspired by properties of the domain operation on binary relations, but target other computationally interesting models such as program traces or paths on digraphs as well. The initial two-sorted axiomatisation [DMS06] models the domain operation as a map d : S → B from an additively idempotent semiring (S, +, ·, 0, 1) into a boolean subalgebra B of S bounded by 0 and 1. This seems natural as domain elements form powerset algebras in the target models mentioned. Yet the domain algebra B cannot be chosen freely: B must be the maximal boolean subalgebra of S bounded by 0 and 1 and equal to the set Sd of fixpoints of d in S. The alternative, one-sorted axiomatisation [DS11] therefore models d as an endofunction on a semiring S that induces a suitable domain algebra on Sd—yet generally only a bounded distributive lattice.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • EXAMPLES of CHAIN DOMAINS 1. Introduction In
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 3, March 1998, Pages 661{667 S 0002-9939(98)04127-6 EXAMPLES OF CHAIN DOMAINS R. MAZUREK AND E. ROSZKOWSKA (Communicated by Ken Goodearl) Abstract. Let γ be a nonzero ordinal such that α + γ = γ for every ordinal α<γ. A chain domain R (i.e. a domain with linearly ordered lattices of left ideals and right ideals) is constructed such that R is isomorphic with all its nonzero factor-rings and γ is the ordinal type of the set of proper ideals of R. The construction provides answers to some open questions. 1. Introduction In [6] Leavitt and van Leeuwen studied the class of rings which are isomorphic with all nonzero factor-rings. They proved that forK every ring R the set of ideals of R is well-ordered and represented by a prime component∈K ordinal γ (i.e. γ>0andα+γ=γfor every ordinal α<γ). In this paper we show that the class contains remarkable examples of rings. Namely, for every prime component ordinalK γ we construct a chain domain R (i.e. a domain whose lattice of left ideals as well as the lattice of right ideals are linearly ordered) such that R and γ is the ordinal type of the set of proper ideals of R. We begin the construction∈K by selecting a semigroup that has properties analogous to those we want R to possess ( 2). The desired ring R is the Jacobson radical of a localization of a semigroup ring§ of the selected semigroup with respect to an Ore set ( 3).
    [Show full text]
  • Free Medial Quandles
    Algebra Univers. 78 (2017) 43–54 DOI 10.1007/s00012-017-0443-2 Published online May 23, 2017 © 2017 The Author(s) Algebra Universalis This article is an open access publication Free medial quandles Premyslˇ Jedlicka,ˇ Agata Pilitowska, and Anna Zamojska-Dzienio Abstract. This paper gives the construction of free medial quandles as well as free n-symmetric medial quandles and free m-reductive medial quandles. 1. Introduction A binary algebra (Q, ) is called a rack if the following conditions hold, for · every x, y, z Q: ∈ x(yz)=(xy)(xz) (we say Q is left distributive), • the equation xu = y has a unique solution u Q (we say Q is a left • ∈ quasigroup). An idempotent rack is called a quandle (we say Q is idempotent if xx = x for every x Q). A quandle Q is medial if, for every x, y, u, v Q, ∈ ∈ (xy)(uv)=(xu)(yv). An important example of a medial quandle is an abelian group A with an operation defined by a b = (1 h)(a)+h(b), where h is an automorphism ∗ ∗ − of A. This construction is called an affine quandle (or sometimes an Alexander quandle) and denoted by Aff(A, h). In the literature [6, 7], the group A is 1 usually considered to be a Z[t, t− ]-module, where t a = h(a), for each a A. · ∈ We shall adopt this point of view here as well and we usually write Aff(A, r) instead, where r is a ring element. Note that in universal algebra terminology, an algebra is said to be affine if it is polynomially equivalent to a module.
    [Show full text]
  • Unique Factorization Monoids and Domains
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 28, Number 2, May 1971 UNIQUE FACTORIZATION MONOIDS AND DOMAINS R. E. JOHNSON Abstract. It is the purpose of this paper to construct unique factorization (uf) monoids and domains. The principal results are: (1) The free product of a well-ordered set of monoids is a uf-monoid iff every monoid in the set is a uf-monoid. (2) If M is an ordered monoid and F is a field, the ring ^[[iW"]] of all formal power series with well-ordered support is a uf-domain iff M is naturally ordered (i.e., whenever b <a and aMp\bM¿¿0, then aMQbM). By a monoid, we shall always mean a cancellative semigroup with identity element. All rings are assumed to have unities, and integral domains and fields are not assumed to be commutative. If R is an integral domain, then the multiplicative monoid of nonzero elements is denoted by i?x. For any ring or monoid A, U(A) will denote its group of units. A monoid M is called a unique factorization monoid (uf-monoid) iff for every mEM — U(M), any two factorizations of m have a common refinement. That is, if m=aia2 ■ ■ ■ ar = bib2 ■ ■ ■ bs, then the a's and 6's can be factored, say ai = ci • • • c,, a2 = a+i ■ ■ ■Cj, ■ ■ ■ , 61 = di ■ ■ ■dk, b2=dk+i ■ ■ • dp, ■ ■ ■ , in such a way that cn=dn for all n. An integral domain R is called a unique factorization domain (uf-domain) iff Rx is a uf-monoid. A monoid M with relation < is said to be ordered by < iff < is a transitive linear ordering such that whenever a<b then ac<bc and ca<cb for all cEM.
    [Show full text]
  • On Strategy-Proofness and Semilattice Single-Peakedness Jordi Massó April 2019
    On Strategy-Proofness and Semilattice Single-Peakedness Jordi Massó April 2019 Barcelona GSE Working Paper Series Working Paper nº 1087 On strategy-proofness and semilattice single-peakedness∗ Agust´ın G. Bonifacio† Jordi Mass´o‡ April 11, 2019 Abstract We study social choice rules defined on the domain of semilattice single- peaked preferences. Semilattice single-peakedness has been identified as the necessary condition that a set of preferences must satisfy so that the set can be the domain of a strategy-proof, tops-only, anonymous and unanimous rule. We characterize the class of all such rules on that domain and show that they are deeply related to the supremum of the underlying semilattice structure. Keywords: Strategy-proofness; Unanimity; Anonymity; Tops-onlyness; Single-peakedness. JEL Classification Numbers: D71. 1 Introduction We characterize the class of all strategy-proof and simple rules defined on the domain of semilattice single-peaked preferences. A rule is a systematic procedure to select ∗We thank Salvador Barber`a, Shurojit Chatterji and Bernardo Moreno for helpful comments and suggestions. Bonifacio acknowledges financial support received from the UNSL, through grant 319502, and from the Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET), through grant PIP 112-200801-00655. Mass´oacknowledges financial support received from the Span- ish Ministry of Economy and Competitiveness, through grant ECO2017-83534-P and through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563), and from the Gener- alitat de Catalunya, through grant SGR2017-711. †Instituto de Matem´atica Aplicada San Luis, Universidad Nacional de San Luis and CONICET, San Luis, Argentina; e-mail: [email protected] ‡Departament d’Economia i d’Hist`oria Econ`omica, Universitat Aut`onoma de Barcelona, and Barcelona GSE, Spain; e-mail: [email protected] 1 an alternative as a function of the declared profile of agents’ preferences.
    [Show full text]
  • Windows Domain and Workgroup Planning Guide
    EXPERION PKS RELEASE 516 Windows Domain and Workgroup Planning Guide EPDOC-X250-en-516A August 2020 Disclaimer This document contains Honeywell proprietary information. Information contained herein is to be used solely for the purpose submitted, and no part of this document or its contents shall be reproduced, published, or disclosed to a third party without the express permission of Honeywell International Sàrl. While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a purpose and makes no express warranties except as may be stated in its written agreement with and for its customer. In no event is Honeywell liable to anyone for any direct, special, or consequential damages. The information and specifications in this document are subject to change without notice. Copyright 2020 - Honeywell International Sàrl - 2 - Contents 3 Chapter 1 - About this document 7 1.1 Revision History 7 1.2 Intended audience 7 1.3 Prerequisite skills 7 1.4 Related documents 7 Chapter 2 - Planning a Windows domain/workgroup 9 2.1 Overview of Windows domain 9 2.2 Overview of a Windows workgroup 10 2.3 Overview of a domain controller 10 2.4 Overview of a Read-only Domain Controller 11 2.5 Overview of a peer domain controller 11 2.5.1 Multiple domain controllers in a domain 12 2.6 Overview of Active Directory and its components 13 2.6.1 Overview of Forests 13 2.6.2 Overview of domain trees 14 2.6.3 Overview of Organizational Units 15 2.6.4 Using a single domain with
    [Show full text]
  • Definition and Examples of Rings 50
    LECTURE 14 Definition and Examples of Rings Definition 14.1. A ring is a nonempty set R equipped with two operations ⊕ and ⊗ (more typically denoted as addition and multiplication) that satisfy the following conditions. For all a; b; c 2 R: (1) If a 2 R and b 2 R, then a ⊕ b 2 R. (2) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (3) a ⊕ b = b ⊕ a (4) There is an element 0R in R such that a ⊕ 0R = a ; 8 a 2 R: (5) For each a 2 R, the equation a ⊕ x = 0R has a solution in R. (6) If a 2 R, and b 2 R, then ab 2 R. (7) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. (8) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (b ⊗ c) Definition 14.2. A commutative ring is a ring R such that (14.1) a ⊗ b = b ⊗ a ; 8 a; b 2 R: Definition 14.3. A ring with identity is a ring R that contains an element 1R such that (14.2) a ⊗ 1R = 1R ⊗ a = a ; 8 a 2 R: Let us continue with our discussion of examples of rings. Example 1. Z, Q, R, and C are all commutative rings with identity. Example 2. Let I denote an interval on the real line and let R denote the set of continuous functions f : I ! R. R can be given the structure of a commutative ring with identity by setting [f ⊕ g](x) = f(x) + g(x) [f ⊗ g](x) = f(x)g(x) 0R ≡ function with constant value 0 1R ≡ function with constant value 1 and then verifying that properties (1)-(10) hold.
    [Show full text]
  • Endomorphism Bialgebras of Diagrams and of Non-Commutative Algebras and Spaces
    1 Endomorphism Bialgebras of Diagrams and of Non-Commutative Algebras and Spaces BODO PAREIGIS Department of Mathematics, UniversityofMunich Munich, Germany Bialgebras and Hopf algebras havea very complicated structure. It is not easy to construct explicit examples of suchandcheck all the necessary prop erties. This gets even more complicated if wehavetoverify that something like a como dule algebra over a bialgebra is given. Bialgebras and como dule algebras, however, arise in a very natural way in non-commu- tative geometry and in representation theory.Wewant to study some general principles on how to construct such bialgebras and como dule algebras. The leading idea throughout this pap er is the notion of an action as can b een seen most clearly in the example of vector spaces. Given a vector space V we can asso ciate with it its endomorphism algebra End(V ) that, in turn, de nes an action End (V ) V ! V . There is also the general linear group GL (V ) that de nes an action GL (V ) V ! V . In the case of the endomorphism algebra we are in the pleasant situation that End(V )isavector space itself so that we can write the action also as End (V ) V ! V . The action of GL (V )on V can also b e describ ed using the tensor pro duct by expanding the group GL(V ) to the group algebra K (GL (V )) to obtain K (GL (V )) V ! V . We are going to nd analogues of End (V )or K (GL (V )) acting on non-commutative geometric spaces or on certain diagrams.
    [Show full text]
  • Introduction to Groups, Rings and Fields
    Introduction to Groups, Rings and Fields HT and TT 2011 H. A. Priestley 0. Familiar algebraic systems: review and a look ahead. GRF is an ALGEBRA course, and specifically a course about algebraic structures. This introduc- tory section revisits ideas met in the early part of Analysis I and in Linear Algebra I, to set the scene and provide motivation. 0.1 Familiar number systems Consider the traditional number systems N = 0, 1, 2,... the natural numbers { } Z = m n m, n N the integers { − | ∈ } Q = m/n m, n Z, n = 0 the rational numbers { | ∈ } R the real numbers C the complex numbers for which we have N Z Q R C. ⊂ ⊂ ⊂ ⊂ These come equipped with the familiar arithmetic operations of sum and product. The real numbers: Analysis I built on the real numbers. Right at the start of that course you were given a set of assumptions about R, falling under three headings: (1) Algebraic properties (laws of arithmetic), (2) order properties, (3) Completeness Axiom; summarised as saying the real numbers form a complete ordered field. (1) The algebraic properties of R You were told in Analysis I: Addition: for each pair of real numbers a and b there exists a unique real number a + b such that + is a commutative and associative operation; • there exists in R a zero, 0, for addition: a +0=0+ a = a for all a R; • ∈ for each a R there exists an additive inverse a R such that a+( a)=( a)+a = 0. • ∈ − ∈ − − Multiplication: for each pair of real numbers a and b there exists a unique real number a b such that · is a commutative and associative operation; • · there exists in R an identity, 1, for multiplication: a 1 = 1 a = a for all a R; • · · ∈ for each a R with a = 0 there exists an additive inverse a−1 R such that a a−1 = • a−1 a = 1.∈ ∈ · · Addition and multiplication together: forall a,b,c R, we have the distributive law a (b + c)= a b + a c.
    [Show full text]