Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications

Total Page:16

File Type:pdf, Size:1020Kb

Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications Wedel, M. J. , & Taylor, M. (2013). Neural spine bifurcation in sauropod dinosaurs of the Morrison Formation: ontogenetic and phylogenetic implications. PalArch's Journal of Vertebrate Palaeontology, 10(1), 1-34. Publisher's PDF, also known as Version of record Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids. However, we find that serial variation in sauropod vertebrae can mimic on- togenetic change and is therefore a powerful confounding factor, especially when deal- ing with isolated elements whose serial position cannot be determined. When serial po- sition is taken into account, there is no evidence that neural spine bifurcation increased over ontogeny in Morrison Formation diplodocids. Through phylogenetic analysis we show that neural spine bifurcation is not a key character in sauropod phylogeny and that Suuwassea and Haplocanthosaurus are almost certainly not juveniles of known diplodo- cids. Skeletochronology based on the sequence of skeletal fusions during ontogeny can provide relative ontogenetic ages for some sauropods. Although such data are sparsely available to date and often inconsistent among sauropod genera they provide another line of evidence for testing hypotheses of ontogenetic synonymy. Data from skeletal fu- sions suggest that Suuwassea and Haplocanthosaurus are both valid taxa and that neither is an ontogenetic morph of a known diplodocid. © PalArch Foundation 1 Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) Introduction cervical vertebrae in certain large-bodied, long- necked birds (Rhea, Tsuihiji, 2004: figure 2b;Ca- Among tetrapods, sauropod dinosaurs are un- suarius, Schwarz et al., 2007: figure 5b; Dromai- usual in that many taxa have deeply bifid neural us, Osborn 1898: figure 1;Theristicus , Tambussi spines in their presacral vertebrae. Many mam- et al., 2012: 7; also in the recently extinct Drom- mals have shallowly bifid spines in their cervical ornithidae, Gastornithidae, and Phorusracidae, vertebrae, but usually only the neurapophysis Tambussi et al. 2012: 7), the thoracic vertebrae is divided, whereas in sauropods the division is in some bovids (e.g. zebu Bos indicus, Mason & more extensive. In the most extreme cases the Maule, 1960: 20), and the lumbar vertebrae of si- midline cleft extends to the roof of the neural renians (Kaiser, 1974). Cervical neural spines in canal, completely dividing the neural spine into humans and many other mammals have paired bilaterally paired metapophyses (figure 1). Bifid tubercles at their tips (Kapandji, 2008: 190- presacral neural spines evolved several times 191; Cartmill et al., 1987: figure 2-3a; figure 3). independently in sauropods, and are present They are therefore sometimes described as in some mamenchisaurids, all known diplodo- being bifid (e.g. White & Folkens, 2000: 145). cids and dicraeosaurids, the basal macronar- The appearance of bifurcation is caused by the ian Camarasaurus, the basal somphospondyls outgrowth of bone at the spine tip to anchor Euhelopus, Erketu, and Qiaowanlong, and the the large transversospinalis muscles. This is derived titanosaur Opisthocoelicaudia (Wilson a different phenomenon from the non-union & Sereno, 1998; Ksepka & Norell, 2006; You & of the endochondral portions of the vertebral Li, 2009; figure 2). In addition, the tips of the spine, which occurs pathologically in humans proximal caudal neural spines are often weakly (and presumably all other vertebrates) as spina bifid in diplodocids (e.g. Diplodocus carnegii bifida cystica and spina bifida occulta (Barnes, CM 84/94, Hatcher, 1901: plate 9). In contrast, 1994: 46-50 and figures 3.5 and 3.6). non-pathological bifid neural spines are uncom- The developmental underpinnings of bifid mon in extant tetrapods, and are limited to the neural spines in sauropods are not well under- Figure 1. A cervical vertebra of Apatosaurus ajax YPM 1860 showing complete bifurcation of the neural spine into paired metapophyses. In dorsal (top), anterior (left), left lateral (middle), and posterior (right) views. © PalArch Foundation 2 Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) Figure 2. Consensus phylogeny of sauropods based on the strict consensus trees of Taylor (2009), Ksepka & Norell (2010) and Whitlock (2011). The first of these provides the skeleton of the tree including outgroups, basal sauropods and macronarians; the second gives the positions of Erketu and Qiaowanlong; the last provides a detailed phylogeny of Diplodocoidea. Taxa with bifid neural spines are highlighted in blue. Haplocanthosaurus and Suuwassea, whose positions are disputed by Woodruff & Fowler (2012) are shown in bold. © PalArch Foundation 3 Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) above, the hypotheses of Woodruff & Fowler (2012) depend on ontogenetic inferences drawn from Morrison Formation sauropod taxa, and therefore we are confining our discussion to those taxa (e.g. Camarasaurus, Haplocanthosau- rus, and the Morrison diplodocoids). Abbreviations AMNH, American Museum of Natural History, New York City, New York, USA; BYU, Earth Sciences Museum, Brigham Young University, Provo, Utah, USA; CM, Carnegie Museum of Natural History, Pitts- burgh, Pennsylvania, USA; Figure 3. A middle cervical vertebra of a human in cranial FMNH, Field Museum of Natural History, Chi- view showing paired bony processes for the attachment cago, Illinois, USA; of dorsal muscles to the neural spine. Uncatalogued MB.R., Museum für Naturkunde Berlin, Germany; specimen from the anthropology teaching collection at the NSMT, National Science Museum, Tokyo, Japan; University of California, Santa Cruz. OMNH, Oklahoma Museum of Natural History, stood. It is possible that in some vertebrae the Norman, Oklahoma, USA; paired embryonic neural arch elements never SMNS, Staatliches Museum für Naturkunde, fused except to form a roof over the neural ca- Stuttgart, Germany; nal. In contrast, in the genus Camarasaurus it USNM, National Museum of Natural History, is possible that many of the presacral neural Washington, D.C., USA; spines were not bifid in young animals, and UWGM, University of Wyoming Geological that the degree of bifurcation increased over Museum, Laramie, Wyoming, USA; the course of ontogeny (see below). WPL, Western Paleontological Laboratories, In a recently-published paper, Woodruff & Lehi, Utah, USA; Fowler (2012) argued that the degree of bifur- YPM, Yale Peabody Museum, New Haven, Con- cation of sauropod neural spines was ontoge- necticut, USA. netically controlled, with the simple, undivided spines of juveniles gradually separating into Materials and Methods paired metapophyses over the course of post- hatching ontogeny. Based on this inferred on- Neural spine bifurcation in sauropods is a con- togenetic trajectory, Woodruff & Fowler (2012) tinuum from completely unsplit spines to those further argued that currently recognized sauro- that are completely separated down to the roof pod taxa are oversplit, and that when ontoge- of the neural canal. For the sake of convenience, netic transformations were taken into account, in this paper we classify neural spines into four it would be necessary to synonymize several categories based on their degree of bifurcation: taxa. In particular, they argued that the Mor- 1) Spines that entirely lack any midline inden- rison Formation diplodocoid Suuwassea was a tation are described as unsplit; juvenile of a known diplodocid (Ibidem: 6-8), 2) Those with extremely shallow notches in the that Haplocanthosaurus and Barosaurus were dorsal margin, whose depth is less than the likewise suspect (Ibidem: 9), and that rebbachis- minimum width of the spine itself, are de- aurids were possibly paedomorphic dicraeosau- scribed as notched; rids (Ibidem: 8-9). 3) Those that are split
Recommended publications
  • Wedel, MJ, & Taylor, M. (2013). Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation
    Wedel, M. J. , & Taylor, M. (2013). Neural spine bifurcation in sauropod dinosaurs of the Morrison Formation: ontogenetic and phylogenetic implications. PalArch's Journal of Vertebrate Palaeontology, 10(1), 1-34. Publisher's PDF, also known as Version of record Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids.
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • Neural Spine Bifurcation in Sauropods Palarch’S Journal of Vertebrate Palaeontology, 10(1) (2013)
    Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids. However, we find that serial variation in sauropod vertebrae can mimic on- togenetic change and is therefore a powerful confounding factor, especially when deal- ing with isolated elements whose serial position cannot be determined. When serial po- sition is taken into account, there is no evidence that neural spine bifurcation increased over ontogeny in Morrison Formation diplodocids. Through phylogenetic analysis we show that neural spine bifurcation is not a key character in sauropod phylogeny and that Suuwassea and Haplocanthosaurus are almost certainly not juveniles of known diplodo- cids.
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
    A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • High European Sauropod Dinosaur Diversity During Jurassic–Cretaceous Transition in Riodeva (Teruel, Spain)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library [Palaeontology, Vol. 52, Part 5, 2009, pp. 1009–1027] HIGH EUROPEAN SAUROPOD DINOSAUR DIVERSITY DURING JURASSIC–CRETACEOUS TRANSITION IN RIODEVA (TERUEL, SPAIN) by RAFAEL ROYO-TORRES*, ALBERTO COBOS*, LUIS LUQUE*, AINARA ABERASTURI*, , EDUARDO ESPI´LEZ*, IGNACIO FIERRO*, ANA GONZA´ LEZ*, LUIS MAMPEL* and LUIS ALCALA´ * *Fundacio´n Conjunto Paleontolo´gico de Teruel-Dino´polis. Avda. Sagunto s ⁄ n. E-44002 Teruel, Spain; e-mail: [email protected] Escuela Taller de Restauracio´n Paleontolo´gica II del Gobierno de Arago´n. Avda. Sagunto s ⁄ n. E-44002 Teruel, Spain Typescript received 13 December 2007; accepted in revised form 3 November 2008 Abstract: Up to now, more than 40 dinosaur sites have (CPT-1074) referring to the Diplodocidae clade. New been found in the latest Jurassic – earliest Cretaceous remains from the RD-28, RD-41 and RD-43 sites, of the sedimentary outcrops (Villar del Arzobispo Formation) of same age, among which there are caudal vertebrae, are Riodeva (Iberian Range, Spain). Those already excavated, assigned to Macronaria. New sauropod footprints from the as well as other findings, provide a large and diverse Villar del Arzobispo Formation complete the extraordinary number of sauropod remains, suggesting a great diversity sauropod record coming to light in the area. The inclusion for this group in the Iberian Peninsula during this time. of other sauropods from different contemporaneous expo- Vertebrae and ischial remains from Riodevan site RD-13 sures in Teruel within the Turiasauria clade adds new evi- are assigned to Turiasaurus riodevensis (a species described dence of a great diversity of sauropods in Iberia during in RD-10, Barrihonda site), which is part of the the Jurassic–Cretaceous transition.
    [Show full text]
  • Osteological Revision of the Holotype of the Middle
    Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979 Femke Holwerda, Oliver W.M. Rauhut, Pol Diego To cite this version: Femke Holwerda, Oliver W.M. Rauhut, Pol Diego. Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979. 2020. hal-02977029 HAL Id: hal-02977029 https://hal.archives-ouvertes.fr/hal-02977029 Preprint submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Osteological revision of the holotype of the Middle Jurassic sauropod 2 dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) 3 BONAPARTE 1979 4 5 Femke M Holwerda1234, Oliver W M Rauhut156, Diego Pol78 6 7 1 Staatliche Naturwissenscha�liche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung für 8 Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany 9 10 2 Department of Geosciences, Utrecht University, Princetonlaan, 3584 CD Utrecht, 10 Netherlands 11 12 3 Royal Tyrrell Museum of Palaeontology, Drumheller, AlbertaT0J 0Y0, Canada (current) 13 14 4 Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 15 Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany 16 17 5 Department für Umwelt- und Geowissenscha�en, Ludwig-Maximilians-Universität München, Richard- 18 Wagner-Str.
    [Show full text]
  • (Saurischia: Sauropoda) from the Lower Morrison Formation (Upper Jurassic) Near Snowmass, Colorado
    Volumina Jurassica, 2014, Xii (2): 197–210 DOI: 10.5604/17313708 .1130144 Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado John R. FOSTER1, Mathew J. WEDEL2 Key words: Haplocanthosaurus, sauropod, Late Jurassic, Morrison Formation. Abstract. A small sauropod dinosaur collected from the Rocky Mountains of central Colorado (north of the Elk Range, Pitkin County) is assigned to the rare genus Haplocanthosaurus. The specimen, MWC 8028, consists of four dorsal centra, five partial ribs, the sacrum, five caudal vertebrae, three chevrons, five partial neural spines and many fragments and is from the lower third of the Upper Jurassic Morrison Formation. The dorsal vertebrae are procamerate, and on the sacral vertebrae the neural arch peduncles are vertically elongate and the neural spines are strongly reclined. The only sauropod from the Morrison Formation that shares these characters is Haplocanthosaurus and based on those characters MWC 8028 is referred to Haplocanthosaurus. This is at most the tenth specimen and the seventh locality for this sauropod, all within the Morrison Formation. INTRODUCTION cies H. utterbacki, although this latter specimen has gener- ally been regarded as a juvenile and a subjective synonym Haplocanthosaurus is one of the rarest sauropods of the of H. priscus (McIntosh, 1990a; Upchurch et al., 2004). Upper Jurassic Morrison Formation of the western United McIntosh and Williams (1988) named H. delfsi on the basis States. This sauropod was first described as Haplocanthus of a partial skeleton about 50% larger than the H. priscus from specimens collected at the Marsh-Felch Quarry at Gar- type material. Haplocanthosaurus delfsi was also found in den Park, Fremont County, Colorado, around the turn of the the Garden Park area but in the Cleveland Museum Quarry last century (Hatcher, 1903a).
    [Show full text]
  • A New Middle Jurassic Diplodocoid Suggests an Earlier Dispersal and Diversification of Sauropod Dinosaurs
    ARTICLE DOI: 10.1038/s41467-018-05128-1 OPEN A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs Xing Xu1, Paul Upchurch2, Philip D. Mannion 3, Paul M. Barrett 4, Omar R. Regalado-Fernandez 2, Jinyou Mo5, Jinfu Ma6 & Hongan Liu7 1234567890():,; The fragmentation of the supercontinent Pangaea has been suggested to have had a profound impact on Mesozoic terrestrial vertebrate distributions. One current paradigm is that geo- graphic isolation produced an endemic biota in East Asia during the Jurassic, while simul- taneously preventing diplodocoid sauropod dinosaurs and several other tetrapod groups from reaching this region. Here we report the discovery of the earliest diplodocoid, and the first from East Asia, to our knowledge, based on fossil material comprising multiple individuals and most parts of the skeleton of an early Middle Jurassic dicraeosaurid. The new discovery challenges conventional biogeographical ideas, and suggests that dispersal into East Asia occurred much earlier than expected. Moreover, the age of this new taxon indicates that many advanced sauropod lineages originated at least 15 million years earlier than previously realised, achieving a global distribution while Pangaea was still a coherent landmass. 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China. 2 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. 3 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. 4 Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 5 Natural History Museum of Guangxi, 530012 Nanning, Guangxi, China.
    [Show full text]
  • Biomechanical Reconstruction of the Appendicular Skeleton in Three
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Biomechanical reconstruction of the appendicular skeleton in three North American Jurassic sauropods Ray Wilhite Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Wilhite, Ray, "Biomechanical reconstruction of the appendicular skeleton in three North American Jurassic sauropods" (2003). LSU Doctoral Dissertations. 2677. https://digitalcommons.lsu.edu/gradschool_dissertations/2677 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. BIOMECHANICAL RECONSTRUCTION OF THE APPENDICULAR SKELETON IN THREE NORTH AMERICAN JURASSIC SAUROPODS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Geology an Geophysics by Ray Wilhite B.S., University of Alabama at Birmingham, 1995 M.S., Brigham Young University, 1999 May 2003 ACKNOWLEDGEMENTS I would like to thank the Jurassic Foundation, the LSU chapter of Sigma Xi, and the LSU Museum of Natural Science for their support of this project. I am also grateful to Art Andersen of Virtual Surfaces for the use of the Microscribe digitizer as well as for editing of data for the project. I would like to thank Ruth Elsey of the Rockefeller Wildlife Refuge for supplying all the Alligator specimens dissected for this paper.
    [Show full text]
  • Overview of Sauropod Phylogeny and Evolution
    One Overview of Sauropod Phylogeny and Evolution Jeffrey A. Wilson SAUROPOD STUDIES FROM OWEN TO long bones” and “the toes being terminated by THE PRESENT strong claws” (Owen 1842:102), but this assess- ment was based on limited anatomical evidence This year marks the one hundred sixty-fourth (Owen 1875:27). Key data emerged with the dis- anniversary of Richard Owen’s (1841) description covery of abundant Cetiosaurus bones in of the first sauropod—Cetiosaurus, the “whale Oxfordshire by John Phillips. Thomas Huxley lizard”—on the basis of vertebrae and limb ele- examined this “splendid series of remains” ments from localities across England. Although before the publication of Phillips’ (1871) mono- these remains “had been examined by Cuvier graph and was the first to place Cetiosaurus within and pronounced to be cetaceous” (Buckland Dinosauria (Iguanodontidae [Huxley, 1869:35]). 1841:96), Owen (1841:458–459) demonstrated Phillips (1871) interpreted Cetiosaurus as a plant- the saurian affinities of Cetiosaurus on the basis eating dinosaur and hypothesized that its limb of several features, including the absence of epi- bones were “suited for walking.” He could not physes (growth plates) on caudal vertebrae (fig. rule out the possibility that it was amphibious, 1.1). He differentiated Cetiosaurus from other however, concluding that it was a “marsh-loving extinct saurians on the basis of its large size and or riverside animal.” Owen (1875:27) later acqui- characteristics of its vertebrae (see Upchurch esced, referring Cetiosaurus to the Dinosauria and Martin 2003:215). Owen (1841:462) con- because of its four sacral vertebrae. He admitted cluded his initial description with this assess- that it may have had some terrestrial capabilities ment: “The vertebræ, as well as the bones of the but concluded that Cetiosaurus was an estuarine extremities, prove its marine habits .
    [Show full text]