Formerly Amphicoelias Fragillimus), a Basal Rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado

Total Page:16

File Type:pdf, Size:1020Kb

Formerly Amphicoelias Fragillimus), a Basal Rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association ISSN 2380-7601 Volume 5 2018 MARAAPUNISAURUS FRAGILLIMUS, N.G. (FORMERLY AMPHICOELIAS FRAGILLIMUS), A BASAL REBBACHISAURID FROM THE MORRISON FORMATION (UPPER JURASSIC) OF COLORADO Kenneth Carpenter Theme Issue An Ecosystem We Thought We Knew— The Emerging Complexities of the Morrison Formation SOCIETY OF VERTEBRATE PALEONTOLOGY Annual Meeting, October 26 – 29, 2016 Grand America Hotel Salt Lake City, Utah, USA © 2018 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected]. GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association ISSN 2380-7601 Volume 5 2018 Editors UGA Board Douglas A. Sprinkel Thomas C. Chidsey, Jr. October 2018 – September 2019 Utah Geological Survey Utah Geological Survey President Peter Nielsen [email protected] 801.537.3359 801.391.1977 801.537.3364 President-Elect Leslie Heppler [email protected] 801.538.5257 [email protected] [email protected] Program Chair Gregory Schlenker [email protected] 801.745.0262 Treasurer Dave Garbrecht [email protected] 801.916.1911 Bart J. Kowallis Steven Schamel Secretary George Condrat [email protected] 435.649.4005 Brigham Young University GeoX Consulting, Inc. Past President Paul Inkenbrandt [email protected] 801.537.3361 801.422.2467 801.583-1146 [email protected] [email protected] UGA Committees Environmental Affairs Craig Eaton [email protected] 801.633.9396 Geologic Road Sign Terry Massoth [email protected] 801.541.6258 Historian Paul Anderson [email protected] 801.364.6613 Outreach Greg Nielson [email protected] 801.626.6394 Membership Rick Ford [email protected] 801.626.6942 Public Education Paul Jewell [email protected] 801.581.6636 Matt Affolter [email protected] Publications Paul Inkenbrandt [email protected] 801.537.3361 Publicity Paul Inkenbrandt [email protected] 801.537.3361 Social/Recreation Roger Bon [email protected] 801.942.0533 Society of Vertebrate Paleontology AAPG House of Delegates Editors 2017–2020 Term Tom Chidsey [email protected] 801.537.3364 Kelli C. Trujillo — University of Wyoming John Foster — Utah Field House of Natural History State Mapping Advisory Committe State Park Museum UGA Representative Jason Blake [email protected] 435.658.3423 Cary Woodruff — University of Toronto Octavio Mateus — Universidade Nova de Lisboa Earthquake Safety Committe Production Chair Grant Willis [email protected] 801.537.3355 Cover Design and Desktop Publishing UGA Website Douglas A. Sprinkel www.utahgeology.org Cover Webmasters Paul Inkenbrandt [email protected] 801.537.3361 The controversial vertebra ofMaraapunisaurus fragillimus (formerly Amphicoelias fragillimus) and UGA Newsletter Edward D. Cope who described the specimen in 1878. Newsletter Editor Bill Lund [email protected] 435.590.1338 Become a member of the UGA to help support the work of the Association and receive notices for monthly meetings, annual field conferences, and new publi- cations. Annual membership is $20 and annual student membership is only $5. Visit the UGA website at www.utahgeology.org for information and membership application. This is an open-access article in which the Utah The UGA board is elected annually by a voting process through UGA members. Geological Association permits unrestricted use, However, the UGA is a volunteer-driven organization, and we welcome your distribution, and reproduction of text and figures that voluntary service. If you would like to participate please contact the current are not noted as copyrighted, provided the original president or committee member corresponding with the area in which you would author and source are credited. like to volunteer. Utah Geological Association formed in 1970 from a merger of the Utah Geological Society, founded in 1946, and the Intermountain Association of Geologists, founded in 1949. Affiliated with the American Association of Petroleum Geologists. i GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 5 2018 Maraapunisaurus fragillimus, N.G. (Formerly Amphicoelias fragillimus), A Basal Rebbachisaurid From the Morrison Formation (Upper Jurassic) of Colorado Kenneth Carpenter Prehistoric Museum, Utah State University Eastern, 155 East Main St., Price, UT 84501; [email protected]; University of Colorado Museum of Natural History, Henderson Building, 15th and Broadway, Boulder, CO 80309 ABSTRACT In 1878, Oramel Lucas shipped to E.D. Cope of the Academy of Natural Sciences of Philadelphia, a huge 1.5-m-tall neural spine from the dorsal vertebra of a sauropod (from the Upper Jurassic Morrison Formation) that Cope named and illustrated as Amphicoelis fragillimus. The holotype was lost and all that is known of the specimen is from Cope’s original publication. Reanalysis of Cope’s publication in light of other sauropods discovered since 1878 indicates that Amphicoelias fragillimus is a basal rebbachisaurid characterized by pneumatic neural spine and arch, and the unambiguous rebbachisaurid character of a festooned spinodiapophyseal lamina. Because the specimen can no longer be referred to the basal diplodo- coid Amphicoelias, the genus name is replaced with Maraapunisaurus n.g. As a rebbachisaurid, revised dimensions indicate a dorsal vertebra 2.4 m tall and a head–to–tail length for the animal of 30.3 to 32 m, significantly less than previous estimates. INTRODUCTION estimation was never challenged by Cope’s contempo- raries, nor later by Henry Osborn and Charles Mook Between 1877 and 1884, school teacher Oramel Lu- of the American Museum of Natural History in their cas and his brother Ira discovered and excavated numer- monograph of the Cope sauropod collection (Osborn ous dinosaur specimens from the vicinity of a promi- and Mook, 1921). Only more recently have questions nent conical hill (a.k.a. “Cope’s Nipple,” “the Nipple,” “Saurian Hill”) of Upper Jurassic Morrison Formation been raised about this specimen in the debate about the in Garden Park north of Cañon City, Colorado (for his- maximum possible size of terrestrial vertebrates (Paul, torical review see Carpenter, in press). Among the spec- 1998; Mazzetta and others, 2004; Carpenter, 2006a; Per- imens shipped by Oramel Lucas to Edward D. Cope, ry and others, 2009; Woodruff and Foster, 2014). loosely affiliated with the Academy of Natural Sciences Osborn and Mook’s access to Cope’s sauropods was of Philadelphia, in 1878 was a huge neural spine. The made possible by the purchase of the Cope zoological specimen was described and illustrated as Amphicoelias and paleontological specimens by the American Muse- fragillimus by Cope (1878f: 564) who wrote that “the to- um of Natural History, much to the consternation of the tal elevation of this vertebra, when complete, was not Academy of Natural Sciences of Philadelphia, which had less than six feet, and probably more” (figure 1A). This hoped to acquire the collections (Anonymous, 1899). Citation for this article. Carpenter, K., 2018, Maraapunisaurus fragillimus, n.g. (formerly Amphicoelias fragillimus), a basal rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado: Geology of the Intermountain West, v. 5, p. 227–244. © 2018 Utah Geological Association. All rights reserved. For permission to use, copy, or distribute see the preceeding page or the UGA website, www.utahgeology.org, for information. Email inquiries to [email protected]. 227 Maraapunisaurus fragillimus, N.G. (Formerly Amphicoelias fragillimus), A Basal Rebbachisaurid From the Morrison Formation (Upper Jurassic) of Colorado Carpenter, K. Figure 1. Illustrations of different sauropod dorsals made by Cope to show why he thought that the neural spine of Amphico" - elias" fragillimus (A) was most similar to that of Amphicoelias altus (B) than to Camarasaurus supremus (C, mid-dorsal; D, more posterior mid-dorsal). Scale = 1 m. B to D from Cope 1878b; A from Cope 1878f. Because of financial reasons, Cope began negotiating collections was not rushed, but took several years, with with the American Museum in April 1894 to purchase the last of the collections not arriving at the American parts of his collections with his friend Henry Osborn Museum until 1903, six years after Cope’s death (Jesup, acting as a middleman (Osborn, 1931). Although this 1896, 1898, 1899, 1900, 1901, 1903). Osborn, who was would be considered a conflict of interest today, Cope head of vertebrate paleontology, put William D. Mat- counted on his friend’s honesty to help him leverage the thew, curator at the museum, in charge of the vertebrate best possible prices and to recoup the estimated $50,000 fossil collection transfers (Mathew, 1915, p. 38; Osborn (~ $1.5 million in 2018) of personal money spent. The and Mook, 1921; Osborn, 1931; Colbert, 1992, p. 51– Cañon City dinosaurs were part of the final sale nego- 53). Matthew was aided by Albert Thompson and Jim tiated with the Cope estate in 1897 a few months after Young, also of the American Museum (Osborn, 1931). his death at age 54. In the end, the American Museum Some of Cope’s collections were at his house on Pine spent $60,550 (~ $1.8 million in 2018) for just the four Street in Philadelphia, but a larger portion was in stor- vertebrate fossil collections alone (Osborn, 1931). age a few miles away in the lower level of the Memorial The process of examining, packing and shipping the Hall building in Fairmont Park (Matthew, 1915). Once Geology of the Intermountain West 228 2018 Volume 5 Maraapunisaurus fragillimus, N.G. (Formerly Amphicoelias fragillimus), A Basal Rebbachisaurid From the Morrison Formation (Upper Jurassic) of Colorado Carpenter, K. the collections arrived at the American Museum, the mandible of Laelaps trihedrodon, and parts of the types cataloguing of the specimens was handled by Walter of Camarasaurus leptodirus and Amphicoelias latus (Os- Granger, Albert Thompson, and William Matthew (see born and Mook, 1921; Chure, 2001).
Recommended publications
  • Baltimorean Debunks Dinosaur Finds :Specialist B Comparison of Bones Shows 'New' Species Long Known
    1I1(1St) THE WASIfINGTON POST WEDNESDAY, MAY ll, 1988 A3 I ,I .Baltimorean Debunks Dinosaur Finds :Specialist B Comparison of Bones Shows 'New' Species Long Known several partial skeletons of different By Boyce Rensberger seum collections. He has also dis- Washington Po.'1l Stolff Writer covered several errors in previous sizes. reconstructions of the Brachiosau- Paul found that, while the Ultra- It is time to rewrite the record rus skeleton and corrected them in saurus bone is bigger than the com- book for dinosaurs, according to a his illustrations to reveal the ani- parable bone displayed in East Ber- leading expert on the extinct giants. mals as having a shorter trunk and lin, it is about the same size as a ' Contrary to a series of allegedly taller forelimbs, which give it a Brachiosaurus shoulder bone not on record-breaking discoveries' that more giraffe-like image than pre- display. began in 1972, the largest known vious experts have suggested. In fact, Paul concluded, the bones dinosaur really is a species known Brachiosaurus "is the only Quad- are so similar that Supersaurus and since the early 1900s, the familiar rupedal dinosaur which one would Ultrasaurus are "almost certainly" Brachiosaurus. have to reach up to slap the belly as not separate species but simply ad- The newest finding by Gregory one walked under it," Paul said. ditional examples of Brachiosaurus. S. Paul, a self-taught dinosaur spe- "Most unusual for a tetrapod [four- Paul's reconstruction of the skel- cialist from Baltimore, debunks legged animal]. much less a dino- eton also scales back estimates of "discovery" of Supersaurus in 1972, saur, it is an exceptionally elegant the beasts' weight.
    [Show full text]
  • Wedel, MJ, & Taylor, M. (2013). Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation
    Wedel, M. J. , & Taylor, M. (2013). Neural spine bifurcation in sauropod dinosaurs of the Morrison Formation: ontogenetic and phylogenetic implications. PalArch's Journal of Vertebrate Palaeontology, 10(1), 1-34. Publisher's PDF, also known as Version of record Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids.
    [Show full text]
  • Neural Spine Bifurcation in Sauropods Palarch’S Journal of Vertebrate Palaeontology, 10(1) (2013)
    Wedel & Taylor, Neural Spine Bifurcation in Sauropods PalArch’s Journal of Vertebrate Palaeontology, 10(1) (2013) NEURAL SPINE BIFURCATION IN SAUROPOD DINOSAURS OF THE MORRISON FORMATION: ONTOGENETIC AND PHYLOGENETIC IMPLICATIONS Mathew J. Wedel* & Michael P. Taylor# *Corresponding author. College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, 309 E. Second Street, Pomona, California 91766-1854, USA. [email protected] #Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. [email protected] Wedel, Mathew J. & Michael P. Taylor. 2013. Neural Spine Bifurcation in Sauropod Dinosaurs of the Morrison Formation: Ontogenetic and Phylogenetic Implications. – Pal- arch’s Journal of Vertebrate Palaeontology 10(1) (2013), 1-34. ISSN 1567-2158. 34 pages + 25 figures, 2 tables. Keywords: sauropod, vertebra, neural spine, ontogeny, Morrison Formation AbsTrAcT It has recently been argued that neural spine bifurcation increases through ontogeny in several Morrison Formation sauropods, that recognition of ontogenetic transforma- tion in this ‘key character’ will have sweeping implications for sauropod phylogeny, and that Suuwassea and Haplocanthosaurus in particular are likely to be juveniles of known diplodocids. However, we find that serial variation in sauropod vertebrae can mimic on- togenetic change and is therefore a powerful confounding factor, especially when deal- ing with isolated elements whose serial position cannot be determined. When serial po- sition is taken into account, there is no evidence that neural spine bifurcation increased over ontogeny in Morrison Formation diplodocids. Through phylogenetic analysis we show that neural spine bifurcation is not a key character in sauropod phylogeny and that Suuwassea and Haplocanthosaurus are almost certainly not juveniles of known diplodo- cids.
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • Mi Querido Brontosaurus.Indd
    A pesar de haberse extinguido hace 65 millones de años, los dinosaurios ocupan un lugar primordial en el imaginario po- pular. Su portentosa presencia llena mu- seos de historia natural y protagoniza pe- lículas, y sin embargo es poco lo que aún sabemos sobre ellos. Con un entusiasmo contagioso, Brian Switeck nos acerca a la vida de estas criaturas y nos descubre al- gunos de sus fascinantes secretos. «Una delicia. Es el libro defi nitivo sobre dinosaurios.» Th e New York Times BRIAN SWITEK es periodista científi co, y actualmente trabaja como reportero para National Geographic. PVP 20,90 € 10038994 www.ariel.es ,!7II4D4-ebhcdg! 25 mm Brian Switek Mi querido Brontosaurus Una expedición científi ca al encuentro de nuestros dinosaurios favoritos Traducción de Joandomènec Ros, catedrático de Ecología de la Universidad de Barcelona Título original: My Beloved Brontosaurus Publicado originalmente por Scientifi c American en colaboración con Farrar Straus & Giroux 1.ª edición: marzo de 2014 © 2013, Brian Switeck © 2014, de la traducción Joandomènec Ros Derechos exclusivos de edición en español reservados para todo el mundo y propiedad de la traducción: © 2014: Editorial Planeta, S. A. Avda. Diagonal, 662-664 - 08034 Barcelona Editorial Ariel es un sello editorial de Planeta, S. A. www.ariel.es www.espacioculturalyacademico.com ISBN: 978-84-344-1723-6 Depósito legal: B. 2.190 - 2014 Impreso en España Por Huertas Industrias Gráfi cas El papel utilizado para la impresión de este libro es cien por cien libre de cloro y está califi cado como papel ecológico. No se permite la reproducción total o parcial de este libro, ni su incorporación a un sistema informático, ni su transmisión en cualquier forma o por cualquier medio, sea éste electrónico, mecánico, por fotocopia, por grabación u otros métodos, sin el permiso previo y por escrito del editor.
    [Show full text]
  • A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
    A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere.
    [Show full text]
  • A New Camarasaurid Sauropod Opisthocoelicaudia Skarzynskii Gen
    MAGDALENA BORSUK-BIALYNICKA A NEW CAMARASAURID SAUROPOD OPISTHOCOELICAUDIA SKARZYNSKII GEN. N., SP. N. FROM THE UPPER CRETACEOUS OF MONGOLIA (plates 1-14) Abstract. - An almost complete postcranial skeleton lacking cervicals of Opisthocoelicaudia skarzynskii gen. n., sp. n. (Sauropoda, Camarasauridae) from the Upper Cretaceous Nemegt Formation, Gobi Desert , is described and figured. The reconstruction of the muscle system and sternum as well as the restoration of the whole animal is made. It is shown that Opisthocoelicaudia was a straight backed sauropod with the tail carried in a horizontal position. The neck is supposed to have been of medium length (about 5 m) and was carried low. The possibility of habitual assuming a tirpodal position is suggested by the opisthocoelous structure of the ant erior caudals. The importance of some osteologic features of sauropods for the understanding of their attitudes as well as for the systematics is discussed. It is argued that the length of neural spines depends on both the curvature of the back-bone and the length of the neck and tail in sauropods. Forked neural spines are indicative ot the habitual lowering of the neck, or even of the low carrying of the neck, if the anterior dorsals lack traces of the nuchal ligament insertion. Some titanosaurid characters of Opisthocoelicaudia are regarded as progressive ones in sauropods, whereas its camarasaurid features seem to indicate a true relationship in spite of their highly behavioural character. CONTENTS Page Introduction. 6 Description ... 8 Vertebral column 9 Thoracic ribs . 18 Sternum . 19 Pectoral girdle 22 Fore limbs . 24 Pelvic girdle . 32 Hind limbs .
    [Show full text]
  • High European Sauropod Dinosaur Diversity During Jurassic–Cretaceous Transition in Riodeva (Teruel, Spain)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library [Palaeontology, Vol. 52, Part 5, 2009, pp. 1009–1027] HIGH EUROPEAN SAUROPOD DINOSAUR DIVERSITY DURING JURASSIC–CRETACEOUS TRANSITION IN RIODEVA (TERUEL, SPAIN) by RAFAEL ROYO-TORRES*, ALBERTO COBOS*, LUIS LUQUE*, AINARA ABERASTURI*, , EDUARDO ESPI´LEZ*, IGNACIO FIERRO*, ANA GONZA´ LEZ*, LUIS MAMPEL* and LUIS ALCALA´ * *Fundacio´n Conjunto Paleontolo´gico de Teruel-Dino´polis. Avda. Sagunto s ⁄ n. E-44002 Teruel, Spain; e-mail: [email protected] Escuela Taller de Restauracio´n Paleontolo´gica II del Gobierno de Arago´n. Avda. Sagunto s ⁄ n. E-44002 Teruel, Spain Typescript received 13 December 2007; accepted in revised form 3 November 2008 Abstract: Up to now, more than 40 dinosaur sites have (CPT-1074) referring to the Diplodocidae clade. New been found in the latest Jurassic – earliest Cretaceous remains from the RD-28, RD-41 and RD-43 sites, of the sedimentary outcrops (Villar del Arzobispo Formation) of same age, among which there are caudal vertebrae, are Riodeva (Iberian Range, Spain). Those already excavated, assigned to Macronaria. New sauropod footprints from the as well as other findings, provide a large and diverse Villar del Arzobispo Formation complete the extraordinary number of sauropod remains, suggesting a great diversity sauropod record coming to light in the area. The inclusion for this group in the Iberian Peninsula during this time. of other sauropods from different contemporaneous expo- Vertebrae and ischial remains from Riodevan site RD-13 sures in Teruel within the Turiasauria clade adds new evi- are assigned to Turiasaurus riodevensis (a species described dence of a great diversity of sauropods in Iberia during in RD-10, Barrihonda site), which is part of the the Jurassic–Cretaceous transition.
    [Show full text]
  • Osteological Revision of the Holotype of the Middle
    Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979 Femke Holwerda, Oliver W.M. Rauhut, Pol Diego To cite this version: Femke Holwerda, Oliver W.M. Rauhut, Pol Diego. Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) BONAPARTE 1979. 2020. hal-02977029 HAL Id: hal-02977029 https://hal.archives-ouvertes.fr/hal-02977029 Preprint submitted on 27 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Osteological revision of the holotype of the Middle Jurassic sauropod 2 dinosaur Patagosaurus fariasi (Sauropoda: Cetiosauridae) 3 BONAPARTE 1979 4 5 Femke M Holwerda1234, Oliver W M Rauhut156, Diego Pol78 6 7 1 Staatliche Naturwissenscha�liche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung für 8 Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 München, Germany 9 10 2 Department of Geosciences, Utrecht University, Princetonlaan, 3584 CD Utrecht, 10 Netherlands 11 12 3 Royal Tyrrell Museum of Palaeontology, Drumheller, AlbertaT0J 0Y0, Canada (current) 13 14 4 Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen- 15 Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany 16 17 5 Department für Umwelt- und Geowissenscha�en, Ludwig-Maximilians-Universität München, Richard- 18 Wagner-Str.
    [Show full text]
  • Dinosaur Hall
    Dinosaur Hall 101 Dinosaur Hall Exhibit Overarching Stories In the exhibit, Dinosaurs: Explore Their Mysteries… • Experience the ways our scientists have assembled answers to many fascinating questions about their lives and their worlds. • By piecing together clues in the fossil record, we discover more about the fascinating world of dinosaurs. • How do Museum paleontologists know what they know …and what they don’t! 2 The Dinosaur Hall exhibit is broken up into sections with overarching questions. Dinosaur Hall Floor Layout, Level 1 Entrance/exit What F happened to dinosaurs? First Floor E What were What is a What was their dinosaurs dinosaur? world like? D like? Entrance/exit C A B Expeditions 3 Dinosaur Hall Floor Layout, Level 2 Mezzanine Level Work in the field I H Work in the lab Pterosaurs; Dinosaurs in California G 4 What is a dinosaur? 5 What are dinosaurs? • Origins from the Greek words deinos: “fearfully-great or terrible” and sauros lizard; name given by famous paleontologist Richard Owen in 1842 6 Characteristics of a Dinosaur Classifying Dinosaurs: Cladogram 8 When dinosaurs ruled on land*… Dinosaurs lived during the Mesozoic Era, a.k.a. ‘Age of Dinosaurs,’ which is divided into three periods *Not only did dinosaurs live on land, there is evidence of dinosaurs thriving in bodies of water… A commonly asked question: “Are those real fossils?” • Most skeletons on display have a mix of real fossils and casts, or reproductions. Most often the reproductions are based off a real fossil. • Labels will help you determine! Look for the specimen name, if there’s (cast) next to the name, it’s a reproduction or replica.
    [Show full text]
  • The Fragile Legacy of Amphicoelias Fragillimus (Dinosauria: Sauropoda; Morrison Formation – Latest Jurassic)
    Volumina Jurassica, 2014, Xii (2): 211–220 DOI: 10.5604/17313708 .1130144 The fragile legacy of Amphicoelias fragillimus (Dinosauria: Sauropoda; Morrison Formation – latest Jurassic) D. Cary WOODRUFF1,2, John R. FOSTER3 Key words: Amphicoelias fragillimus, E.D. Cope, sauropod, gigantism. Abstract. In the summer of 1878, American paleontologist Edward Drinker Cope published the discovery of a sauropod dinosaur that he named Amphicoelias fragillimus. What distinguishes A. fragillimus in the annals of paleontology is the immense magnitude of the skeletal material. The single incomplete dorsal vertebra as reported by Cope was a meter and a half in height, which when fully reconstructed, would make A. fragillimus the largest vertebrate ever. After this initial description Cope never mentioned A. fragillimus in any of his sci- entific works for the remainder of his life. More than four decades after its description, a scientific survey at the American Museum of Natural History dedicated to the sauropods collected by Cope failed to locate the remains or whereabouts of A. fragillimus. For nearly a cen- tury the remains have yet to resurface. The enormous size of the specimen has generally been accepted despite being well beyond the size of even the largest sauropods known from verifiable fossil material (e.g. Argentinosaurus). By deciphering the ontogenetic change of Diplodocoidea vertebrae, the science of gigantism, and Cope’s own mannerisms, we conclude that the reported size of A. fragillimus is most likely an extreme over-estimation. INTRODUCTION saurs pale in comparative size; thus A. fragillimus could be the largest dinosaur, and largest vertebrate in Earth’s history Described by Edward Drinker Cope in 1878, the holo- (the Blue Whale being approximately 29 meters long [Reilly type (and only) specimen of A.
    [Show full text]
  • The Dinosaurs of North America
    FEOM THE SIXTEENTH ANNUAL KEPOKT OF THE U. S, GEOLOGICAL SURVEY THE DINOSAURS OF NORTH AMERICA OTHNIEL CHARLES MARSH TALE UNIVERSITY WASHINGTON 1896 ^33/^, I/BRAKt 4 ,\ . THE DINOSAURS OF NORTH AMERICA. BY OTHNIEL CHARLES MARSH. 133 CONTENTS. Pajje. Introduction 143 Part I. —Triassic dinosaurs 146 Theropoda 146 Anchisaurida? 147 Anchisaurus 147 The skull 148 The fore limbs 149 The hind limbs 149 Anchisaurus solus 149 Amniosaurus rTT 150 Eestoration of Anchisaurus 150 Dinosaurian footprints 151 Distribution of Triassic dinosaurs 152 Part II. —Jurassic dinosaurs 152 Theropoda : 153 Hallopus 153 Fore and hind limbs 154 Coelurus _ 155 The vertebra:- 155 The hind limbs 156 Ceratosaurus 156 The skull 157 The brain 159 The lower iaws 159 The vertebra: 159 The scapular arch 160 The pelvic arch 160 The metatarsals 162 Eestoration of Ceratosaurus 163 Allosaurus 163 European Theropoda 163 Sauropoda 164 Atlantosaurus beds 164 Families of Sauropoda 165 Atlantosauridie 166 Atlantosaurus 166 Apatosaurus 166 The sacral cavity 166 The vertebra- 167 Brontosaurus 168 The scapular arch 168 The cervical vertebra.- 169 The dorsal vertebree 169 The sacrum 170 The caudal vertebra- 171 The pelric arch 172 The fore limbs 173 The hind limbs 173 135 136 CONTENTS. Part II. —Jurassic dinosaurs—Continued. Page. Sauropoda—Continued. Atlantosaurida? —Continued. Restoration of Brontosaurus 173 Barnsaurus 174 Diplodoeida? 175 Diplodocus 175 The skull 175 The brain 178 The lower jaws 178 The teeth 179 The vertebra; 180 The sternal bones 180 The pelvic girdle 180 Size and habits 180 Morosaurida? 181 Morosaurus 181 The skull 181 The vertebra? 181 The fore limbs 182 The pelvis 182 The hind limbs 183 Pleuroccelida? : 183 Pleurocoelus 183 The skull 183 The vertebras 183 Distribution of the Sauropoda 185 Comparison with European forms 185 Predentata ».
    [Show full text]