Dinosaurian Tracks and Related Geological Features of the Reddell Point­–Entrance Point Area, Broome, Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaurian Tracks and Related Geological Features of the Reddell Point­–Entrance Point Area, Broome, Western Australia DINOSAURIAN TRACKS AND RELATED GEOLOGICAL FEATURES OF THE REDDELL POINT –ENTRANCE POINT AREA, BROOME, WESTERN AUSTRALIA PALAEONTOLOGICAL SURVEY AS PART OF THE 2018 BROOME SAFE BOAT HARBOUR SITE ASSESSMENT PROCESS STEVEN W. SALISBURY & ANTHONY ROMILIO School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 September 2018 Salisbury, S. W. and Romilio, A. 2018. Dinosaurian tracks and related geological features of the Reddell Point—Entrance Point area, Broome, Western Australia; palaeontological survey as part of the 2018 Broome Safe Boat Harbour site assessment process. viii + 42p. On the front cover: A partial sauropod trackway in exposures of Broome Sandstone on Reddell Point Beach. © Steven Salisbury On the back cover: A theropod dinosaur track (Megalosauropus broomensis) © Damian Kelly i CONTENTS Acknowledgements ......................................iii Glossary .....................................................iv Executive summary ......................................vi 1. Introduction Background ................................................ 1 National Heritage Listed dinosaurian Cultural significance ................................... 2 tracks of the Reddell Point— Entrance Point Area .................................. 17 Proposal for a Safe Boat Harbour facility on Reddell Point Beach .............................. 3 Main track types .................................. 17 Objectives of the survey ............................. 3 Additional comments on each of the survey zones (A–G; Fig. 8) .................. 19 2. Survey methods Zone A ........................................ 19 Survey area ................................................. 4 Zone B ........................................ 21 Survey dates ............................................... 4 Zone C ........................................ 23 Site access and permits ............................... 5 Zone D ........................................ 26 Indigenous place names ............................. 5 Zone E ........................................ 27 Survey personnel ........................................ 5 Zone F ........................................ 28 Data acquisition .......................................... 6 Zone G ........................................ 29 Data analysis .............................................. 7 4. Discussion 3. Results Overview and significance ....................... 30 Geological setting ....................................... 8 Scientific significance of dinosaurian Beach Sand ................................................. 9 tracks & related geological structures 30 Cable Beach Sand .................................... 10 Cultural significance ........................... 32 Unnamed mottled muddy sand and gravel, Tourism potential ................................. 32 and ironstone breccia ................................ 11 Potential impacts on National Heritage Red sand dunes (Mowanjum Sand; listed dinosaurian tracks associated Quaternary) and perched with a proposed Safe Boat Harbour Holocene white coastal dune sands .......... 12 on Reddell Point Beach ............................ 34 Broome Sandstone (Valanginian–Barremian; Direct impacts ...................................... 34 140–127 million years old) ...................... 13 Other impacts ...................................... 37 General characteristics and age ......... 13 Recommendations .................................... 37 Exposures of Broome Sandstone in the survey area ................................ 13 Concluding remark ................................... 39 Physical characteristics (lithology) of the 5. References cited ....................................... 40 Broome Sandstone in the survey area.. 14 6. Supplementary information ................... 42 ii ACKNOWLEDGEMENTS The information presented in this report represents the culmination elly of many years of research and local engagement. Through it all K D. we have benefited greatly from the generous support of Broome’s enthusiastic community of avid ‘dinosaur trackers’. We are particularly grateful to members of the Dinosaur Coast Management Group, most notably Dianne Bennett and Michelle and Leon Teoh. Prior to their departure from Broome, Louise Middleton and Nigel Clark also spent considerable time with us both tracking and sharing their knowledge of dinosaurian tracks in the survey area, while Kevin Foulkes shared much of what he knew from his time tracking with his father, the late Paul Foulkes. For insights into the cultural significance of dinosaurs tracks in the Broome Sandstone and their links to the Song Cycle along the Dampier Peninsula coastline, we thank Goolarabooloo, in particular Richard Hunter, Phillip Roe, Frans Hoogland and late Joseph Roe, members of the Yawuru Community, most notably Micklo Corpus and Stephen ‘Bart’ Pigram, and members of the Yawuru Cultural Advisory Group. For ethnographical insights into cultural links with dinosaurian tracks and orthography we thank Prof Stephen Muecke (University of Adelaide) and Kim Akerman. For insights into the history of dinosaur tracking in the Broome area we thank Robyn Wells and Kylie Jennings (Broome Historical Society and Museum). Damian Kelly has also been extremely generous with his time helping to photograph both dinosaurian tracks and trackers, as well as Kevin Smith and Nadia Rebasti to whom we are grateful for sharing their photographic images. For fieldwork in the survey area carried out between 2011 and 2017 and for discussions on many aspects of the area’s dinosaurian track fauna and related geology, we thank members of the UQ Dino Lab (Linda Pollard, Jay Nair, Andreas Jannel, Dr Ryan Tucker, Dr Matt Herne, Sarah Gray, Pippa Slater (nee Chamberlain), and David Kennedy), Nathan and Rani Middleton, Prof Jorg Hacker and Shakti Chakraverty (Airborne Research Australia), Dr Robert Zlot and Dr George Poropat (formerly CSIRO), Dr Michael Bosse (ETH Zurich), Tim Flannery and Damian Hirsch. Dr Vic Semenuik is also thanked for invaluable discussions on the Quaternary deposits that occur within the survey area. For discussions on National Heritage listing we thank Carmen Lawrence, Kelly Mullen, Kathy Eyles, Sarah Titchen, Jeremy White and Toni Hart (Department of Environment and Energy). Our July 2018 survey work was funded through Shire of Broome and the Western Australian Department of Transport. Research carried out prior to July 2018 that contributed to information presented herein was funded through the Australian Research Council (DP140101745) and The University of Queensland. iii GLOSSARY Ankylosaur: herbivorous dinosaur belonging Ichnology: the study of tracks and traces left by to the group Ankylosauria (‘fused lizard’). both extinct and modern animals (see ‘Track’; Ankylosaurs were heavily armoured herbivores and ‘Trace fossils’). that walked on all four legs. They typically Ichnofauna: a fauna based on ichnological have five to four fingers and/or toes, making evidence (e.g., tracks). their manual (hand) and pedal (foot) tracks hard to distinguish from each other Ichnotaxonomy: a system of taxonomy (see thyreophoran). (biological classification) that is based on tracks and other traces (see ‘Trace fossils’). Fossilised Breakwater: an artificial offshore structure that tracks are classified separately to body fossils protects a harbour, anchorage or marina from (e.g., fossilised bones), and the relationship waves. Breakwaters intercept longshore currents between an ichnotaxon and body fossil taxon is and tend to prevent beach erosion within the not always clear. For example, Megalosauropus area they enclose. broomensis is the name given to a particular Cenozoic Era: interval of geological time type of track, normally attributed to a theropod from 66 million years ago to the present day, dinosaur. When we talk about M. broomensis, divided into the Palaeogene Period (66–23 Ma), we are referring to a type of track, not a type of the Neogene Period (23–2.6 Ma) and dinosaur (the trackmaker). the Quaternary Period (2.6 to the present day). Lithology: the general physical characteristics Couplet: paired and sequential footfalls of a of a rock or rocks. quadrupedal (four-legged) trackmaker that in Manual: in the context of a living animal combination representing one manual (hand) or track that it has made, relating to the manus and one pedal (foot) track, both from the same or hand. body side. Mesozoic Era: interval of geological time Cretaceous Period: interval of geological time from 252–66 million years ago, divided from 145–66 million years ago (see ‘Mesozoic into the Triassic Period (252–201 Ma), Era’). the Jurassic Period (201–145 Ma) and Digital: in the context of a living animal the Cretaceous Period (145–66 Ma). or track that it has made, relating to the digits Also knows as the ‘Age of Dinosaurs’ or the of either the manus (hand) or pes (foot). ‘Age of Reptiles’. Footprint: a synonym for a single track Neogene Period: interval of geological time (see ‘track’ and ‘trackway’). In the context from 23–2.6 million years ago of the proposed Safe Boat Harbour, ‘footprint’ (see ‘Cenozoic Era’). 2 2 is also used to refer to the area (in m or km ) Ornithischian: herbivorous dinosaur covered by the construction. belonging to the group Ornithischia (‘bird- Hardstand: a paved area for parking heavy hipped’). Ornithischian dinosaurs include vehicles. heterodontosaurids, thyreophorans (armoured dinosaurs), ornithopods, marginocephalians Holocene Epoch: interval of geological time (horned
Recommended publications
  • Resolving MISS Conceptions and Misconceptions: a Geological Approach to Sedimentary Surface Textures Generated by Microbial and Abiotic Processes
    Earth-Science Reviews 154 (2016) 210–246 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes Neil S. Davies a,⁎, Alexander G. Liu b, Martin R. Gibling c, Randall F. Miller d a Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom b School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom c Department of Earth Sciences, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada d Steinhammer Palaeontology Laboratory, New Brunswick Museum, Saint John, New Brunswick E2K 1E5, Canada article info abstract Article history: The rock record contains a rich variety of sedimentary surface textures on siliciclastic sandstone, siltstone and Received 30 October 2015 mudstone bedding planes. In recent years, an increasing number of these textures have been attributed to surfi- Received in revised form 7 January 2016 cial microbial mats at the time of deposition, resulting in their classification as microbially induced sedimentary Accepted 11 January 2016 structures, or MISS. Research into MISS has developed at a rapid rate, resulting in a number of misconceptions in Available online 15 January 2016 the literature. Here, we attempt to rectify these MISS misunderstandings. The first part of this paper surveys the stratigraphic and environmental range of reported MISS, revealing that contrary to popular belief there are more Keywords: Microbial induced sedimentary structures reported MISS-bearing rock units of Phanerozoic than Precambrian age.
    [Show full text]
  • Cretaceous Saurischian Tracksites from Southwest Sichuan Province and Overview of Late Cretaceous Dinosaur Track Assemblages of China
    Cretaceous Research 56 (2015) 458e469 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous saurischian tracksites from southwest Sichuan Province and overview of Late Cretaceous dinosaur track assemblages of China * Lida Xing a, , Geng Yang b, Jun Cao b, Martin G. Lockley c, Hendrik Klein d, Jianping Zhang a, W. Scott Persons IV e, Haiqian Hu a, Hongjiang Shen b, Xiaomin Zheng b, Yongchao Qin b a School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China b Regional Geological Survey Team, Sichuan Bureau of Geological Exploration and Development of Mineral Resources, Chengdu, China c Dinosaur Tracks Museum, University of Colorado Denver, PO Box 173364, Denver, CO, 80217, USA d Saurierwelt Palaontologisches€ Museum, Alte Richt 7, D-92318, Neumarkt, Germany e Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada article info abstract Article history: Dinosaur tracks from Upper Cretaceous deposits of Sichuan Province, China have proved of great sig- Received 16 March 2015 nificance for two reasons: they (1) provide unambiguous evidence of dinosaurs from this epoch in this Received in revised form region, and (2) demonstrate that the track bearing units of the Leidashu Formation are not Paleocene- 11 June 2015 Eocene in age as previously claimed by some authors. We herein describe five small sites, from the Accepted in revised form 18 June 2015 Zhaojue area and the nearby Xide areas. Two sites are dominated by theropod tracks, including one with Available online xxx small tracks of Eubrontes-like morphology, and another with deep tracks revealing long metatarsal impressions, probably indicating a soft substrate.
    [Show full text]
  • Dinosaur Tracks 2011
    The Early Cretaceous (late Berriasian) Bückeberg Formation in the southern Lower Saxony Basin, to Annette Richter, Mike Reich (Eds.) the west and to the south of Hannover, yields abundant and diverse dinosaur tracks, known since the late 1870s. After a few decades of pioneering and discovery, this area was scientifi cally neglected for a long time concerning dinosaur tracks and tracksites, and only single sporadic fi nds were reported in the second half of the 20th century. During 2007 and 2008, a new tracksite was discovered in Dinosaur Tracks 2011 Obernkirchen, yielding an astonishing amount of new and well-preserved dinosaur tracks, cared for by the Hannover State Museum and its cooperational partners. The present volume contains the An International Symposium, abstracts of lectures and posters presented during the Dinosaur Track Symposium 2011 as well as Obernkirchen, April 14-17, 2011 excursion and collection guides. On behalf of the Schaumburger Landschaft, this symposium was held at the medieval Stift Obernkirchen, Germany, from April 14th to 17th, 2011. Nearly one hundred Abstract Volume and Field Guide to Excursions palaeontologists, biologists, geologists and other scientists from sixteen countries participated. Annette Richter, Mike Reich (Eds.) Dinosaur Tracks 2011 JoacAnAnn ISBN: 978-3-86395-105-4 Universitätsdrucke Göttingen Universitätsdrucke Göttingen Annette Richter and Mike Reich (Eds.) Dinosaur tracks 2011 This work is licensed under the Creative Commons License 3.0 “by-nd”, allowing you to download, distribute and print the document in a few copies for private or educational use, given that the document stays unchanged and the creator is mentioned. You are not allowed to sell copies of the free version.
    [Show full text]
  • Formerly Amphicoelias Fragillimus), a Basal Rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado
    GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association ISSN 2380-7601 Volume 5 2018 MARAAPUNISAURUS FRAGILLIMUS, N.G. (FORMERLY AMPHICOELIAS FRAGILLIMUS), A BASAL REBBACHISAURID FROM THE MORRISON FORMATION (UPPER JURASSIC) OF COLORADO Kenneth Carpenter Theme Issue An Ecosystem We Thought We Knew— The Emerging Complexities of the Morrison Formation SOCIETY OF VERTEBRATE PALEONTOLOGY Annual Meeting, October 26 – 29, 2016 Grand America Hotel Salt Lake City, Utah, USA © 2018 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected]. GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association ISSN 2380-7601 Volume 5 2018 Editors UGA Board Douglas A. Sprinkel Thomas C. Chidsey, Jr. October 2018 – September 2019 Utah Geological Survey Utah Geological Survey President Peter Nielsen [email protected] 801.537.3359 801.391.1977 801.537.3364 President-Elect Leslie Heppler [email protected] 801.538.5257 [email protected] [email protected] Program Chair Gregory Schlenker [email protected] 801.745.0262 Treasurer Dave Garbrecht [email protected] 801.916.1911 Bart J. Kowallis Steven Schamel Secretary George Condrat [email protected] 435.649.4005 Brigham Young University GeoX Consulting, Inc. Past President Paul Inkenbrandt [email protected] 801.537.3361 801.422.2467 801.583-1146 [email protected]
    [Show full text]
  • An Inventory of Non-Avian Dinosaurs from National Park Service Areas
    Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 703 AN INVENTORY OF NON-AVIAN DINOSAURS FROM NATIONAL PARK SERVICE AREAS JUSTIN S. TWEET1 and VINCENT L. SANTUCCI2 1National Park Service, 9149 79th Street S., Cottage Grove, MN 55016 -email: [email protected]; 2National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240 -email: [email protected] Abstract—Dinosaurs have captured the interest and imagination of the general public, particularly children, around the world. Paleontological resource inventories within units of the National Park Service have revealed that body and trace fossils of non-avian dinosaurs have been documented in at least 21 National Park Service areas. In addition there are two historically associated occurrences, one equivocal occurrence, two NPS areas with dinosaur tracks in building stone, and one case where fossils have been found immediately outside of a monument’s boundaries. To date, body fossils of non- avian dinosaurs are documented at 14 NPS areas, may also be present at another, and are historically associated with two other parks. Dinosaur trace fossils have been documented at 17 NPS areas and are visible in building stone at two parks. Most records of NPS dinosaur fossils come from park units on the Colorado Plateau, where body fossils have been found in Upper Jurassic and Lower Cretaceous rocks at many locations, and trace fossils are widely distributed in Upper Triassic and Jurassic rocks. Two NPS units are particularly noted for their dinosaur fossils: Dinosaur National Monument (Upper Triassic through Lower Cretaceous) and Big Bend National Park (Upper Cretaceous).
    [Show full text]
  • Evidence from the Cretaceous Tugulu Group of the Hami Area, Eastern Xinjiang, China
    Biosis: Biological Systems (2020) 1(2): 72-84 https://doi.org/10.37819/biosis.001.02.0054 ORIGINAL RESEARCH Large Scale Dinoturbation in Braided Stream Deposits: Evidence from the Cretaceous Tugulu Group of the Hami Area, Eastern Xinjiang, China Lida Xinga,b * , Martin G. Lockleyc **, Zhongdong Lid, Hendrik Kleine, Shaojie Chenf, W. Scott Persons IVg, Miaoyan Wangb a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China b School of the Earth Sciences and Resources, China University of Geosciences, Beijing, China c Dinosaur Trackers Research Group, University of Colorado Denver, PO Box 173364, Denver, CO 80217, USA d Geophysical Team of Sichuan Bureau of Geological and Mineral Investigation and Exploration, Chengdu 610072, China e Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany f The First Team of Hydrogeology and Engineering Geology, Xinjiang Bureau of Geo- Exploration & Mineral Development, Urumqi 830091, China g Mace Brown Museum of Natural History, Department of Geology and Environmental Geosciences, College of Charleston, Charleston 29401, USA *Corresponding author: Lida Xing: [email protected] ** Martin G. Lockley: [email protected] © The Author(s) 2020 ABSTRACT Large dinosaur tracks were recently reported from locations in the ARTICLE HISTORY Pterosaur-Yadan National Geological Park situated about 100 km south of Received 23 April 2020 Hami in Xinjiang Province, China. The park comprises a substantial area in a much larger arid region comprising and an extensive spectrum of Revised 31 May 2020 Cretaceous, siliciclastic, Tugulu Group, lithofacies representing proximal, Accepted 8 June 2020 basin margin, alluvial fan and braided stream deposits, grading into alluvial plain, deltaic and lacustrine facies near the depocenter.
    [Show full text]
  • Early Cretaceous Macrofloras of Western Australia
    Records of the Westem Australian Museum 18: 19-65 (1996), Early Cretaceous macrofloras of Western Australia Stephen McLoughlin School of Botany, The University of Melbourne, Parkville, Victoria 3052, Australia Abstract - Western Australian, Lower Cretaceous, macrofloras from the Broome Sandstone and Callawa Formation (Canning Basin), Nanutarra Formation and Birdrong Sandstone (Carnarvon Basin), Cronin Sandstone (Officer Basin), and Leederville and Bullsbrook Formations (Perth Basin) incorporate a range of lycophytes, ferns, pteridosperms, bennettitaleans, and conifers, The new monotypic genus Roebuckia is established for spatulate fern fronds (R, spatulata) of possible vittariacean alliance. Other newly established species include Phyllopteroides westralensis, Elatocladus ginginensis, and Carpolithes bullsbrookensis, Although the Western Australian fossil suites reveal some specific differences from other Australian late Mesozoic assemblages, several shared index taxa and the high proportion of bennettitaleans support correlation with the Victorian Neocomian Ptilophyllum-Pachypteris austropapillosa Zone (Zone B). Some Western Australian taxa are shared with Indian assemblages but fewer similarities exist with other Gondwanan Early Cretaceous floras, The representation of several hydrophilous fern, lycophyte, and pteridosperm groups together with growth indices from fossil woods implies a seasonal humid mesothermal climate for the Western Australian eratonic margin during the Neocomian-Barremian. Minor differences between the Western Australian
    [Show full text]
  • Progressive Palaeontology 2007
    Progressive Palaeontology 2007 Thursday 12th – Saturday 14th April Department of Earth Sciences, University of Bristol 2 Welcome and acknowledgements We are pleased to welcome you to the Department of Earth Sciences at the University of Bristol for this year’s Progressive Palaeontology meeting. This appears to be the best attended and most presentation-packed Progressive Palaeontology on record – we are just shy of 60 delegates and there are 30 presentations in total (24 oral and 6 poster). As always Progressive Palaeontology’s aim is to provide a framework in which to present ideas and discuss work with those at a similar stage in their career. In order to achieve this the Friday presentation session is supplemented by two social events and a field trip. On Thursday evening there is a pre-conference gathering at the Berkeley pub (opposite the department on Queen’s Road) and following the presentation sessions on Friday there will also be an evening reception/dinner at Bristol Zoo. This year’s field trip will be to Aust Cliff (a site famous for its Late Triassic fish fossils – see the brief guide at the end of this booklet). We are lucky to have two experts on this site joining us on the day and we have scheduled a reasonably late start so please do come along if you have registered! We would also like to take this opportunity to thank the following individuals who have helped in supporting, preparing and running this year’s meeting: The Palaeontological Association and the University of Bristol Alumni Foundation for providing sponsorship.
    [Show full text]
  • READING PASSAGE 1 You Should Spend About 20 Minutes on Questions 1-13, Which Are Based on Reading Passage 1 Below
    Reading Practice Reading Practice Test 1 READING PASSAGE 1 You should spend about 20 minutes on Questions 1-13, which are based on Reading Passage 1 below. Walking with dinosaurs Peter L. Falkingham and his colleagues at Manchester University are developing techniques which look set to revolutionize our understanding of how dinosaurs and other extinct animals behaved. The media image of palaeontologists who study prehistoric life is often of field workers camped in the desert in the hot sun, carefully picking away at the rock surrounding a large dinosaur bone. But Peter Falkingham has done little of that for a while now. Instead, he devotes himself to his computer. Not because he has become inundated with paperwork, but because he is a new kind of palaeontologist: a computational palaeontologist. What few people may consider is that uncovering a skeleton, or discovering a new species, is where the research begins, not where it ends. What we really want to understand is how the extinct animals and plants behaved in their natural habitats. Drs Bill Sellers and Phil Manning from the University of Manchester use a ‘genetic algorithm’ – a kind of computer code that can change itself and ‘evolve’ – to explore how extinct animals like dinosaurs, and our own early ancestors, walked and stalked. The fossilized bones of a complete dinosaur skeleton can tell scientists a lot about the animal, but they do not make up the complete picture and the computer can try to fill the gap. The computer model is given a digitized skeleton, and the locations of known muscles.
    [Show full text]
  • Lower Eocene Footprints from Northwest Washington, USA. Part 1: Reptile Tracks
    geosciences Article Lower Eocene Footprints from Northwest Washington, USA. Part 1: Reptile Tracks George E. Mustoe * Geology Department, Western Washington University, Bellingham, WA 98225, USA Received: 23 June 2019; Accepted: 19 July 2019; Published: 22 July 2019 Abstract: Lower Eocene fluvial strata in the Chuckanut Formation preserve abundant bird and mammal tracks. Reptile trace fossils include footprints from a small turtle (ichnogenus Chelonipus), and several Crocodylian trackways that consist of irregularly spaced footprints associated with linear tail drag marks. The latter trackways represent “punting” locomotion, where a submerged Crocodylian used intermittent substrate contacts to provide forward motion of their neutrally buoyant bodies. Two adjacent sandstone blocks preserve Crocodylian trace fossils that are named herein as a new ichnogenus and ichnospecies Anticusuchipes amnis. Two other Crocodylian trackways lack sufficient detail for ichnotaxonomic assignment. Keywords: Chuckanut Formation; Crocodylian; footprints; ichnology; trace fossils; tracks; turtle; Washington 1. Introduction Birds and animals are represented by a diverse variety of footprints preserved on bedding planes in gently-dipping Chuckanut Formation strata in the Mount Baker foothills in Western Whatcom County, Washington, USA (Figure1, Table1). These locations are in a forested area that has been subject to extensive commercial logging, where road construction yields new bedrock exposures. Landslides also reveal fossiliferous bedrock. The discovery of these Eocene tracks is noteworthy because evidence of vertebrate life is scarce in Paleogene continental sedimentary rocks in the Pacific Northwest. This paper describes reptile tracks; avian and mammalian trace fossils will be described in subsequent reports. These discoveries are noteworthy given the scarcity of reports of Cenozoic reptile tracks. For perspective, a comprehensive bibliography of 584 references describing Cenozoic vertebrate tracks [1] comprise 1% Amphibia, 2% Reptilia, 32.7% Aves, and 64.3% Mammalia.
    [Show full text]
  • Fundy's Fascinating Fossils
    FUNDY ISSUES #31 Autumn 2010 Autumn 2010 ISSUE # 31 Further Information The Fossil Cliffs of Joggins. L. Ferguson. Nova Scotia Museum, Halifax, NS. 52 pages. (1988) Joggins Fossil Cliffs: Nomination of The Joggins Fossil Fundy’s Fascinating Fossils: Cliffs for Inscription on the World Heritage List. Joggins Fossil Institute. 129 pages. (January 2007) Dawning of the Dinosaurs. The Story of Canada’s Oldest The Unique Palaeontology of the Bay of Fundy Canada’s only finalist for the Dinosaurs. H. Thurston. Nimbus Publishing and the Nova Scotia Museum, Halifax, NS. 91 pages. (1994) “New7Wonders of Nature” The Last Billion Years. A Geological History of the “the rocky shores of Fundy bear a rich trove The growing number of research facilities in the Mari- Maritime Provinces of Canada. Atlantic Geoscience of scientifically important fossils” Society. Atlantic Geoscience Society Spec. Public. No. 15. times devoted to palaeontology, as well as the expanding Nimbus Publishing Ltd., Halifax, NS. 212 pages. (2001) The Bay of Fundy has long been known as an exciting and rewarding destination for those cadre of researchers staffing or carrying out studies at interested in fossils, both professionals and amateurs alike. Interest began almost 175 years these facilities, bodes well for the ongoing efforts to un- Geological Background and Physiography of Nova Scotia. A.E. Roland. The Nova Scotian Institute of Science, Halifax, ago (1836), when medical doctor and amateur geologist Dr. Abraham Gesner wrote about ravel the many fascinating chapters in the story of the NS. 311 pages. (1982) the geology of the region. In 1841, William Logan, founding Director of the Geological Earth’s distant past that are slowly being revealed in the Survey of Canada, discovered vertebrate tracks at Horton Bluff, Nova Scotia.
    [Show full text]
  • Download Full Article 2.2MB .Pdf File
    Memoirs of Museum Victoria 74: 63–71 (2016) Published 2016 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ A close look at Victoria's first known dinosaur tracks ANTHONY J. MARTIN Department of Environmental Sciences, Emory University, Atlanta, Georgia 30322 USA ([email protected]) Abstract Martin, A.J. 2016. A close look at Victoria's first known dinosaur tracks. Memoirs of Museum Victoria 74: 63–71. Lower Cretaceous (Aptian-Albian) rocks of Victoria, Australia are well known for their dinosaur body fossils, but not so much for their trace fossils. For example, the first known dinosaur track from the Eumeralla Formation (Albian) of Knowledge Creek, Victoria, was not discovered until 1980. This specimen, along with two more Eumeralla tracks found at Skenes Creek in 1989, constituted all of the dinosaur tracks recognised in Lower Cretaceous strata of southern Australia until the late 2000s. Unfortunately, none of these first-known dinosaur tracks of Victoria were properly described and diagnosed. Hence, the main purpose of this study is to document these trace fossils more thoroughly. Remarkably, the Knowledge Creek and one of the Skenes Creek tracks are nearly identical in size and form; both tracks are attributed to small ornithopods. Although poorly expressed, the second probable track from Skenes Creek provides a search image for less obvious dinosaur tracks in Lower Cretaceous strata of Victoria. The Skenes Creek tracks were also likely from the same trackway, and thus may represent the first discovered dinosaur trackway from Victoria. These tracks are the first confirmed ornithopod tracks for Victoria, augmenting abundant body fossil evidence of small ornithopods (‘hypsilophodontids’) in formerly polar environments during the Early Cretaceous.
    [Show full text]