Ultrasociality: When Institutions Make a Difference

Total Page:16

File Type:pdf, Size:1020Kb

Ultrasociality: When Institutions Make a Difference See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304625948 Ultrasociality: When institutions make a difference Article in Behavioral and Brain Sciences · June 2016 DOI: 10.1017/S0140525X15001089 CITATIONS READS 0 5 3 authors, including: Petr Houdek Julie Novakova Vysoká škola ekonomická v Praze Charles University in Prague 11 PUBLICATIONS 5 CITATIONS 6 PUBLICATIONS 9 CITATIONS SEE PROFILE SEE PROFILE Available from: Petr Houdek Retrieved on: 20 September 2016 BEHAVIORAL AND BRAIN SCIENCES (2016), Page 1 of 60 doi:10.1017/S0140525X1500059X, e92 The economic origins of ultrasociality John Gowdy Department of Economics and Department of Science and Technology Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 [email protected] http://www.economics.rpi.edu/pl/people/john-gowdy Lisi Krall Department of Economics, State University of New York (SUNY) at Cortland, Cortland, NY 13045 [email protected] Abstract: Ultrasociality refers to the social organization of a few species, including humans and some social insects, having a complex division of labor, city-states, and an almost exclusive dependence on agriculture for subsistence. We argue that the driving forces in the evolution of these ultrasocial societies were economic. With the agricultural transition, species could directly produce their own food and this was such a competitive advantage that those species now dominate the planet. Once underway, this transition was propelled by the selection of within-species groups that could best capture the advantages of (1) actively managing the inputs to food production, (2) a more complex division of labor, and (3) increasing returns to larger scale and larger group size. Together these factors reoriented productive life and radically altered the structure of these societies. Once agriculture began, populations expanded as these economic drivers opened up new opportunities for the exploitation of resources and the active management of inputs to food production. With intensified group-level competition, larger populations and intensive resource exploitation became competitive advantages, and the “social conquest of Earth” was underway. Ultrasocial species came to dominate the earth’s ecosystems. Ultrasociality also brought a loss of autonomy for individuals within the group. We argue that exploring the common causes and consequences of ultrasociality in humans and the social insects that adopted agriculture can provide fruitful insights into the evolution of complex human society. Keywords: agricultural transition; division of labor; major evolutionary transitions; multilevel selection; surplus production; totipotency; ultrasociality But the mere fact that organisms and societies evolve by various through similar selection pressures. We use the term ultra- selective mechanisms is not the whole (superorganism) story, for sociality to refer to these lineages, and we address the ques- it does not tell us the fundamental reasons that ants and termites tion of its origin through the fundamental question of live social rather than solitary lives. Those reasons are to be “ – evolutionary biology: Where did something come from found in economics in the science that concerns itself with and what were the selection pressures that favored its how resources are utilized and allocated. ” — Michael Ghiselin (2009, pp. 243–44) spread? (Blute 2010, p. 13). We follow Campbell (and Darwin) in insisting that the evolution of human ultrasocial- ity is a consequence of some of the same mechanistic (i.e., not consciously directed) evolutionary forces that govern 1. Introduction other species. Foley (2008, p. 164) calls the adoption of ag- riculture by ants and humans a case of “convergent selec- With the widespread adoption of agriculture some 10,000 tion.” In the struggle to survive, agricultural ants and years ago, human societies took on some important charac- agricultural humans face similar problems and selection teristics shared with social insects – ants and termites in – tends to favor similar solutions. We fully recognize that particular that also engage in the production of their the details of ultrasociality in humans play out in ways own food. These characteristics represented a sharp that are mediated by human intentionality and cultural break in the evolutionary history of these lineages and led norms. to two important outcomes: (1) Ecosystem domination as a product of a dramatic increase in population size and much more intensive resource exploitation; and (2) the sup- 1.1. What is ultrasociality? pression of individual autonomy as the group itself became the focus of economic organization. The evolution of agri- There is no general agreement in the use of the term ultra- culture in fungus-growing ants and termites, and in human sociality, partly due to the lack of consensus in the biolog- societies, is an example of convergent evolution – the inde- ical and social sciences in classifying social behavior. The pendent evolution of similar characteristics in species not many definitions of ultrasociality are conflicting, even closely related. In terms of genetics, ants, humans, and ter- among the same authors. For example, Campbell some- mites could hardly be more different. Yet, in all three line- times classifies ants, humans, and termites as ultrasocial ages similar patterns of economic organization emerge (Campbell 1982) but other times refers to ultrasociality as © Cambridge University Press 2016 0140-525X/16 1 http://journals.cambridge.org Downloaded: 01 Jul 2016 IP address: 195.113.56.251 Gowdy & Krall: The economic origins of ultrasociality large-scale cooperation among unrelated individuals tion.2 The extent of differentiation, collaboration, and co- (Campbell 1983; see also Turchin 2013). This seems to re- hesion of agricultural social species place them in a qualita- strict ultrasociality to humans, but remarkable examples of tively different category. This demarcation is, of course, non-kin altruistic behavior in non-human populations are somewhat arbitrary, and we recognize the antecedents of being documented, for example, the recent discovery of co- both managed agriculture and the specific characteristics operative brood raising by two different species of spiders of ultrasocial societies. We argue that the change from for- (Grinsted et al. 2012). E. O. Wilson (1975), although he aging wild plants and animals to the active management of does not use the term ultrasocial, considers humans to be agricultural crops was a particularly powerful impetus for one of the four pinnacles of social evolution, along with the human transition to ultrasociality.3 To clarify our use colonial invertebrates, social insects, and non-human of this term, by our classification leafcutter (attine) ants mammals. Richerson and Boyd (1998) use the term ultra- would be both eusocial and ultrasocial. Complex human so- social to describe humans after agriculture, but do not cieties with agriculture would be ultrasocial but not euso- include social insects in their definition. Following Wilson cial. Human hunter-gatherer bands are not ultrasocial, and Hölldobler (2005, p. 13368), we reserve the term euso- although the antecedents of ultrasociality are clearly cial to refer to social insects and a handful of other species present in these societies, as we discuss below. A striking having an advanced level of colonial existence and a sharp difference between insects and humans is the presence of division between sterile and reproductive castes.1 non-reproductive castes in the former.4 We recognize We begin with Campbell’s(1982, p. 160) definition of that the term ultrasocial is controversial, but we insist ultrasociality: that human and insect societies that practice managed ag- Ultrasociality refers to the most social of animal organizations, riculture are fundamentally different from the small-scale with full time division of labor, specialists who gather no food foraging societies from which they evolved. but are fed by others, effective sharing of information about sources of food and danger, self-sacrificial effort in collective defense. This level has been achieved by ants, termites and humans in several scattered archaic city-states. 1.2. Agriculture and ultrasociality We confine our discussion of ultrasociality to human, ant, Mueller et al. (2005, p. 564) list the defining features of ag- and termite societies that actively manage food produc- riculture as: (1) habitual planting, (2) cultivation, (3) har- vesting, and (4) nutritional dependency on the crop (obligate in insects and effectively obligate in humans). The active cultivation of crops calls forth a similar configu- JOHN GOWDY is Professor of Economics and Pro- ration of production in dissimilar species. The production fessor of Science and Technology Studies at Rens- of crops is a physical process entailing similar kinds of eco- selaer Polytechnic Institute. He has authored or nomic efficiencies. The prime examples of agricultural coauthored 10 books and 180 articles, and his re- insect societies are the attine ants of the New World search areas include biodiversity preservation, tropics (comprising about 200 different species) and the climate change, and evolutionary models of the fungus-growing termites of the Old World tropics (com- economy and society. He was a Fulbright prising more than 300 species). All of the existing species Scholar at the Economic University of Vienna of fungus-growing ants and termites apparently arose
Recommended publications
  • Quantitative Appraisal of Non-Irrigated Cropland in South Dakota Shelby Riggs University of Nebraska - Lincoln
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Honors Theses, University of Nebraska-Lincoln Honors Program 10-22-2018 Quantitative Appraisal of Non-irrigated Cropland in South Dakota Shelby Riggs University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/honorstheses Part of the Agribusiness Commons, Agricultural Economics Commons, Agricultural Science Commons, Applied Mathematics Commons, Applied Statistics Commons, and the Soil Science Commons Riggs, Shelby, "Quantitative Appraisal of Non-irrigated Cropland in South Dakota" (2018). Honors Theses, University of Nebraska- Lincoln. 117. https://digitalcommons.unl.edu/honorstheses/117 This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Honors Theses, University of Nebraska-Lincoln by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Quantitative Appraisal of Non-irrigated Ag Land in South Dakota An Undergraduate Honors Thesis Submitted in Partial Fulfillment of the University Honors Program Requirements University of Nebraska – Lincoln By Shelby Riggs, BS Agricultural Economics College of Agricultural Sciences and Natural Resources October 22nd, 2018 Faculty Mentor: Jeffrey Stokes, PhD, Agricultural Economics Abstract This appraisal attempts to remove subjectivity from the appraisal process and replace it with quantitative analysis of known data to generate fair market value the subject property. Two methods of appraisal will be used, the income approach and the sales comparison approach. For the income approach, I use the average cash rent for the region, the current property taxes for the subject property, and a capitalization rate based on Stokes’ (2018) capitalization rate formula to arrive at my income-based valuation.
    [Show full text]
  • 2018 Soybean Top 30 Harvest Report Top 30 of 54
    2018 Soybean Top 30 Harvest Report South Dakota East Central [ SDEC ] CAVOUR Greg Bich, Beadle County, SD 57324 Test by: MNS Seed Testing, LLC, New Richland, MN PREV. CROP/HERB: Corn / Harness Xtra, Roundup (twice) SOIL DESCRIPTION: Houdek-Prosper loam, moderately drained, non-irrigated All-Season Test SOIL CONDITIONS: Very low P, very high K, 5.9 pH, 3.0% OM, 20.1 CEC Maturity Group 1.6 - 2.3 TILLAGE/CULTIVATION: Minimum w/o fall till S2018SDEC06 PEST MANAGEMENT: Valor, Roundup APPLIED N-P-K (units): 0-0-0 Top 30 of 54 SEEDED - RATE - ROW: May 26 140,000 /A 30" Spacing For Gross Income (Sorted by Yield) HARVESTED - STAND: Oct 23 108,100 /A Average of (2) Replications SCN Yield Moisture Lodging Stand Gross Income Company/Brand Product/Brand†Technol.† Mat. Resist. Bu/A % % (x 1000) $/Acre Rank Averages = 42.8 10.1 1 108.1 $343 LSD (0.10) = 8.3 0.5 ns Mark Tollefson LSD (0.25) = 4.4 0.3 ns [email protected], (507) 456-2357 C.V. = 15.0 Prev. years avg. yield, 45.7 bu/a, 10 yrs Yield & Income Factors: Base Moisture = 13.0% Shrink = 1.3 Drying = $0.020 Prices = $8.00 GMO; $8.00 non-GMO TEST COMMENTS: The preemergence herbicide was applied to only a portion of the test area. Areas that did not receive this treatment were weedy the entire season as glphosate did not control everything. One replication was not harvested due to extreme weed pressure. Soybean yield was great in areas with good weed control (1 replication) but dropped considerably elsewhere.
    [Show full text]
  • Selected Qualitative Parameters Above-Ground Phytomass of the Lenor-First Slovak Cultivar of Festulolium A
    Acta fytotechn zootechn, 22, 2019(1): 13–16 http://www.acta.fapz.uniag.sk Original Paper Selected qualitative parameters above-ground phytomass of the Lenor-first Slovak cultivar of Festulolium A. et Gr. Peter Hric*, Ľuboš Vozár, Peter Kovár Slovak University of Agriculture in Nitra, Slovak Republic Article Details: Received: 2018-10-04 | Accepted: 2018-11-06 | Available online: 2019-01-31 https://doi.org/10.15414/afz.2019.22.01.13-16 Licensed under a Creative Commons Attribution 4.0 International License The aim of this experiment was to compare selected qualitative parameters in above-ground phytomass of the first Slovak cultivar of Festulolium A et. Gr. cv. Lenor in comparison to earlier registered cultivars Felina and Hykor. The pot experiment was conducted at the Demonstrating and Research base of the Department of Grassland Ecosystems and Forage Crops, Slovak Agricultural University in Nitra (Slovak Republic) with controlled moisture conditions (shelter) in 2017. Content of nitrogen, phosphorus, potassium, calcium, magnesium, crude fibre and water soluble carbohydrates were determined from dry above-ground phytomass of grasses. The significantly highest (P <0.05) nitrogen content in average of cuts was in above-ground phytomass of Felina (30.3 g kg-1) compared to Hykor (25.4 g kg-1) and new intergeneric hybrid Lenor (25.0 g kg-1). The lowest phosphorus content was found out in hybrid Lenor (3.4 g kg-1). In average of three cuts, the lowest concentration of potassium was in new intergeneric hybrid Lenor (5.8 g kg-1). The lowest content of calcium was found out in hybrid Lenor (7.0 g kg-1).
    [Show full text]
  • Comprehensive Conservation Plan, Lake Andes National Wildlife Refuge Complex, South Dakota
    Comprehensive Conservation Plan Lake Andes National Wildlife Refuge Complex South Dakota December 2012 Approved by Noreen Walsh, Regional Director Date U.S. Fish and Wildlife Service, Region 6 Lakewood, Colorado Prepared by Lake Andes National Wildlife Refuge Complex 38672 291st Street Lake Andes, South Dakota 57356 605 /487 7603 U.S. Fish and Wildlife Service Region 6, Mountain–Prairie Region Division of Refuge Planning 134 Union Boulevard, Suite 300 Lakewood, Colorado 80228 303 /236 8145 CITATION for this document: U.S. Fish and Wildlife Service. 2012. Comprehensive Conservation Plan, Lake Andes National Wildlife Refuge Complex, South Dakota. Lakewood, CO: U.S. Department of the Interior, U.S. Fish and Wildlife Service. 218 p. Comprehensive Conservation Plan Lake Andes National Wildlife Refuge Complex South Dakota Submitted by Concurred with by Michael J. Bryant Date Bernie Peterson. Date Project Leader Refuge Supervisor, Region 6 Lake Andes National Wildlife Refuge Complex U.S. Fish and Wildlife Service Lake Andes, South Dakota Lakewood, Colorado Matt Hogan Date Assistant Regional Director U.S. Fish and Wildlife Service, Region 6 National Wildlife Refuge System Lakewood, Colorado Contents Summary ....................................................................................................................................... XI Abbreviations .................................................................................................................................. XVII CHAPTER 1–Introduction .....................................................................
    [Show full text]
  • 2019 FIRST Harvest Report
    SCN Yield Moisture Lodging Stand Gross Income Company/Brand Product/Brand Technol.† RM Resist. Bu/A % % (x 1000) $/Acre Rank HEFTY H24X8 RRX 2.4 MR 58.2 15.0 1 114.2 492 1 ASGROW AG22X0 § RRX 2.2 R 57.4 14.2 6 112.3 486 2 Test by: MNS Seed Testing, LLC New Richland, MN TITAN PRO 28E8 E3 2.8 R 55.8 14.4 5 112.3 472 3 2019 Soybeans Top 30 Harvest Report HOEGEMEYER 2540 E E3 2.5 R 55.2 14.4 2 113.3 467 4 South Dakota Southeast [SDSE] SALEM, SD REA RX2518 § RRX 2.5 R 54.9 14.5 4 110.4 465 5 Ernie Christensen, McCook County, SD 57048 HOEGEMEYER 2202 NX RRX 2.2 R 54.5 14.3 4 113.3 461 6 All-Season Test 2.1 - 2.8 Day CRM REA RX2639 GC RRX 2.6 R 53.8 14.1 7 114.7 456 7 S2019SDSE04 GENESIS G2140E E3 2.1 R 53.4 14.1 5 112.3 452 8 For Gross Income Top 30 of 54 CREDENZ CZ 2550GTLL LG27 2.5 MR 53.4 14.1 2 110.4 452 9 (Sorted by Yield) Average of (3) Replications LATHAM L 2549R2X RRX 2.5 R 53.1 14.1 2 112.3 450 10 CHAMPION 25X70N RRX 2.5 R 52.9 14.2 2 111.4 448 11 PREV. CROP/HERB: Corn / Valor, Roundup GENESIS G2181GL LG27 2.2 R 52.6 14.5 1 107.4 445 12 SOIL DESCRIPTION: Houdek-Prosper loam, moderately drained, non- NK BRAND S20-J5X § RRX 2.0 R 52.4 13.9 14 108.4 444 13 irrigated HEFTY Z2300E E3 2.3 R 52.3 13.8 2 112.3 444 14 SOIL CONDITION: very high P, very high K, 5.9 NK BRAND S21-W8X § RRX 2.1 R 52.2 14.0 5 109.4 442 15 pH, 3.0% OM, 19.3 CEC STINE 25GA62 § LG27 2.5 R 52.0 14.0 2 111.3 441 16 TILLAGE/CULTIVATION: Conventional W/ Fall Till PIONEER P21A28X § RRX 2.1 R 51.7 14.1 2 105.5 438 17 PEST MANAGEMENT: Valor, Roundup, Select Max HOEGEMEYER 2820 E E3 2.8 R 51.4 15.1 5 112.3 434 18 Applied N-P-K (units): 0-0-0 HEFTY Z2700E E3 2.7 R 51.3 14.7 1 113.3 434 19 SEEDED - RATE - ROW: Jun 12 140.0 /A 30" spacing LATHAM L 2395 LLGT27 LG27 2.3 R 51.2 14.0 5 108.4 434 20 HARVESTED - STAND: Nov 1 111.4 /A DYNA-GRO S24XT08 RRX 2.4 R 51.2 15.1 2 113.3 433 22 RENK RS248NX RRX 2.4 R 51.2 15.5 2 112.3 432 23 TEST COMMENTS: RENK RS250NX RRX 2.5 R 51.2 14.1 1 112.3 434 21 This was a clean field with a fairly consistent stand of HEFTY H25X0 RRX 2.5 R 50.9 14.3 2 113.3 431 24 soybeans.
    [Show full text]
  • 2020 South Dakota Soybean Variety Trial Results
    South Dakota Agricultural agronomy Experiment Station at SDSU SOUTH DAKOTA STATE UNIVERSITY® OCTOBER 2020 AGRONOMY, HORTICULTURE, & PLANT SCIENCE DEPARTMENT 2020 South Dakota Soybean Variety Trial Results Plankinton Jonathan Kleinjan | SDSU Extension Crop Production Associate Kevin Kirby | Agricultural Research Manager Shawn Hawks | Agricultural Research Manager Location: 6 miles north and 4 miles west of Plankinton (57368) in Aurora County, SD (GPS: 43.802972° -98.556917°) Cooperator: Edinger Brothers Soil Type: Houdek-Dudley complex, 0-2% slopes Fertilizer: none Previous crop: corn Tillage: minimum-till Row spacing: 30 inches Seeding Rate: 150,000/acre Herbicide: Pre: 3 oz/acre Fierce (flumioxazin + pyroxasulfone) + 5 oz/acre Metribuzin (metribuzin) + 3.3 pt/acre Prowl H2O (pendimethalin) Post: none Insecticide: none Date seeded: 6/2/2020 Date harvested: 10/16/2020 SDSU Extension is an equal opportunity provider and employer in accordance with the nondiscrimination policies of South Dakota State University, the South Dakota Board of Regents and the United States Department of Agriculture. Learn more at extension.sdstate.edu. S-0002-06 2020 South Dakota Soybean Variety Trial Results Plankinton Table 1. Glyphosate-resistant soybean variety performance results (average of 4 replications - Maturity Group 1 at Plankinton, SD. Variety Information Agronomic Performance Maturity Yield Lodging Score Brand Variety Moisture (%) Rating (bu/ac@13%) (1-5)* LG Seeds C1838RX 1.8 62.8 9.2 1.0 P3 Genetics 2117E 1.7 60.3 9.1 1.0 Peterson Farms Seed 21X16N 1.6 59.8 9.3 1.0 LG Seeds LGS1776RX 1.7 58.4 9.3 1.0 Farmer Check 1 1818R2X 1.8 58.0 9.2 1.0 Farmer Check 2 P19A14X 1.9 57.9 8.8 1.0 Check 14X0 1.4 54.9 9.0 1.0 Trial Average 58.9 9.1 1.0 LSD (0.05)† 3.3 0.4 - C.V.‡ 3.8 3.1 - *Lodging Score (1 = no lodging to 5 = flat on the ground).
    [Show full text]
  • Biomass Yield from Planted Mixtures and Monocultures of Native Prairie
    Agriculture, Ecosystems and Environment 186 (2014) 148–159 Contents lists available at ScienceDirect Agriculture, Ecosystems and Environment j ournal homepage: www.elsevier.com/locate/agee Biomass yield from planted mixtures and monocultures of native prairie vegetation across a heterogeneous farm landscape a,∗ a b b b Cody J. Zilverberg , W. Carter Johnson , Vance Owens , Arvid Boe , Tom Schumacher , b c d a e Kurt Reitsma , Chang Oh Hong , Craig Novotny , Malia Volke , Brett Werner a Natural Resource Management, South Dakota State University, Brookings, SD 57007, United States b Plant Science, South Dakota State University, Brookings, SD 57007, United States c Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 627-706, South Korea d EcoSun Prairie Farms, Brookings, SD 57007, United States e Program in Environmental Studies, Centre College, Danville, KY 40422, United States a r t i c l e i n f o a b s t r a c t Article history: Farms in the glaciated tallgrass prairie region of North America are topographically heterogeneous with Received 27 August 2013 wide-ranging soil quality. This environmental heterogeneity may affect choice and placement of species Received in revised form planted for biomass production. We designed replicated experiments and monitored farm-scale produc- 27 December 2013 tion to evaluate the effects of landscape position, vegetation type, and year on yields of monocultures Accepted 23 January 2014 and mixtures. Research was conducted on a 262-ha South Dakota working farm where cropland had been replanted with a variety of native grassland types having biofuel feedstock potential. Vegetation Keywords: type (diverse mixture or switchgrass [Panicum virgatum L.] monoculture) and year interacted to influence Switchgrass Biofuel yield in replicated experiments (p < 0.10).
    [Show full text]
  • Soil Productivity Ratings and Estimated Yields for Moody County, South Dakota D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Technical Bulletins SDSU Agricultural Experiment Station 2011 Soil Productivity Ratings and Estimated Yields for Moody County, South Dakota D. D. Malo Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_tb Recommended Citation Malo, D. D., "Soil Productivity Ratings and Estimated Yields for Moody County, South Dakota" (2011). Technical Bulletins. Paper 11. http://openprairie.sdstate.edu/agexperimentsta_tb/11 This Article is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. TB101 Campbell Marshall Corson McPherson Harding Brown Perkins Roberts Walworth Edmunds Day Grant Dewey Potter Faulk Codington Spink Butte Clark Ziebach Deuel Sully Hamlin Meade Hyde Hand Hughes Beadle Brookings Stanley Kingsbury Lawrence Haakon Buffalo Jerauld Miner Moody Pennington Sanborn Lake Jones Lyman Hanson Custer Jackson Brule Aurora Minnehaha Davison McCook Mellette Douglas Shannon Tripp Hutchinson Turner Fall River Charles Lincoln Bennett Todd Gregory Mix Bon Yankton Homme Clay nion U Soil Productivity Ratings and Estimated Yields for Moody County, South Dakota South Dakota State University Agricultural Experiment Station CONTENTS Page INTRODUCTION . 1 DATA . 2 METHODS . 2 YIELD and SOIL PRODUCTIVITY RATING RESULTS . 2 SUMMARY . 5 LITERATURE CITED . 6 TABLE 1 (Moody County, South Dakota, Yield Information and Soil Productivity Ratings) . 8 ABBREVIATIONS USED IN TABLE 1 .
    [Show full text]
  • (Phaseolus Vulgaris) Grown in Elevated CO2 on Apatite Dissolution Brian Matthew Orm Ra University of Maine, [email protected]
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-13-2017 Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution Brian Matthew orM ra University of Maine, [email protected] Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Biogeochemistry Commons, and the Soil Science Commons Recommended Citation Morra, Brian Matthew, "Influence of Common Bean (Phaseolus vulgaris) Grown in Elevated CO2 on Apatite Dissolution" (2017). Electronic Theses and Dissertations. 2642. http://digitalcommons.library.umaine.edu/etd/2642 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. INFLUENCE OF COMMON BEAN (PHASEOLUS VULGARIS) GROWN IN ELEVATED CO2 ON APATITE DISSOLUTION By By Brian Morra B.S. University of Idaho, 2012 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Earth and Climate Sciences) The Graduate School The University of Maine May 2017 Advisory Committee: Amanda Olsen, Associate Professor, Earth and Climate Sciences, Adviser Aria Amirbahman, Professor, Civil and Environmental Engineering Stephanie Burnett, Associate Professor, School of Food and Agriculture INFLUENCE OF COMMON BEAN (PHASEOLUS VULGARIS) GROWN IN ELEVATED CO2 ON APATITE DISSOLUTION By Brian Matthew Morra Thesis Advisor: Dr. Amanda Olsen An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Earth and Climate Sciences) May 2017 Elevated concentrations of atmospheric CO2 brought about by human activity creates changes in plant morphology, growth rate and exudate production.
    [Show full text]
  • Prairiewinds Sd1, Inc. Application to the South
    PRAIRIEWINDS SD1, INC. APPLICATION TO THE SOUTH DAKOTA PUBLIC UTILITIES COMMISSION FOR A FACILITY PERMIT PRAIRIEWINDS SD1 WIND ENERGY FACILITY AND ASSOCIATED COLLECTION SUBSTATION AND ELECTRIC INTERCONNECTION SYSTEM DECEMBER 2009 Prepared for: PrairieWinds SD1, Inc. Prepared by: 2026 Samco Road, Ste. 101 Rapid City, South Dakota 57702 TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY ................................................................................................... 1 2.0 FACILITY PERMIT APPLICATION ................................................................................... 2 3.0 COMPLETENESS CHECKLIST........................................................................................ 5 4.0 NAMES OF PARTICIPANTS (ARSD 20:10:22:06) ........................................................ 20 5.0 NAME OF OWNER AND MANAGER (ARSD 20:10:22:07) ........................................... 20 6.0 PURPOSE OF, AND DEMAND FOR, THE WIND ENERGY FACILITY AND TRANSMISSION FACILITY (ARSD 20:10:22:08, 20:10:22:10)................................................ 20 6.1 WIND RESOURCE AREAS ........................................................................................ 21 6.2 RENEWABLE POWER DEMAND............................................................................... 22 6.3 TRANSMISSION FACILITY DEMAND........................................................................ 23 7.0 ESTIMATED COST OF THE WIND ENERGY FACILITY AND TRANSMISSION FACILITY (ARSD 20:10:22:09).................................................................................................
    [Show full text]
  • Forage Conservation
    14th International Symposium FORAGE CONSERVATION Brno, Czech Republic, March 17-19, 2010 Conference Proceedings NutriVet Ltd., Poho řelice, CZ University of Veterinary and Pharmaceutical Sciences Brno, CZ Mendel University in Brno, CZ Animal Production Research Centre Nitra, SK Institute of Animal Science Prague, Uh řin ěves, CZ 14 th INTERNATIONAL SYMPOSIUM FORAGE CONSERVATION 17 - 19 th MARCH, 2010 Brno, Czech Republic 2010 Organizing committee: Ing. Václav JAMBOR, CSc. Prof. Dipl. Ing. Ladislav ZEMAN, Csc. Prof. Doc. MVDr. Ing. Petr DOLEŽAL, CSc. Prof. Ing. František HRAB Ě, CSc. Doc.Ing. Ji ří SKLÁDANKA, PhD. Ing. Lubica RAJ ČAKOVÁ, Ph.D. Ing. Mária CHRENKOVÁ, Ph.D. Ing. Milan GALLO, Ph.D. Ing. Radko LOU ČKA, CSc. Doc. MVDr. Josef ILLEK, DrSc. Further copies available from: NutriVet Ltd. Víde ňská 1023 691 23 Poho řelice Czech Republic E-mail: [email protected] Tel./fax.: +420-519-424247, mobil: + 420-606-764260 ISBN 978-80-7375-386-3 © Mendel University Brno, 2010 Published for the 14 th International Symposium of Forage Conservation, 17-19 th March, 2010 Brno by MU Brno (Mendel University Brno, CZ) Editors: V. Jambor, S. Jamborová, B. Vosynková, P. Procházka, D. Vosynková, D. Kumprechtová, General Sponzors WWW.LIMAGRAINCENTRALEEUROPE.COM WWW.BIOFERM.COM Sponzors Section 1: Forage production - yield, quality, fertilization WWW.PIONEER.COM Section 2: Fermentation process of forage - harvest, preservation and storage WWW.ADDCON.DE Section 3: Utilization, nutritive value and hygienic aspects of pereserved forages on production health of animals WWW.ALLTECH.COM Section 4: Production of biogass by conserved forages, greenhouse gases and animal agriculture, ecology WWW.SCHAUMANN.CZ WWW.CHR-HANSEN.COM WWW.MIKROP.CZ WWW.BIOMIN.NET WWW.OSEVABZENEC.CZ TABLE OF CONTENTS PRODUCTION AND FINALIZATION OF THE MILK IN THE EU KUČERA J.
    [Show full text]
  • POSTER SESSION 4Th Annual Meeting July 16, 2019 Hyatt Regency • Sacramento, California USA POSTER SESSION 4:00 P.M
    POSTER SESSION 4th Annual Meeting July 16, 2019 Hyatt Regency • Sacramento, California USA POSTER SESSION 4:00 p.m. to 6:00 p.m., Tuesday, July 16 PRESENTER: Guihua Chen describe, and illustrate by a limited example, the concepts and assessment of soil’s capacity POSTER 1 measured through its capability, and condition as contributors to an overall soil security framework. The links to other notions such as threats to soil and soil functions are made. California Healthy Soils Program: Promoting Adoption 1 1 2 of Conservation Agricultural Management Practices on Authors: Alex McBratney , Damien Field , Cristine Morgan California Agricultural Lands Affiliations: 1) The University of Sydney, School of Life and Environmental Sciences & Sydney Research Description: Institute of Agriculture, NSW, Australia; 2) Soil Health Institute California is the national leader in agricultural production and exports. Among 100 million acres of California land, about 40% is used for agriculture. Conventional management practices PRESENTER: Alex McBratney and intensive production systems may result in soil degradation such as loss of soil organic POSTER 4 matter and biodiversity, nutrient depletion, and salinity. Healthy soils are crucial to support agricultural production, increase resilience to natural disasters such as drought and pests, Tea-Bag Index: A Method for Promoting Soil Health and and maintain sustainability in the long term. Healthy soils also play a key role in mitigating Security in Schools greenhouse gas (GHGs) emissions through carbon sequestration. Research Description: California Department of Food and Agriculture leads the Healthy Soils Program (HSP) that Soil organic matter (SOM) is critical for soil health. However, the SOM quality is variable stems from California Healthy Soils Initiative (HSI), a collaboration of state agencies and and indicates its potential for long-term storage.
    [Show full text]