Halász Júlia

Total Page:16

File Type:pdf, Size:1020Kb

Halász Júlia Doktori (PhD) értekezés A KAJSZI ÖNMEDD İSÉGÉT MEGHATÁROZÓ S-ALLÉL-RENDSZER MOLEKULÁRIS HÁTTERE Halász Júlia Témavezet ı: Dr. Pedryc Andrzej, CSc egyetemi docens Budapesti Corvinus Egyetem Genetika és Növénynemesítés Tanszék Budapest 2007 A doktori iskola megnevezése: Kertészettudományi Doktori Iskola tudományága : Biológiai tudományok vezet ıje: Dr. Papp János, DSc egyetemi tanár BCE, Kertészettudományi Kar, Gyümölcsterm ı Növények Tanszék Témavezet ı: Dr. Pedryc Andrzej, CSc egyetemi docens BCE, Kertészettudományi Kar Genetika és Növénynemesítés Tanszék A jelölt a Budapesti Corvinus Egyetem Doktori Szabályzatában el ıírt valamennyi feltételnek eleget tett, az értekezés m őhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, ezért az értekezés nyilvános vitára bocsátható. ........................................................... ........................................................... Dr. Papp János Dr. Pedryc Andrzej Az iskolavezet ı jóváhagyása A témavezet ı jóváhagyása A Budapesti Corvinus Egyetem Élettudományi Területi Doktori Tanács 2007. február 13-i határozatában a nyilvános vita lefolytatására az alábbi bíráló Bizottságot jelölte ki: BÍRÁLÓ BIZOTTSÁG : Elnöke Tóth Magdolna, CSc Tagjai Jenes Barnabás, CSc Palkovics László, DSc Szegedi Ern ı, DSc Opponensek Janda Tibor, CSc Kiss Erzsébet, CSc Titkár Kocsisné Molnár Gitta, PhD „A gyümölcsfák életének legérdekesebb részei azok a jelenségek, amelyek ivaros szaporodásával vannak egybekapcsolva. Nagyon sok gyönyör őséget nyújt e jelenségek megfigyelése és tanulmányozása azoknak, akik szakszer ően és lelkiismeretesen foglalkoznak vele. Viszont nagy tévedés lenne azt hinni, hogy a virágbiológiai jelenségek ismerete csak tudományos érték ő, mert ellenkez ıleg, éppen ezek az ismeretek nyújtják nekünk a legértékesebb útmutatásokat a gyakorlati termesztésben.” (Mohácsy Mátyás, 1954) 1 Tartalomjegyzék Rövidítések jegyzéke 5 1. Bevezetés 6 2. Célkit őzés 8 3. Irodalmi áttekintés 9 3.1. Inkompatibilitás a növényvilágban 9 3.2. A Prunus fajok önmedd ıségét meghatározó molekuláris rendszer 10 3.2.1. S-ribonukleáz enzim: a termékenyülést irányító rendszer bibekomponense 12 3.2.2. F-box fehérje: a termékenyülést irányító rendszer pollenkomponense 16 3.2.3. Az S-RN-áz alapú inkompatibilitási rendszer m őködésének molekuláris modellje 18 3.2.4. A gyümölcsfák öntermékenyülési képességének molekuláris háttere 20 3.3. Az S-lókusz az evolúció és kultúrevolúció tükrében 22 3.4. Az S-genotípus vizsgálati módszereinek áttekintése 24 3.4.1. Szabadföldi termékenyülésvizsgálatok 24 3.4.2. A pollentöml ı növekedésének vizsgálata 25 3.4.3. Fehérje-szint ő analízis: izoelektromos fókuszálás 26 3.4.4. DNS-alapú vizsgálatok 28 3.5. A gyümölcsfák S-allél-rendszere 32 3.5.1. Mandula 32 3.5.2. Cseresznye 33 3.5.3. Alma 33 3.5.4. Körte 34 3.5.5. Meggy 34 3.5.6. Szilva 35 3.5.7. İszibarack 36 3.5.8. Japánkajszi 36 3.5.9. Európai kajszi 37 3.5.9.1. Kajszifajták csoportosítása, termékenyülése 37 3.5.9.2. Az inkompatibilitás örökl ıdése 38 2 3.5.9.3. Gyümölcsköt ıdés és pollentöml ı-analízis: a kezdeti vizsgálatok 39 3.5.9.4. Fehérje- és DNS-alapú technikák: nagy hatékonyságú molekuláris vizsgálatok 40 3.5.9.5. A kajszi S-lókuszának szerkezete 41 4. Anyag és módszer 44 4.1. Növényanyag 44 4.2. Szabadföldi tesztkeresztezések 44 4.2.1. Öntermékenyülés-vizsgálat 44 4.2.2. Kompatibilitási vizsgálat 48 4.3. Pollentöml ı növekedésének vizsgálata 48 4.4. Az S-ribonukleáz izoenzimek vizsgálata 49 4.4.1. S-ribonukleáz-aktivitás vizsgálata agaróz diffúziós plate-en 49 4.4.2. A ribonukleáz-aktivitás spektrofotometriás meghatározása 49 4.4.3. Minta-el ıkészítés az izoelektromos fókuszáláshoz 50 4.4.4. Izoelektromos fókuszálás (IEF) és nem egyensúlyi izoelektromos 50 fókuszálás (NEpHGE) 4.4.5. S-ribonukleáz izoenzimek kimutatása specifikus festéssel 50 4.5. DNS-alapú vizsgálatok 51 4.5.1. DNS-kivonás 51 4.5.2. S-PCR-analízis 51 4.5.2.1. Az S-RN-áz gén PCR-vizsgálata 51 4.5.2.2. Az F-box gén PCR-vizsgálata 51 4.5.3. RT-PCR 52 4.5.4. A PCR-termékek fragmentumhossz-analízise, klónozása, szekvenálása és a szekvenciák vizsgálata 53 4.6. Statisztikai analízis 54 5. Eredmények 55 5.1. S-genotípus meghatározása ribonukleáz izoenzimek kimutatásával 55 5.2. S-RN-áz gén alapú, DNS-szint ő genotípus-meghatározás 59 5.3. Az öntermékenyülés molekuláris háttere 67 5.3.1. Az SC- és S8-RN-áz allélok molekuláris analízise 67 5.3.2. Az SFB C- és SFB 8-allélok molekuláris analízise 71 5.4. F-box gén alapú S-genotípus-meghatározás 76 3 5.5. Az S-allélok szerkezete és filogenetikai vizsgálata 79 6. Eredmények megvitatása 82 6.1. S-genotípus meghatározása izoelektromos fókuszálással 82 6.2. S-RN-áz gén alapú, DNS-szintő genotípus-meghatározás 85 6.3. Az öntermékenyülés molekuláris háttere 91 6.4. Az F-box gén alapú S-genotípus-meghatározás 96 6.5. Az S-RN-áz allélok szerkezete és filogenetikai vizsgálata 98 6.5.1. Az S-RN-áz allélok szerkezete 98 6.5.2. Az S-allélok filogenetikai vizsgálata 99 6.5.3. Az S-genotípusok és a kajszi kultúrevolúciója 101 6.6. Új tudományos eredmények 106 7. Összefoglalás 108 8. Summary 110 9. Melléklet 112 M1. Irodalomjegyzék 112 M2. Az NCBI nemzetközi adatbázisba benyújtott szekvenciák 128 Köszönetnyilvánítás 156 4 Rövidítések jegyzéke bp bázispár C1–3 és C5 Az S-RN-áz gén 1–3. és 5. konzervatív régiója cDNS komplementer DNS D dalton, relatív molekulatömeg DEPC dietilpirokarbamát DNS dezoxiribonukleinsav GSI gametofitikus inkompatibilitás (gametophytic self-incompatibility) HVa, HVb A Solanaceae S-RN-ázokra és valamennyi SFB-re jellemz ı variábilis régiók IEF izoelektromos fókuszálás kbp kilobázispár NEpHGE nem egyensúlyi izoelektromos fókuszálás (non-equilibrium pH gradient electrofocusing) ÖM önmedd ı ÖT öntermékenyül ı PCR polimeráz láncreakció pI izoelektromos pont RC4 A Rosaceae S-RN-ázokra jellemz ı 4. konzervatív régió RHV A Rosaceae S-RN-ázokra jellemz ı hipervariábilis régió RNS ribonukleinsav RT reverz transzkripció SFB S-haplotípus-specifikus F-box protein SLF S-lókusz F-box protein SNP pontmutáció SP szignálpeptid S-RN-áz S-ribonukleáz SSR mikroszatellit régió 5 1. BEVEZETÉS A növényvilágban az idegenmegporzás (allogámia) által kialakult genetikai variabilitás szelekciós el ınyt biztosít a növények számára. A zárvaterm ı növények nagy részénél a kétivarú virágokban különféle mechanizmusok alakultak ki az önmegporzás (autogámia) megakadályozására. Ide tartozik a bibe és a porzók térbeni elkülönülése, a szaporítószervek érésének id ıbeli eltolódása, illetve a leghatékonyabb megoldás, a pollen csírázásának vagy a pollentöml ı fejl ıdésének gátlása, az ún. inkompatibilitás. A jelenséget els ı ízben, 1877-ben leíró Darwin a virágos növények törzsfejl ıdésében központi jelent ıséget tulajdonított e mechanizmusnak. Az autoinkompatibilitás tehát azt jelenti, hogy a bibe adott növényegyed saját pollenjével történ ı megporzása nem vezet megtermékenyítéshez. Az összeférhetetlenség genetikailag meghatározott mechanizmusokon alapul. A növények számára evolúciós léptékekben hasznos idegentermékenyülés a sajátos gazdasági célokkal rendelkez ı szakemberek szempontjából kétél ő fegyvernek tekinthet ı. A termesztésben nem kívánatos, gazdasági szempontból hátrányos fiziológiai jelenségként tartják számon, hiszen az önmedd ı fajtákból létesített ültetvényekben elengedhetetlen a megfelel ı pollenadó fák telepítése. E probléma jelent ısége jól látható a cseresznye példáján, ahol az öntermékenyül ı fajták el ıállítása mára az egyik legfontosabb nemesítési követelménnyé vált. A növénynemesít ık számára ugyanakkor az önmedd ıség jelent ıs segítséget nyújthat a tervszer ően megalapozott keresztezések kivitelezéséhez, mert a virágok kasztrálása nem szükséges. Sajnos azokban az esetekben, ahol az önmedd ıség az S-allél-rendszeren alapszik, az önmedd ı anyanövény használata azt is jelenti, hogy az utódok között önmedd ı genotípusok jelenhetnek meg. Ráadásul az azonos S-allélokat hordozó önmedd ı fajták egymást kölcsönösen sem képesek megtermékenyíteni, így közös ültetvénybe telepítve nem adnak elfogadható termésmennyiséget. Az inkompatibilitás biokémiai és molekuláris háttere növénycsaládonként igen eltér ı. Az egyik leginkább tanulmányozott mechanizmus a ribonukleáz enzimek részvételével kialakult gametofitikus önmedd ıség. Ilyen típusú rendszer jellemzi a Rosaceae családot, mely számos gyümölcsterm ı növényt (alma, körte, cseresznye, kajszi, mandula, szilva stb.) foglal magába. Mivel a csonthéjas fajok körében parthenokarp gyümölcsköt ıdés nem fordul el ı, a sikeres megtermékenyülés elengedhetetlen feltétele a gazdasági értéket képvisel ı gyümölcs létrejöttének. Az európai kajszifajták túlnyomó része öntermékenyül ı, míg az ázsiai és észak- amerikai fajták többsége önmedd ı. Az utóbbi évek során a fagyt őrés és a vírusrezisztencia 6 elérése érdekében az ázsiai és észak-amerikai genotípusokat felhasználó keresztezéses nemesítés útján egyre több, széles körben elterjedt, önmedd ı fajtát hoztak létre. A fajtatársítás szempontjából az S-genotípusok ismerete elengedhetetlenné vált. A fajták termékenyülését meghatározó szabadföldi termésköt ıdési vizsgálatokat számos bizonytalanság terheli, hiszen ezeket a környezeti, id ıjárási körülmények jelent ısen befolyásolhatják, továbbá ezen vizsgálatokra csak a term ıkorú fák alkalmasak. A DNS- alapú vizsgálatok, amelyekkel a sterilitást okozó allélok a genomban detektálhatóak, igen nagymértékben segíthetik és gyorsíthatják a nemesítık munkáját azáltal, hogy alkalmazásukkal a növények korai egyedfejl ıdési állapotában meghatározhatók
Recommended publications
  • Report of a Working Group on Prunus: Sixth and Seventh Meetings
    European Cooperative Programme for Plant Genetic Report of a Working Resources ECP GR Group on Prunus Sixth Meeting, 20-21 June 2003, Budapest, Hungary Seventh Meeting, 1-3 December 2005, Larnaca, Cyprus L. Maggioni and E. Lipman, compilers IPGRI and INIBAP operate under the name Bioversity International Supported by the CGIAR European Cooperative Programme for Plant Genetic Report of a Working Resources ECP GR Group on Prunus Sixth Meeting, 20 –21 June 2003, Budapest, Hungary Seventh Meeting, 1 –3 December 2005, Larnaca, Cyprus L. Maggioni and E. Lipman, compilers ii REPORT OF A WORKING GROUP ON PRUNUS: SIXTH AND SEVENTH MEETINGS Bioversity International is an independent international scientific organization that seeks to improve the well- being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. Bioversity has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Commodities for Livelihoods. The international status of Bioversity is conferred under an Establishment Agreement which, by January 2006, had been signed by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mali, Mauritania, Morocco, Norway, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovakia, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine.
    [Show full text]
  • Factores Moleculares Implicados En El Sistema De Incompatibilidad Floral En Almendro [Prunus Dulcis (Miller) D
    UNIVERSIDAD DE MURCIA FACULTAD DE BIOLOGÍA Factores Moleculares Implicados en el Sistema de Incompatibilidad Floral en Almendro [Prunus dulcis (Miller) D. A. Webb] Dª Eva María Gómez González 2017 TESIS DOCTORAL “Factores moleculares implicados en el sistema de incompatibilidad floral en almendro [Prunus dulcis (Miller) D.A. Webb]” Doctoranda: Eva María Gómez González Directores: Dra. Encarnación Ortega Pastor Dr. Federico Dicenta López-Higuera Murcia, 2017 CENTRO DE EDAFOLOGÍA Y BIOLOGÍA APLICADA DEL SEGURA (CEBAS) D. Federico Dicenta López-Higuera, Doctor por la Universidad de Murcia y Dª Encarnación Ortega Pastor, Doctora por la Universidad de Murcia, ambos adscritos al Centro de Edafología y Biología Aplicada del Segura, del Consejo Superior de Investigaciones Científicas. AUTORIZAN: La presentación de la Tesis Doctoral titulada “Factores moleculares implicados en el sistema de incompatibilidad floral en almendro [Prunus dulcis (Miller) D.A. Webb”, realizada por Dª. Eva María Gómez González, Licenciada en Bioquímica, bajo nuestra inmediata dirección y supervisión, en el Departamento de Mejora Vegetal del Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC) de Murcia. Considerando que se trata de un trabajo original de investigación que reúne los requisitos establecidos en el RD 1393/2007, de 29 de octubre, estimamos que puede ser presentado para la obtención del grado de Doctor por la Universidad de Murcia. Murcia, 31 de Mayo de 2017 Campus Universitario de Espinardo 30100 Espinardo, Murcia. ESPAÑA Telf. (34) 968 396200 Fax.: (34) 968 396213 Agradecimientos La realización de esta tesis doctoral ha sido posible gracias al disfrute de la beca FPI (BES-2011-050500), asociada al proyecto “Mejora genética del Almendro” (AGL2010-22197-C02-02) financiado por Ministerio de Economía y Competitividad.
    [Show full text]
  • Plant Species Richness and Composition of a Habitat Island
    Biodiversity Data Journal 8: e48704 doi: 10.3897/BDJ.8.e48704 Research Article Plant species richness and composition of a habitat island within Lake Kastoria and comparison with those of a true island within the protected Pamvotis lake (NW Greece) Alexandros Papanikolaou‡‡, Maria Panitsa ‡ Division of Plant Biology, Department of Biology, University of Patras, Patras, Greece Corresponding author: Maria Panitsa ([email protected]) Academic editor: Gianniantonio Domina Received: 22 Nov 2019 | Accepted: 07 Jan 2020 | Published: 15 Jan 2020 Citation: Papanikolaou A, Panitsa M (2020) Plant species richness and composition of a habitat island within Lake Kastoria and comparison with those of a true island within the protected Pamvotis lake (NW Greece). Biodiversity Data Journal 8: e48704. https://doi.org/10.3897/BDJ.8.e48704 Abstract Lake Kastoria is one of the potentially “ancient” Balkan lakes that has a great environmental importance and ecological value, attracts high touristic interest and is under various anthropogenic pressures. It belongs to a Natura 2000 Special Protection Area and a Site of Community Interest. The city of Kastoria is located at the western part of the lake and just next to it, towards the centre of the lake, is a peninsula, a habitat island. In the framework of research concerning the flora of lake islands of Greece, one of the main objectives of the present study is to fill a gap concerning plant species richness of the habitat island within the protected Lake Kastoria, which is surrounded by the lake except for its north-western part where the border of the city of Kastoria is located.
    [Show full text]
  • Seed Germination and Seedling Establishment of Some Wild Almond Species
    African Journal of Biotechnology Vol. 10(40), pp. 7780-7786, 1 August, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1064 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Seed germination and seedling establishment of some wild almond species Alireza Rahemi 1* , Toktam Taghavi 2, Reza Fatahi 2, Ali Ebadi 2, Darab Hassani 3, José Chaparro 4 and Thomas Gradziel 5 1Department of Horticultural Science, Azad University (Science and Research Branch), Tehran, Iran. 2Department of Horticultural Science, University of Tehran, Karaj, Iran. 3Department of Horticulture, Seed and Plant Improvement Institute, Karaj, Iran. 4Department of Horticultural Science, University of Florida, Gainesville, USA. 5 Department of Plant Sciences, University of California, Davis. USA. Accepted 20 January, 2011 Wild almond species are important genetic resources for resistance to unsuitable condition, especially drought stress. They have been used traditionally as rootstocks in some areas of Iran. So far, 21 wild almond species and 7 inter species hybrids have been identified in Iran. To study seed germination and seedling establishment of some of these species, three separate experiments were designed. In the first experiment, the application of gibberellic acid (GA3) (0, 250, 500 and 750 ppm) for 24 h was studied on germination characteristics of four wild almond accessions after stratification at 5 ± 0.5°C in Perlite media. Germination percentage, index vigor and root initiation factors were different in almond accessions, but were not affected by hormonal treatments. In the second experiment, seeds of another six wild almond accessions were stratified to compare their germination ability. Germination percentage, index vigor and root initiation were different among accessions significantly.
    [Show full text]
  • Gene Flow in Prunus Species in the Context of Novel Trait Risk Assessment
    Environ. Biosafety Res. 9 (2010) 75–85 Available online at: c ISBR, EDP Sciences, 2011 www.ebr-journal.org DOI: 10.1051/ebr/2010011 Gene flow in Prunus species in the context of novel trait risk assessment S. Zahra H. Cici* and Rene C. Van Acker1 Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G2W1, Canada Prunus species are important commercial fruit (plums, apricot, peach and cherries), nut (almond) and orna- mental trees cultivated broadly worldwide. This review compiles information from available literature on Prunus species in regard to gene flow and hybridization within this complex of species. The review serves as a resource for environmental risk assessment related to pollen mediated gene flow and the release of transgenic Prunus. It reveals that Prunus species, especially plums and cherries show high potential for transgene flow. A range of characteristics including; genetic diversity, genetic bridging capacity, inter- and intra-specific genetic compat- ibility, self sterility (in most species), high frequency of open pollination, insect assisted pollination, perennial nature, complex phenotypic architecture (canopy height, heterogeneous crown, number of flowers produced in an individual plant), tendency to escape from cultivation, and the existence of ornamental and road side Prunus species suggest that there is a tremendous and complicated ability for pollen mediated gene movement among Prunus species. Ploidy differences among Prunus species do not necessarily provide genetic segregation. The characteristics of Prunus species highlight the complexity of maintaining coexistence between GM and non-GM Prunus if there were commercial production of GM Prunus species. The results of this review suggest that the commercialization of one GM Prunus species can create coexistence issues for commercial non-GM Prunus production.
    [Show full text]
  • Distribution of Woody Rosaceae in W. Asia XIII. Amygdalus Webbii Spach
    ARBORETUM KÓRNICKIE Rocznik XIX — 1974 Kazimierz Browicz Distribution of Woody Rosaceae in W. Asia ХШ Amygdalus webbii Spach and closely related species The closely related group of almonds discussed below represents a group of species characterized by more or less thorny shoots (exception A. browiczii) and growth in the form of erect shrubs or small trees. They are frequently considered to be the original forms for A. communis, which numerous authors judge as being only a cultivated species. Howe­ ver this wiev is hard to accept in sipite of the fact that the true origin of A. communis is today difficult to determine. It seems however that it grows wild in southern Turkmenia in the Kopet-Dagh Mts., in major part of Turkey (particularity eastern), in western Iran, in western Syria, in Lebanon, in Israel and in western Jordan as well as possibly in southern Caucasus. It is striking that the ranges of the five species discussed here are separated from each other by frequently considerable distances yet they are all united through the range of A. communis. Thus at the wes­ tern extremity of A. communis range there falls the range of A. webbii, at the southern the range of A. korshinskyi, at the northern the range of A. fenzliana and at the eastern the range of A. haussknechtii and A. bro­ wiczii. 1. AMYGDALUS WEBBII SPACH Spach, Ann. Sci. Nat. Paris, 2 ser. 19 :117 (1843) Syn.: A. salicifolia Boiss. et Bal., in Boiss. Diagn. ser. 2 (6): 71 (1859). A. webbii Spach var. salicifolia (Boiss. et Bal.) Boiss., Fl.
    [Show full text]
  • WO 2016/016826 Al 4 February 2016 (04.02.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/016826 Al 4 February 2016 (04.02.2016) P O P C T (51) International Patent Classification: (74) Agent: xyAJ PARK; Level 22, State Insurance Tower, 1 A01H 1/06 (2006.01) C12N 15/61 (2006.01) Willis Street, Wellington (NZ). C12N 15/29 (2006.01) A01H 5/08 (2006.01) (81) Designated States (unless otherwise indicated, for every C12N 15/113 (2010.01) kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/IB2015/055743 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 30 July 2015 (30.07.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (25) Filing Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (30) Priority Data: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 6282 14 1 August 2014 (01.08.2014) NZ (84) Designated States (unless otherwise indicated, for every (72) Inventors; and kind of regional protection available): ARIPO (BW, GH, (71) Applicants : DARE, Andrew Patrick [NZ/NZ]; 40 Jef GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, ferson Street, Glendowie, Auckland, 1071 (NZ).
    [Show full text]
  • Agromorphological Characterization and Nutritional Value of Traditional Almond Cultivars Grown in the Central-Western Iberian Peninsula
    agronomy Article Agromorphological Characterization and Nutritional Value of Traditional Almond Cultivars Grown in the Central-Western Iberian Peninsula Rodrigo Pérez-Sánchez * and María Remedios Morales-Corts Faculty of Agricultural and Environmental Sciences, University of Salamanca, Avda. Filiberto Villalobos, 119, 37007 Salamanca, Spain; [email protected] * Correspondence: [email protected] Abstract: In this study, 24 traditional almond cultivars grown in the central-western Iberian Peninsula, all of them clearly in decline or close to extinction, were characterized from the agromorphological and chemical points of view. A total of 40 agromorphological and chemical descriptors, mainly defined by the IPGRI and the UPOV, were used to describe the flowers, leaves, fruits and the trees themselves over three consecutive years (2015–2017). Some of the cultivars showed distinctive and interesting agronomical characteristics from a commercial point of view, such as high yields and high quality fruit. This was the case of the almond cultivars called “Gorda José” and “Marcelina”. Their fruits were quite heavy (nuts: >9.1 g; kernels: >1.9 g), with very low percentages of double kernels (<3%) and high nutritional value (>50% lipids; >21% proteins). The results of the PCA and cluster Citation: Pérez-Sánchez, R.; analysis showed that agromorphological and chemical analysis can provide reliable information on Morales-Corts, M.R. the variability in almond genotypes. This work constitutes an important step in the conservation of Agromorphological Characterization genetic almond resources in the central-western Iberian Peninsula. and Nutritional Value of Traditional Almond Cultivars Grown in the Keywords: almond descriptors; conservation; endangered cultivars; fruit quality; genetic resources; Central-Western Iberian Peninsula.
    [Show full text]
  • The Threatened and Rare Plant Species of the Lake Shkodra – Delta Buna Hydrological System
    The Threatened and Rare Plant Species of the Lake Shkodra – Delta Buna Hydrological System Marash Rakaj1, Lefter Kashta 1Department of Biology, University of Shkodra “Luigj Gurakuqi”, Sheshi “2 Prilli" Shkoder, Albania ABSTRACT The wetland ecosystem of Lake Shkodra - Buna Delta constitutes a habitat complex favorable for the development of high floristic diversity. Different ecological forms of plants are identified in that region, such as hydrophytes, hygrophytes, helophytes, halophytes, geophytes, psamo-halophytes and psamophytes etc. Based on number of threatened species, richness flora and threatened habitats both sites, Lake Shkodra and Buna Delta in Albanian IPAs (Important Plant Areas) were included. The flora of this region is characterised by a high number of threatened and rare species as well as isolated endemic species. Three globally and European threatened species (Trapa natans, Marsilea quadrifolia and Caldesia parnassifolia) and eight Balkan or local endemic species are evidenced. In the recent Red List of Albanian Flora of 360 species, 128 of them from Shkodra district are included, important number of them belongs to the wetland ecosystem of the Lake Shkodra – Delta Buna. In this paper a list of 31 threatened, rare and endemic plant species (18 hydrophytes and hygrophytes, 5 geophytes, 6 trees and shrubs and 2 psamophytes), as well their distribution and status according to IUCN categories are given. Three species belong to ferns and 28 belong to Angiosperms. The species distribution was mapped on 10 x 10 sq. km and shown in a UTM grid system. Keyword: Lake Shkodra, Delta Buna, threatened species, rare species, hydrophytes and wetland. Introduction The wetland ecosystems of the Lake Shkodra and Delta Buna represent one of important centers of geodiversity and biodiversity for Western Balkan and South-East Europe.
    [Show full text]
  • ΔΑΣΙΚΗ ΒΟΤΑΝΙΚΗ Ranunculaceae
    ΔΑΣΙΚΗ ULMACEAE – RANUNCULACEAE – ΒΟΤΑΝΙΚΗ LAURACEAE – PLATANACEAE – ROSACEAE Kώστας Βιδάκης Kώστας Βιδάκης Γεώργιος Κοράκης Kώστας Βιδάκης Ulmaceae ΔΑΣΙΚΗ ΒΟΤΑΝΙΚΗ Kώστας Βιδάκης Φύλλα εναλλασσόμενα, δίσειρα, απλά, πριονωτά μέχρι οδοντωτά, συχνά με ασύμμετρη βάση. Τα παράφυλλα πέφτουν νωρίς. Άνθη μονογενή ή διγενή, μικρά, σε δέσμες ή μεμονωμένα, μασχαλιαία. Περιάνθιο με 4-8 σεπαλοειδή Kώστας Βιδάκης πέταλα (τέπαλα) τα οποία συνήθως συμφύονται. Οι στήμονες είναι Η οικογένεια περιλαμβάνει 8 γένη και 61 ισάριθμοι, όρθιοι, ελεύθεροι ή είδη φυλλοβόλων ή αειθαλών, μόνοικων ή συμφυείς προς τα κάτω. Η ωοθήκη πολύγαμων δέντρων και θάμνων. αποτελείται από δύο συμφυή Για τις ανάγκες του μαθήματος, καρπόφυλλα, συνήθως μονόχωρη ακολουθώντας το Vascular Plants of με μία σπερμοβλάστη, σπάνια Greece, το γένος Celtis θα εξεταστεί ως δίχωρη με 2 σπερμοβλάστες. γένος συμπεριλαμβανόμενο στην Καρπός πτερυγιοφόρο κάρυο, Kώστας Βιδάκης οικογένεια Ulmaceae. δρύπη ή δρυπόμορφος. Ulmaceae Τρία (3) από τα οκτώ (+1) γένη της οικογένειας εξαπλώνονται και στην Ελλάδα. Στο εργαστηριακό μάθημα θα εξετάσουμε 4 αυτόχθονα είδη δύο γενών (Ulmus- Celtis). 1 Φύλλα πτερόνευρα από τη βάση 2 Καρπός πτερυγιοφόρο κάρυο. Φύλλα συνήθως διπλά πριονωτά. ULMUS 2 Καρπός δρυπόμορφος, μικρός, με μικρό ποδίσκο. Φύλλα απλά πριονωτά ή οδοντωτά. ZELKOVA 1 Φύλλα τρίνευρα στη βάση. CELTIS Kώστας Βιδάκης ULMUS Kώστας Βιδάκης CELTIS ZELKOVA https://en.wikipedia.org/wiki/Zelkova_abelicea#/media/File:Zelk ova_abelicia.jpg Kώστας Βιδάκης ULMUS Kώστας Βιδάκης CELTIS Ulmaceae ULMUS Φτελιά Πτερυγιοφόρο κάρυο χωρίς 1 βλεφαρίδες, σχεδόν απόδισκο. 2 Λέπια οφθαλμών ομοιόχρωμα. Πτερυγιοφόρο κάρυο εμφανώς βλεφαριδωτό, με μακρύ ποδίσκο. Λέπια οφθαλμών Ulmus 1 δίχρωμα, εμφανώς laevis σκοτεινότερα στο πάνω μέρος. Φύλλα με 12-19 ζεύγη νεύρων. Ο μίσχος λίγο-πολύ καλύπτεται από την ωτοειδή βάση της Ulmus 2 μεγαλύτερης πλευράς του glabra ελάσματος.
    [Show full text]
  • Relationships Among Peach, Almond, and Related Species As Detected by Simple Sequence Repeat Markers
    J. AMER. SOC. HORT. SCI. 128(5):667–671. 2003. Relationships among Peach, Almond, and Related Species as Detected by Simple Sequence Repeat Markers P. Martínez-Gómez, S. Arulsekar, D. Potter, and T.M. Gradziel1 Department of Pomology, University of California, Davis, CA 95616 ADDITIONAL INDEX WORDS. Prunus spp., cluster analysis, phylogenetic relations, breeding ABSTRACT. The genetic relationships among peach [Prunus persica (L.) Batsch], almond [P. dulcis (Mill.) D.A. Webb or P. amygdalus (L.) Batsch] and 10 related Prunus species within the subgenus Amygdalus were investigated using simple sequence repeat (SSR) markers. P. glandulosa Pall. was included as an outgroup. Polymorphic alleles were scored as present or absent for each accession. The number of alleles revealed by the SSR analysis in peach and almond cultivars ranged from one to three whereas related Prunus species showed a range of one to 10 alleles. Results demonstrated an extensive genetic variability within this readily intercrossed germplasm as well as the value of SSR markers developed in one species of Prunus for the characterization of related species. Mean character difference distances were calculated for all pairwise comparisons and were used to construct an unrooted dendogram depicting the phenetic relationships among species. Four main groups were distinguished. Peach cultivars clustered with accessions of P. davidiana (Carr.) Franch. and P. mira Koehne. The second group contained almond cultivars. A third group included accessions of P. argentea (Lam) Rehd., P. bucharica Korschinsky, P. kuramica Korschinsky, P. pedunculata Pall, P. petunikowii Lits., P. tangutica (Spach) Batal., and P. webbii (Spach) Vieh.. P. glandulosa and P. scoparia Batal.
    [Show full text]
  • 1 Taxonomy, Botany and Physiology
    1 Taxonomy, Botany and Physiology Rafel Socias i Company*, José M. Ansón and María T. Espiau Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain 1.1 Almond Taxonomy almond (Amygdalus), peach (Persica), cherry (Cerasus), apricot (Armeniaca) and plum (Prunus Almond belongs to the genus Prunus, which in- sensu stricto). This division seems excessive, par- cludes all stone fruits, and belongs to the Rosace- ticularly if the possibilities of hybridization ae family. Almond is a diploid species with n = 8 among different stone fruit species are con- (Darlington, 1930), the basic ploidy number of sidered. At present, most of these groups are con- Prunus. In contrast to the other species of this sidered subgenera of the genus Prunus, a single genus, whose commercial interest lies in their genus including all the stone fruit tree species, as juicy flesh or mesocarp, almond is the only Prunus the genus Prunus sensu lato. species grown for its seeds, whereas the corky According to Linnaeus’ criteria, under mesocarp is only utilized in animal feeding which the taxa well known to him were exces- (Aguilar et al., 1984) or as a manure (Alonso sively subdivided, almond was designated as et al., 2012). Thus, almond is often classified Amygdalus communis L. (1753, Sp. Pl. 1: 473). more as a nut than as a stone fruit, despite its This same denomination was also adopted by very close genetic similarities with the other A.A. von Bunge as A. communis Bunge (1833, stone fruits, and mainly with peach. Enum. Pl. Chin. Bor. 21), although this name is The botanical name of almond has been a invalid because it is recurrent.
    [Show full text]