Phoretic Mites and Nematode Associates of Scolytus Multistriatus and Scolytus Pygmaeus (Coleoptera: Scolytidae) in Austria

Total Page:16

File Type:pdf, Size:1020Kb

Phoretic Mites and Nematode Associates of Scolytus Multistriatus and Scolytus Pygmaeus (Coleoptera: Scolytidae) in Austria Agricultural and Forest Entomology (2005) 7, 169–177 Phoretic mites and nematode associates of Scolytus multistriatus and Scolytus pygmaeus (Coleoptera: Scolytidae) in Austria John C. Moser, Heino Konrad*, Thomas Kirisits* and Lynn K. Carta† USDA Forest Service, Southern Research Station, 2500 Shreveport Highway, Pineville, LA 71360, U.S.A., *Institute of Forest Entomology, Forest Pathology, and Forest Protection (IFFF), Department of Forest and Soil Sciences, BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Hasenauerstrasse 38, A-1190 Vienna, Austria and yUSDA-ARS, Nematology Laboratory, Beltsville, MD 20705, U.S.A. Abstract 1 The species assemblages and abundance of phoretic mites and nematodes associated with the elm bark beetles, Scolytus multistriatus and Scolytus pygmaeus, were studied in Austria. 2 A total of 3922 individual mites were recorded from 144 adults of S. multi- striatus and 178 adults of S. pygmaeus. The species spectrum was identical and the relative abundance of mites was very similar for both species of scolytids. Nine mite species, Pyemotes scolyti, Pseudotarsonemoides eccoptogasteri, Trichouropoda bipilis, Tarsonemus crassus, Proctolaelaps eccoptogasteris, Proctolaelaps scolyti, Chelacheles michalskii,nr.Eueremaeussp. and Elattoma sp. were detected. Two of the nine species, nr. Eueremaeus sp. and Elattoma sp., are documented here as new associates of Scolytus spp. 3 Pyemotes scolyti was the most frequent mite species, and Ps. eccoptogasteri and T. bipilis were relatively common, whereas the other mites occurred occasion- ally or were rare. 4 The trophic roles of most of the mites associated with S. multistriatus and S. pygmaeus are poorly known, but they may include fungivores, parasitoids of bark beetle broods, predators of bark beetle broods and/or mites and/or nematodes. 5 Besides phoretic mites, two nematode associates were seen on the investigated insects. A species of Cryptaphelenchus occurred under the elytra of both scolytid species, whereas the adults of a Neoparasitylenchus sp. were present inside abdomens of S. multistriatus, but absent from S. pygmaeus. Keywords Dutch elm disease, elm, nematode, Ophiostoma novo-ulmi, phoresy, Scolytidae, mite, Scolytus multistriatus, Scolytus pygmaeus, Ulmus minor. Introduction and ssp. novo-ulmi Brasier) of Ophiostoma novo-ulmi Brasier and hybrids between them (Brasier, 1991, 2000; Subsequent to the appearance of Dutch elm disease (DED) Brasier & Kirk, 2001; Konrad et al., 2002). Ophiostoma at the beginning of the 20th century, the elms (Ulmus spp.) ulmi and O. novo-ulmi are amongst the best known exam- in Europe, North America and parts of Asia have been ples of tree pathogens that are vectored by insects, in this seriously affected by this destructive vascular wilt disease particular case by elm bark beetles in the genus Scolytus that is caused by two closely related species of Ophiostoma Geoffroy and in North America also by Hylurgopinus (Ascomycota). Although the first wave of DED was caused rufipes (Eichhoff) (Lanier & Peacock, 1981; Webber & by Ophiostoma ulmi (Buism.) Nannf., the second and still Brasier, 1984; Webber & Gibbs, 1989; Webber, 1990, 2000). ongoing pandemic from the 1940s onwards has been trig- Scolytus multistriatus (Marsham) and Scolytus pygmaeus gered by the two subspecies (ssp. americana Brasier & Kirk (Fabricius) are among the guild of eight Scolytus species infesting elm trees in Europe (Pfeffer, 1995). In the 20th century, S. multistriatus has also been introduced and Correspondence: John C. Moser. Tel.: þ1 318 4737258; fax: established in North America (Lanier & Peacock, 1981), þ1 318 4737222; e-mail: [email protected] Australia (Lanier & Peacock, 1981) and New Zealand # 2005 The Royal Entomological Society 170 J. C. Moser et al. (Gadgil et al., 2000). Both Scolytus species are regarded as during their saprotrophic phase in and around bark beetle secondary bark beetles that breed in stressed elm trees, elm galleries in the bark of elm trees, thereby promoting sexual logs and branches (Postner, 1974). The most important reproduction and recombination (Brasier, 1978). impact of S. multistriatus and S. pygmaeus is related to As an initial step in the study of the trophic relationships their role as vectors of the DED pathogens from diseased between Scolytus spp., phoretic mites, O. novo-ulmi and to healthy trees during maturation feeding on the bark of their elm hosts, we present the first comprehensive list of twigs and in twig crotches in the crown of healthy elm trees mites phoretic on S. multistriatus and S. pygmaeus attack- (Lanier & Peacock, 1981; Webber & Brasier, 1984; Webber ing Ulmus spp. and provide data on their relative phoretic & Gibbs, 1989; Webber, 1990, 2000; Basset et al., 1992; abundance on S. multistriatus and S. pygmaeus. In add- Faccoli & Battisti, 1997). Scolytus species do not possess a ition, we report on two nematode associates of the two mycangium and, instead, transmit ascospores and conidia Scolytus species found on elm in Austria. of Ophiostoma novo-ulmi on their body surface (Lanier & Peacock, 1981; Webber & Brasier, 1984; Webber & Gibbs, 1989). Considering the importance of Scolytus spp. in the Materials and methods transmission of the DED pathogens, control measures On 17 May 2002, five stem sections, each approximately against the insects form an essential part of integrated man- 120 cm in length and 20 cm in diameter, were cut from a agement strategies against Dutch elm disease (Campana & European field elm, Ulmus minor Mill., near Gu¨ssing, Stipes, 1981; Gadgil et al., 2000). Burgenland, Austria, at 300 m a.s.l. This tree had been Eight species of phoretic mites, Chelacheles michalskii declining due to DED, and was subsequently attacked by Samsinak, Histiostoma ulmi Scheucher, Pseudotarsonemoides S. multistriatus and S. pygmaeus. Originally, we also eccoptogasteri Vitzthum, Proctolaelaps eccoptogasteris intended to include Scolytus scolytus Olivier for investiga- (Vitzthum), Pr. scolyti Evans, Pyemotes scolyti (Oudemans), tion of phoretic mites, but this scolytid had not infested the Tarsonemus crassus (Schaarschmidt), and Trichouropoda elm tree from which samples were collected. The stem sec- bipilis (Vitzthum) have been recorded in Europe phoretic on tions were placed in a laboratory rearing cage at S. multistriatus (Marsham) and/or S. pygmaeus (Fabricius), 20 Æ 1 C. Beetles emerged from 28 May to 30 June or from Scolytus galleries on Ulmus spp. (Vitzthum, 1920, 2002, and flew to the cage screens where they were collected 1921, 1923; Oudemans, 1936; Scheucher, 1957; Evans, 1958; on 10 dates, and placed in vials containing 70% alcohol. Schaarschmidt, 1959; Samsinak, 1962). Except for Pr. scolyti The two beetle species were separated and each placed in and Py. scolyti, a somewhat different guild of mite species separate vials, totalling 10 vials for each scolytid. The may be associated with S. multistriatus in North America. beetles were then transferred to lactophenol for clearing. Smiley & Moser (1974) described the following new Mites still attached to the beetles were tallied separately taxa: Heterotarsonemus milleri Smiley & Moser, Pseudo- from those that fell off the beetles into the lactophenol, tarsonemoides scolyti Smiley & Moser, Tarsonemus kennedyi and those that separated from the beetles as they were Smiley & Moser and Ununguitarsonemus peacocki Smiley & placed in alcohol after being picked off the cage screen Moser, all of which were either phoretic on the insects or (Tables 1 and 2). Voucher specimens (slides) of all mite found in galleries of S. multistriatus on Ulmus americana L. species detected in this study are maintained in the collec- To date, none of these four mites has been recorded in tions of the authors, and in other collections of mite tax- Europe where the insect is native. onomists mentioned in the acknowledgements. Although a great deal of literature has been devoted to Nematodes were fixed within the insects in 70% alcohol, the bark beetles attacking Ulmus and the pathogenic fungi transferred to lactophenol for clearing, mounted in Berlese that these beetles transmit, the literature is scant and frag- fluid (Humason, 1972) or glycerin, and measured with an mented concerning the mites known to be carried by these ocular micrometer. Specimens were viewed with differential scolytids. Except for Py. scolyti, little is known concerning interference optics, images were captured with Image- the biologies of the above mentioned mites, except for brief Pro PlusTM, version 4.1 (Silver Spring, Maryland), and accounts of their phoretic habits and/or gallery associa- images stitched together in Adobe Photo Shop, version tions. Studies on the phoretic mites of conifer bark beetles 7.0 (Adobe Systems Inc., San Jose, California). Nematode have revealed that these arthropods have a number of slides and beetles with aphelenchid nematodes in alcohol trophic roles in the insect galleries, including beetle para- were deposited in the USDA Nematode Collection, sitoids, insect and nematode predators, fungivores, and Nematology Laboratory, Beltsville, Maryland. omnivores (Kinn, 1983; Klepzig et al., 2001a, 2001b). Perhaps the most intriguing role that mites play on conifers is related to the transmission of tree pathogens, mycangial Results and discussion symbionts and fungal antagonists of bark beetles (Bridges & Moser, 1983; Moser et al., 1989b, 1995, 1997; Klepzig Phoretic mites and nematodes from Scolytus multi- et al., 2001a, 2001b). Although the mite
Recommended publications
  • Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus Rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba By
    Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba by Sunday Oghiakhe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Entomology University of Manitoba Winnipeg Copyright © 2014 Sunday Oghiakhe Abstract Hylurgopinus rufipes, the native elm bark beetle (NEBB), is the major vector of Dutch elm disease (DED) in Manitoba. Dissections of American elms (Ulmus americana), in the same year as DED symptoms appeared in them, showed that NEBB constructed brood galleries in which a generation completed development, and adult NEBB carrying DED spores would probably leave the newly-symptomatic trees. Rapid removal of freshly diseased trees, completed by mid-August, will prevent spore-bearing NEBB emergence, and is recommended. The relationship between presence of NEBB in stained branch sections and the total number of NEEB per tree could be the basis for methods to prioritize trees for rapid removal. Numbers and densities of overwintering NEBB in elm trees decreased with increasing height, with >70% of the population overwintering above ground doing so in the basal 15 cm. Substantial numbers of NEBB overwinter below the soil surface, and could be unaffected by basal spraying. Mark-recapture studies showed that frequency of spore bearing by overwintering beetles averaged 45% for the wild population and 2% for marked NEBB released from disease-free logs. Most NEBB overwintered close to their emergence site, but some traveled ≥4.8 km before wintering. Studies comparing efficacy of insecticides showed that chlorpyrifos gave 100% control of overwintering NEBB for two years as did bifenthrin: however, permethrin and carbaryl provided transient efficacy.
    [Show full text]
  • Bark Beetles
    Bark Beetles O & T Guide [O-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Although New Mexico bark beetle adults are In monogamous species such as the Douglas small, rarely exceeding 1/3 inch in length, they fir beetle, Dendroctonus pseudotsugae, the are very capable of killing even the largest female bores the initial gallery into the host host trees with a mass assault, girdling them or tree, releases pheromones attractive to her inoculating them with certain lethal pathogens. species and accepts one male as her mate. Some species routinely attack the trunks and major limbs of their host trees, other bark beetle species mine the twigs of their hosts, pruning and weakening trees and facilitating the attack of other tree pests. While many devastating species of bark beetles are associated with New Mexico conifers, other species favor broadleaf trees and can be equally damaging. Scientifically: Bark beetles belong to the insect order Coleoptera and the family Scolytidae. Adult “engraver beetle” in the genus Ips. The head is on the left; note the “scooped out” area Metamorphosis: Complete rimmed by short spines on the rear of the Mouth Parts: Chewing (larvae and adults) beetle, a common feature for members of this Pest Stages: Larvae and adults. genus. Photo: USDA Forest Service Archives, USDA Forest Service, www.forestryimages.org Typical Life Cycle: Adult bark beetles are strong fliers and are highly receptive to scents In polygamous species such as the pinyon bark produced by damaged or stressed host trees as beetle, Ips confusus, the male bores a short well as communication pheromones produced nuptial chamber into the host’s bark, releases by other members of their species.
    [Show full text]
  • Dutch Elm Disease Pathogen Transmission by the Banded Elm Bark Beetle Scolytus Schevyrewi
    For. Path. 43 (2013) 232–237 doi: 10.1111/efp.12023 © 2013 Blackwell Verlag GmbH Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi By W. R. Jacobi1,3, R. D. Koski1 and J. F. Negron2 1Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; 2U.S.D.A. Forest Service, Rocky Mountain Forest Research Station, Fort Collins, CO USA; 3E-mail: [email protected] (for correspondence) Summary Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophios- toma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus. The banded elm bark beetle, Scolytus schevyrewi, is an exotic Asian bark beetle that is now apparently the dominant elm bark beetle in the Rocky Mountain region of the USA. It is not known if S. schevyrewi will have an equivalent vector competence or if management recommendations need to be updated. Thus the study objectives were to: (i) determine the type and size of wounds made by adult S. schevyrewi on branches of Ulmus americana and (ii) determine if adult S. schevyrewi can transfer the pathogen to American elms during maturation feeding. To determine the DED vectoring capability of S. schevyrewi, newly emerged adults were infested with spores of Ophiostoma novo-ulmi and then placed with either in-vivo or in-vitro branches of American elm trees.
    [Show full text]
  • Leptographium Wageneri
    Leptographium wageneri back stain root disease Dutch elm disease and Scolytus multistriatus DED caused the death of millions of elms in Europe and North America from around 1920 through the present Dutch Elm Disease epidemics in North America Originally thought one species of Ophiostoma, O. ulmi with 3 different races Now two species are recognized, O. ulmi and O. novo-ulmi, and two subspecies of O. novo-ulmi Two nearly simultaneous introductions in North America and Europe 1920s O. ulmi introduced from Europe, spread throughout NA, but caused little damage to native elm trees either in NA or Europe 1950s, simultaneous introductions of O. novo-ulmi, Great Lakes area of US and Moldova-Ukraine area of Europe. North American and Europe subspecies are considered distinct. 1960 NA race introduced to Europe via Canada. By 1970s much damage to US/Canada elms killed throughout eastern and central USA O. novo-ulmi has gradually replaced O. ulmi in both North America and Europe more fit species replacing a less fit species O. novo-ulmi able to capture greater proportion of resource O. novo-ulmi probably more adapted to cooler climate than O. ulmi During replacement, O. ulmi and O. novo-ulmi occur in close proximity and can hybridize. Hybrids are not competitive, but may allow gene flow from O. ulmi to O. novo-ulmi by introgression: Backcrossing of hybrids of two plant populations to introduce new genes into a wild population Vegetative compatibility genes heterogenic incompatibility multiple loci prevents spread of cytoplasmic viruses O. novo-ulmi arrived as a single vc type, but rapidly acquired both new vc loci AND virus, probably from hybridizing with O.
    [Show full text]
  • Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles
    insects Article Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles (Coleoptera; Buprestidae and Scolytinae) and Associated Predators Giacomo Cavaletto 1,*, Massimo Faccoli 1, Lorenzo Marini 1 , Johannes Spaethe 2 , Gianluca Magnani 3 and Davide Rassati 1,* 1 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16–35020 Legnaro, Italy; [email protected] (M.F.); [email protected] (L.M.) 2 Department of Behavioral Physiology & Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; [email protected] 3 Via Gianfanti 6, 47521 Cesena, Italy; [email protected] * Correspondence: [email protected] (G.C.); [email protected] (D.R.); Tel.: +39-049-8272875 (G.C.); +39-049-8272803 (D.R.) Received: 9 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Simple Summary: Several wood-associated insects are inadvertently introduced every year within wood-packaging materials used in international trade. These insects can cause impressive economic and ecological damage in the invaded environment. Thus, several countries use traps baited with pheromones and plant volatiles at ports of entry and surrounding natural areas to intercept incoming exotic species soon after their arrival and thereby reduce the likelihood of their establishment. In this study, we investigated the performance of eight trap colors in attracting jewel beetles and bark and ambrosia beetles to test if the trap colors currently used in survey programs worldwide are the most efficient for trapping these potential forest pests. In addition, we tested whether trap colors can be exploited to minimize inadvertent removal of their natural enemies.
    [Show full text]
  • Published Version
    8 Damage to stems, branches and twigs of broadleaf woody plants M. Kacprzyk, I. Matsiakh, D.L. Musolin, A.V. Selikhovkin, Y.N. Baranchikov, D. Burokiene, T. Cech, V. Talgø, A.M. Vettraino, A. Vannini, A. Zambounis and S. Prospero 8.1. Root and stem rot Description: External, aboveground symptoms on individual trees are variable and may include suppressed growth, reduced vigour, discoloured or smaller than average-sized foliage, premature leaf shedding, branch dieback, crown thinning, bleeding lesions on the lower stem and root collar, wilting and eventual death of trees. It is common for root and butt rots to remain unnoticed until annual or perennial (conks) fruiting bodies appear on branches or the main trunk. Possible cause of damage: Oomycetes (water moulds: Figs. 8.1.1 – 8.1.3); Fungi: Basidiomycota (Figs. 8.1.4 – 8.1.7) and Ascomycota (Fig. 8.1.8). Fig. 8.1.1. Root collar of European beech Fig. 8.1.2. Stem of grey alder (Alnus (Fagus sylvatica) with a bleeding bark lesion incana) with bark lesion caused by an caused by an Oomycete (Phytophthora Oomycete (Phytophthora x alni). Tyrol, cambivora). Bavaria, Germany, TC. Austria, TC. ©CAB International 2017. Field Guide for the Identification of Damage on Woody Sentinel Plants (eds A. Roques, M. Cleary, I. Matsiakh and R. Eschen) Damage to stems, branches and twigs of broadleaf woody plants 105 Fig. 8.1.3. European chestnut (Castanea Fig. 8.1.4. Collar of European beech sativa) showing bark lesion caused by an (Fagus sylvatica) with fungal fruiting Oomycete (Phytophthora cinnamomi). bodies (Polyporus squamosus).
    [Show full text]
  • Elm Bark Beetles Native and Introduced Bark Beetles of Elm
    Elm Bark Beetles Native and introduced bark beetles of elm Name and Description—Native elm bark beetle—Hylurgopinus rufipes Eichhoff Smaller European elm bark beetle—Scolytus multistriatus (Marsham) Banded elm bark beetle—S. schevyrewi Semenov [Coleoptera: Curculionidae: Scolytinae] Three species of bark beetles are associated with elms in the United States: (1) the native elm bark beetle (fig. 1) occurs in Canada and south through the Lake States to Alabama and Mississippi, including Kansas and Nebraska; (2) the introduced smaller European elm bark beetle (fig.2) occurs through- out the United States; and (3) the introduced banded elm bark beetle (fig. 3) is common in western states and is spreading into states east of the Missis- sippi River. Both the smaller European elm bark beetle and the banded elm bark beetle were introduced into the United States from Europe and Asia, respectively. Hylurgopinus rufipes adults are approximately 1/12-1/10 inch (2.2-2.5 mm) long; Scolytus multistriatus adults are approximately 1/13-1/8 inch (1.9-3.1 mm) long; and S. schevyrewi adults are approximately 1/8-1/6 inch (3-4 mm) long. The larvae are white, legless grubs. Hosts—Hosts for the native elm bark beetle include the various native elm Figure 1. Native elm bark beetle. Photo: J.R. species in the United States and Canada, while the introduced elm bark Baker and S.B. Bambara, North Carolina State University, Bugwood.org. beetles also infest introduced species of elms, such as English, Japanese, and Siberian elms. American elm is the primary host tree for the native elm bark beetle.
    [Show full text]
  • Vectors of Dutch Elm Disease in Northern Europe
    insects Article Vectors of Dutch Elm Disease in Northern Europe Liina Jürisoo 1,*, Ilmar Süda 2, Ahto Agan 1 and Rein Drenkhan 1 1 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, 51006 Tartu, Estonia; [email protected] (A.A.); [email protected] (R.D.) 2 Ilmar Süda FIE, Rõõmu tee 12-5, 50705 Tartu, Estonia; [email protected] * Correspondence: [email protected] Simple Summary: Dutch elm disease (DED) has been killing elms for more than a century in northern Europe; the trees’ health status has worsened substantially in recent decades. Elm bark beetles Scolytus spp. are vectors of DED. Our aim was to estimate the distribution range of elm bark beetles and to detect potential new vectors of DED agents in northern Europe. Beetles were caught with bottle traps and manually. Then DNA from each specimen was extracted and analysed by the third generation sequencing method. DED agents were detected on the following bark beetles for Europe: Scolytus scolytus,S. triarmatus, S. multistriatus, S. laevis, and on new vectors: Xyleborus dispar and Xyleborinus saxesenii. The spread of Scolytus triarmatus, S. multistriatus and Xyleborinus saxesenii has been remarkable for the last two decades, and S. triarmatus and X. saxesenii are relatively recent newcomers in the northern Baltics. The problem is that the more vectoring beetles there are, the faster spread of Dutch elm disease from tree to tree. Abstract: Potential Dutch elm disease vector beetle species were caught with pheromone bottle traps and handpicked in 2019: in total, seven species and 261 specimens were collected.
    [Show full text]
  • Great Basin Naturalist Memoirs Volume 11 a Catalog of Scolytidae and Platypodidae Article 5 (Coleoptera), Part 1: Bibliography
    Great Basin Naturalist Memoirs Volume 11 A Catalog of Scolytidae and Platypodidae Article 5 (Coleoptera), Part 1: Bibliography 1-1-1987 I–L Stephen L. Wood Life Science Museum and Department of Zoology, Brigham Young University, Provo, Utah 84602 Donald E. Bright Jr. Biosystematics Research Centre, Canada Department of Agriculture, Ottawa, Ontario, Canada 51A 0C6 Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Wood, Stephen L. and Bright, Donald E. Jr. (1987) "I–L," Great Basin Naturalist Memoirs: Vol. 11 , Article 5. Available at: https://scholarsarchive.byu.edu/gbnm/vol11/iss1/5 This Chapter is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. 280 Great Basin Naturalist Memoirs No. 11 lABLOKOFF, ARHl'R KHINDZOHIAN. 1953. Les plantations in stem pests nidus]. Lesovedenie 1975(6):27—36. de pin sylvestre et la migration des xylophages. (ec). Revue Forestiere Francaise 5(5):321-327. (ee ds). Ifju. G . P C Ferguson, and R. G Oderwald. 1977. IabloKOFF-KhnzoRIAN. S. M. 1961. Experiments in es- Pulping and papermaking properties of southern tablishing the genesis of the larva of Coleoptera of pine harvested from beetle-infested forests. Pages Armenia [In Russian]. Akademiia Nauk Armian- 164-176. TAPPI Forest Biology and Wood Chem- skoi SSR, Zoologicheski Institut. 266 p.
    [Show full text]
  • Dutch Elm Disease and Its Control
    Oklahoma Cooperative Extension Service EPP-7602 Dutch Elm Disease and Its Control Eric Rebek Oklahoma Cooperative Extension Fact Sheets Associate Professor/State Extension Specialist are also available on our website at: Horticultural Entomology http://osufacts.okstate.edu Jennifer Olson Assistant Extension Specialist/Plant Disease Diagnostician Plant Disease and Insect Diagnostic Laboratory Fungal Transmission by Beetles Dutch elm disease (DED) is one of the most destructive In the U.S., the fungus can be spread from infected to healthy shade tree diseases in North America and has become one of elms by several species of elm bark beetle: smaller European the most widely known and destructive tree diseases in the world. elm bark beetle, Scolytus multistriatus; banded elm bark beetle, All species of elms native to North America are susceptible to Scolytus schevyrewi; and the native elm bark beetle, Hylurgopi- DED, but it is most damaging to American elm, Ulmus americana. nus rufipes (Figures 4 to 6). Smaller European elm bark beetle American elm was one of the most widely planted shade trees is the original and primary vector of Ophiostoma species, and in the United States due to its unique vase-shaped growth form until recently it has been the only significant vector throughout and its hardiness under a wide range of conditions. most of its range. In the extreme northern edge of its range Dutch elm disease was first described in the Netherlands (i.e., upper Midwest), the native elm bark beetle is an important in 1919. The disease spread rapidly in Europe and by 1934 was vector, although not nearly as efficient as the smaller European found in most European countries.
    [Show full text]
  • Research on Dutch Elm Disease in Europe
    Forestry Commission ARCHIVE Cover Summary of the known positions of the Eurasian (EAN) and North American (NAN) races of the aggressive strain of Ceratocystis ulmi in Europe in 1981. Green, EAN race; red, NAN race. Based on identifications of the fungus in artificial culture from isolations made from over one thousand samples collected by Dr. C. M. Brasier (see pp. 96-104). The distribution of the non-aggressive strain of C. ulm iis not shown. FORESTRY COMMISSION BULLETIN No. 60 Research on Dutch elm disease in Europe PROCEEDINGS OF THE EUROPEAN ECONOMIC COMMUNITY RESEARCH SEMINAR, GUERNSEY, CHANNEL ISLANDS, 30th MARCH — 1st APRIL 1982 Edited by D. A. BURDEKIN, B.A., Dip. Ag. Sci., Chief Research Officer, Forestry Commission, Forest Research Station, Alice Holt Lodge, Wrecclesham, Farnham, Surrey, GU10 4LH, U.K. LONDON : HER MAJESTY’S STATIONERY OFFICE © Crown copyright 1983 First published 1983 ISBN 0 11 710153 2 Contents ruge INTRODUCTION D. A. Burdekin V DUTCH ELM DISEASE CONTROL 1. Dutch elm disease control campaign in Guernsey, G. F. Riley 1 Channel Islands, 1976-1981 2. Dutch elm disease control campaign in Jersey, G. Journeaux 5 Channel Islands, 1974-1982 3. Control of Dutch elm disease in Britain B. J. W. Greig and J. N. Gibbs 10 4. Dutch elm disease control in the Netherlands J. K. Water 17 5. Dutch elm disease in Denmark A. Yde-Andersen 19 6. Evaluation of the trap tree technique for the control D. P. O’Callaghan and 23 of Dutch elm disease in northwest England C. P. Fairhurst ENTOMOLOGICAL ASPECTS OF DUTCH ELM DISEASE 7.
    [Show full text]
  • An Account of Research Being Done in ITE. Cambridge, NERC/Institute of Terrestrial Ecology, 116-117
    Chapter (non-refereed) Yates, M.G.. 1981 The subcortical fauna of oak: scolytid beetles as potential vectors of oak wilt disease. In: Last, F.T.; Gardiner, A.S., (eds.) Forest and woodland ecology: an account of research being done in ITE. Cambridge, NERC/Institute of Terrestrial Ecology, 116-117. (ITE Symposium, 8). Copyright © 1981 NERC This version available at http://nora.nerc.ac.uk/7060/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is extracted from the publisher’s version of the volume. If you wish to cite this item please use the reference above or cite the NORA entry Contact CEH NORA team at [email protected] 116 26. THE SUBCORTICAL FAUNA OF OAK; dead oaks, and there is little reason to doubt that SCOLYTID BEETLES AS POTENTIAL wilt-killed oaks will provide breeding sites. Branches VECTORS OF OAK WI LT DISEASE cut from healthy oaks (Quercus robur) and logged during coppicing operations in Monks Wood M.G. YATES during spring 1977 proved to be suitable breeding sites for S. intricatus which infested the logs during summer 1977 and produced a new generation By now, the havoc wrought by Dutch elm disease, of adult beetles in the following June. Other caused by the fungus Ceratocystis ulmi, is obvious oak logs, cut in February 1978, were infested to us all.
    [Show full text]