Research on Dutch Elm Disease in Europe

Total Page:16

File Type:pdf, Size:1020Kb

Research on Dutch Elm Disease in Europe Forestry Commission ARCHIVE Cover Summary of the known positions of the Eurasian (EAN) and North American (NAN) races of the aggressive strain of Ceratocystis ulmi in Europe in 1981. Green, EAN race; red, NAN race. Based on identifications of the fungus in artificial culture from isolations made from over one thousand samples collected by Dr. C. M. Brasier (see pp. 96-104). The distribution of the non-aggressive strain of C. ulm iis not shown. FORESTRY COMMISSION BULLETIN No. 60 Research on Dutch elm disease in Europe PROCEEDINGS OF THE EUROPEAN ECONOMIC COMMUNITY RESEARCH SEMINAR, GUERNSEY, CHANNEL ISLANDS, 30th MARCH — 1st APRIL 1982 Edited by D. A. BURDEKIN, B.A., Dip. Ag. Sci., Chief Research Officer, Forestry Commission, Forest Research Station, Alice Holt Lodge, Wrecclesham, Farnham, Surrey, GU10 4LH, U.K. LONDON : HER MAJESTY’S STATIONERY OFFICE © Crown copyright 1983 First published 1983 ISBN 0 11 710153 2 Contents ruge INTRODUCTION D. A. Burdekin V DUTCH ELM DISEASE CONTROL 1. Dutch elm disease control campaign in Guernsey, G. F. Riley 1 Channel Islands, 1976-1981 2. Dutch elm disease control campaign in Jersey, G. Journeaux 5 Channel Islands, 1974-1982 3. Control of Dutch elm disease in Britain B. J. W. Greig and J. N. Gibbs 10 4. Dutch elm disease control in the Netherlands J. K. Water 17 5. Dutch elm disease in Denmark A. Yde-Andersen 19 6. Evaluation of the trap tree technique for the control D. P. O’Callaghan and 23 of Dutch elm disease in northwest England C. P. Fairhurst ENTOMOLOGICAL ASPECTS OF DUTCH ELM DISEASE 7. The ecology of elm bark beetles in northern S. G. Kirby and C. P. Fairhurst 29 Britain 8. The effect of climatic factors on the dispersal C. P. Fairhurst and C. J. King 40 of elm bark beetles 9. Host feeding preference ofScolytus scolytus J. F. Webber and S. G. Kirby 47 10. Scolytid pheromone research in West Germany D. Klimetzek and H.-P. Kopp 50 11. Biochemical investigations related to Dutch J. F. Grove 59 elm disease carried out at the Agricultural Research Council Unit of Invertebrate Chemistry and Physiology, University of Sussex, 1973-1982 12. Trap design and experimental layout in C. J. King and N. J. Fielding 67 pheromone research in Britain iii MYCOLOGICAL ASPECTS OF DUTCH ELM DISEASE 13. Pseudomonas fluorescens and Ceratocystis ulmi A. Yde-Andersen 72 in wych elm 14. Biological control of Dutch elm disease by R. J. Scheffer 75 Pseudomonas species 15. Host-parasite interactions in Dutch elm disease D. M. Elgersma 78 16. Toxins in Dutch elm disease R. J. Scheffer 82 17. Studies onCeratocystis ulmi in Belgium M. Meulemans and 86 C. Parmentier RESISTANCE TO DUTCH ELM DISEASE 18. The future of Dutch elm disease in Europe C. M. Brasier 96 19. Dutch elm disease in Italy L. Mittempergher 105 20. Resistant elms for Europe H. M. Heybroek 108 Introduction D. A. BURDEKIN Forest Research Station, Alice Holt Lodge, Wrecclesham, Farnham, Surrey, GU10 4LH, U.K. Dutch elm disease is one of the most important tree scientists involved in research on Dutch elm disease diseases that has been found in the northern hemi­ where research results and control methods could sphere. It was first recognised in 1919 in Picardy in be freely discussed. A series of remarkably successful France and during the following two decades it meetings have been held since that time in Britain, became epidemic throughout Europe and North Holland, Germany and the Channel Island of America. It was called ‘Dutch’ elm disease as a Guernsey. The papers in this Bulletin are those tribute to the intensive research programme under­ presented at the 1982 meeting held in Guernsey and taken by Dutch scientists at that time. It was soon they represent a unique collection of papers on many established that the disease was caused by a fungus, aspects of this complex problem. Ceratocystis ulmi, and was transmitted from diseased In addition to providing support for the co­ to healthy elms by the elm bark beetles Scolytus ordination of research programmes in Europe, the scolytus an d Scolytus multistriatus. It is perhaps EEC has also made a very important contribution interesting to note that there is still some argument to the European research programme. Funds were about the ‘correct’ scientific name for the fungus and made available for the employment of additional the Dutch prefer to use the name Ophiostoma ulmi. scientists to work on the project. Two were employed This is not the place to argue the pros and cons of in Britain to work on various aspects of the fungus fungal nomenclature, merely to note that scientists and the insect, one in Holland to work on fungal/ cannot always agree! host relationships and one in West Germany to The epidemic of Dutch elm disease in the first study the bark beetle. half of this century was very damaging to the elms The papers which appear in this Bulletin sum­ of Europe and North America but was much less marise the results of recent research undertaken by dramatic than the devastating epidemic which scientists from six members of the European occurred in Europe during the 1970s. An upsurge of Community. It is, of course, impossible to make a the disease started in the late 1960s in Britain and comprehensive review of the achievements of the soon spread to many western European countries. overall research programme in a short introduction. A very active research programme was initiated in However a few highlights can be mentioned and a Britain about this time followed by a resurgence of number of important conclusions can be reached. activity in Holland. Following a classical series of Three main approaches to the control of Dutch studies in Britain it was established that a different elm disease have been investigated during the past strain of the fungus, termed the aggressive strain, decade and these are: had been introduced into Europe from N. America, (a) control of the elm bark beetle probably in the late 1960s. The aggressive strain was considerably more damaging to European elms (b) control of the fungus than the non-aggressive strain which was probably (c) selection and breeding of resistant elms. responsible for the earlier epidemic. By the mid 1970s the aggressive strain of C. ulmi The traditional method of controlling the disease had been found in several European countries and has been by sanitation felling, the cutting and a number of scientists in these countries became destruction of dead or dying elms so that the source involved in research on the disease. It became clear of the breeding beetles is eliminated. This method that a co-ordinated European programme of research of control has been tried in many countries and has was urgently required and that an ideal opportunity met with varying degrees of success. Some examples existed for the European Economic Community in of successful and not so successful sanitation felling Brussels to assist in this goal. Since 1977 the EEC are presented in the first section of this Bulletin. has provided funds for an annual research seminar of Where valuable individual trees are at risk techniques v FORESTRY COMMISSION BULLETIN No. 60 for the injection of chemical fungicides or perhaps decade, the long term selection and breeding prog­ biological agents such as bacteria have been ramme for resistant elms has continued in Holland. developed. Selected new clones at least moderately resistant A number of studies of the elm bark beetles in to the aggressive strain of C. ulm ihave been released Europe has given a much greater insight into the to the nursery trade. A number of promising elm conditions governing the activity of the beetle. clones have been planted in a series of trials in most The means by which the beetle is attracted to dead member states of the European Community. and dying elms is now much better understood. New collections of potentially resistant elms have The chemical nature of the attractants (pheromones) been made in Asia. produced by Scolytus scolytus has been identified. What conclusions can be drawn at this stage in the These chemicals have been used in the field to research programme? monitor beetle populations where control operations In order to safeguard existing elm populations are in progress. from the ravages of Dutch elm disease a vigorous Studies of the fungus have followed two main sanitation felling programme can markedly reduce directions, one towards a better understanding of the impact of the disease. Valuable elms, e.g. in the effects of the fungus on the host tree and the important streets and parks, can be protected from other involving a detailed study of the variability infection by the injection of chemical fungicides and of the fungus. A clearer picture is now emerging perhaps also of biological agents such as bacteria. of the mechanisms by which the fungus can invade A number of factors both climatic and biological and kill the vascular tissues of the host. can affect the rate of progress of the disease and The studies on the variability of the fungus have these factors are now much better understood. considerable implications for the selection and In future plantings of elm, there is an important breeding of elms. As a result of recent studies it is place for elms resistant to the disease. New clones clear that at least two forms of the aggressive strain are being introduced which not only show resistance exist, one invading Europe from the west and the to Dutch elm disease but are also suited to particular other from the east. Until there is a clearer view of environments (e.g.
Recommended publications
  • Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus Rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba By
    Biology and Management of the Dutch Elm Disease Vector, Hylurgopinus rufipes Eichhoff (Coleoptera: Curculionidae) in Manitoba by Sunday Oghiakhe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Entomology University of Manitoba Winnipeg Copyright © 2014 Sunday Oghiakhe Abstract Hylurgopinus rufipes, the native elm bark beetle (NEBB), is the major vector of Dutch elm disease (DED) in Manitoba. Dissections of American elms (Ulmus americana), in the same year as DED symptoms appeared in them, showed that NEBB constructed brood galleries in which a generation completed development, and adult NEBB carrying DED spores would probably leave the newly-symptomatic trees. Rapid removal of freshly diseased trees, completed by mid-August, will prevent spore-bearing NEBB emergence, and is recommended. The relationship between presence of NEBB in stained branch sections and the total number of NEEB per tree could be the basis for methods to prioritize trees for rapid removal. Numbers and densities of overwintering NEBB in elm trees decreased with increasing height, with >70% of the population overwintering above ground doing so in the basal 15 cm. Substantial numbers of NEBB overwinter below the soil surface, and could be unaffected by basal spraying. Mark-recapture studies showed that frequency of spore bearing by overwintering beetles averaged 45% for the wild population and 2% for marked NEBB released from disease-free logs. Most NEBB overwintered close to their emergence site, but some traveled ≥4.8 km before wintering. Studies comparing efficacy of insecticides showed that chlorpyrifos gave 100% control of overwintering NEBB for two years as did bifenthrin: however, permethrin and carbaryl provided transient efficacy.
    [Show full text]
  • Dutch Elm Disease Pathogen Transmission by the Banded Elm Bark Beetle Scolytus Schevyrewi
    For. Path. 43 (2013) 232–237 doi: 10.1111/efp.12023 © 2013 Blackwell Verlag GmbH Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi By W. R. Jacobi1,3, R. D. Koski1 and J. F. Negron2 1Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; 2U.S.D.A. Forest Service, Rocky Mountain Forest Research Station, Fort Collins, CO USA; 3E-mail: [email protected] (for correspondence) Summary Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophios- toma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus. The banded elm bark beetle, Scolytus schevyrewi, is an exotic Asian bark beetle that is now apparently the dominant elm bark beetle in the Rocky Mountain region of the USA. It is not known if S. schevyrewi will have an equivalent vector competence or if management recommendations need to be updated. Thus the study objectives were to: (i) determine the type and size of wounds made by adult S. schevyrewi on branches of Ulmus americana and (ii) determine if adult S. schevyrewi can transfer the pathogen to American elms during maturation feeding. To determine the DED vectoring capability of S. schevyrewi, newly emerged adults were infested with spores of Ophiostoma novo-ulmi and then placed with either in-vivo or in-vitro branches of American elm trees.
    [Show full text]
  • Heybroek HM, 2015
    Commentary - doi: 10.3832/ifor1244-008 ©iForest – Biogeosciences and Forestry Collection: 3rd International Elm Conference, Florence (Italy - 2013) more or less comparable to U. glabra. A wi- “The elms after 100 years of Dutch Elm disease” der range of genotypes of that species from Guest Editors: A. Santini, L. Ghelardini, E. Collin, A. Solla, J. Brunet, M. Faccoli, A. Scala, the colder valleys of the Himalaya seemed S. De Vries, J. Buiteveld desirable. So, after extensive preparations, I found myself in beautiful Kashmir, in the foothills The elm, tree of milk and wine of the Himalaya, in August 1960. The valley of Kashmir, with its large lakes, lies at some 1600 m a.s.l.; as U. wallichiana occurs (1-2) Hans M Heybroek roughly at altitudes of between 1800 and 3000 m, we had to ascend into the surroun- ding hills. The Indian Forest Service, and the Elm has played an important role in European culture for thousands of years, Botanical Survey of India provided liberal in many roles, with regional variation. In material culture, its wood has assis- assistance. Soon, in a mixed coniferous fo- ted in hunting and warfare for over seven thousand years; but more impor- rest that looked like our alpine forests, we tantly, its leaves and bark were semi-indispensable for the production of milk found our first U. wallichiana. What a disap- and meat, and served as an emergency food for humans. In the Mediterranean, pointment! It was a crooked stump, with elm was the main tool for the production of a good quality wine by providing hardly any branches or twigs.
    [Show full text]
  • Dutch Elm Disease (DED)
    Revival of the American elm tree Ottawa, Ontario (March 29, 2012) – A healthy century old American elm on the campus of the University of Guelph could hold the key to reviving the species that has been decimated by Dutch elm disease (DED). This tree is an example of a small population of mature trees that have resisted the ravages of DED. A study published in the Canadian Journal of Forest Research (CJFR) examines using shoot buds from the tree to develop an in vitro conservation system for American elm trees. “Elm trees naturally live to be several hundred years old. As such, many of the mature elm trees that remain were present prior to the first DED epidemic,” says Praveen Saxena, one of the authors of the study. “The trees that have survived initial and subsequent epidemics potentially represent an invaluable source of disease resistance for future plantings and breeding programs.” Shoot tips and dormant buds were collected from a mature tree that was planted on the University of Guelph campus between 1903 and 1915. These tips and buds were used as the starting material to produce genetic clones of the parent trees. The culture system described in the study has been used successfully to establish a repository representing 17 mature American elms from Ontario. This will facilitate future conservation efforts for the American elm and may provide a framework for conservation of other endangered woody plant species. The American elm was once a mainstay in the urban landscape before DED began to kill the trees. Since its introduction to North America in 1930, Canada in 1945, DED has devastated the American elm population, killing 80%–95% of the trees.
    [Show full text]
  • Published Version
    8 Damage to stems, branches and twigs of broadleaf woody plants M. Kacprzyk, I. Matsiakh, D.L. Musolin, A.V. Selikhovkin, Y.N. Baranchikov, D. Burokiene, T. Cech, V. Talgø, A.M. Vettraino, A. Vannini, A. Zambounis and S. Prospero 8.1. Root and stem rot Description: External, aboveground symptoms on individual trees are variable and may include suppressed growth, reduced vigour, discoloured or smaller than average-sized foliage, premature leaf shedding, branch dieback, crown thinning, bleeding lesions on the lower stem and root collar, wilting and eventual death of trees. It is common for root and butt rots to remain unnoticed until annual or perennial (conks) fruiting bodies appear on branches or the main trunk. Possible cause of damage: Oomycetes (water moulds: Figs. 8.1.1 – 8.1.3); Fungi: Basidiomycota (Figs. 8.1.4 – 8.1.7) and Ascomycota (Fig. 8.1.8). Fig. 8.1.1. Root collar of European beech Fig. 8.1.2. Stem of grey alder (Alnus (Fagus sylvatica) with a bleeding bark lesion incana) with bark lesion caused by an caused by an Oomycete (Phytophthora Oomycete (Phytophthora x alni). Tyrol, cambivora). Bavaria, Germany, TC. Austria, TC. ©CAB International 2017. Field Guide for the Identification of Damage on Woody Sentinel Plants (eds A. Roques, M. Cleary, I. Matsiakh and R. Eschen) Damage to stems, branches and twigs of broadleaf woody plants 105 Fig. 8.1.3. European chestnut (Castanea Fig. 8.1.4. Collar of European beech sativa) showing bark lesion caused by an (Fagus sylvatica) with fungal fruiting Oomycete (Phytophthora cinnamomi). bodies (Polyporus squamosus).
    [Show full text]
  • Dutch Elm Disease, Graphium Ulmi
    ~ .- . Bulletin 389 October, 1936 I DUTCH ELM DISEASE Graphium uhi G. P. CLINTONrn Fwmm A. MCCORYT~ Bulletin 389 October, 1936 DUTCH ELM DISEASE Graphium ulmi ..,....... ..,...... .... d.-.. Y'." c:::: d.... c.... m... DUTCH ELM DISEASE Graphium ulmi Introduction HE DUTCHELM DISEASE is the common name of a trouble first described T from Holland in 1921, and nine years later identified in the United States. Early in its history this disease was found to be caused by a fungus new to science and called Graphium ulmi, ulmi being the generic name of the host upon which it occurred. Later it was discovered that this Graphium is only a stage in the life history of the fungus and that its mature stage is an Ascomycete of the genus Ceratostomella. Therefore tlie fungus is now usually called Ceraloslomella ulmi. More recently still the genus Ceratostomella has been divided, and the elm fungus has been placed by Nannfeldt (39) under the genus Ophiostoma, becoming Ophi- osloma ulmi. So we have at least three scientific names for the Dutch elm disease. As the imperfect stages of the fungus cause the injury to elm trees, in this laboratory we use the one name Graphium ulmi, rather than its saprophytic asco stage, though another imperfect stage, known usually as Cephalosporium, is associated with the tiraphium but is less distinct in its fruiting structure. The Dutch elm disease was fitfound in this country in Ohio in 1930. After several preliminary searches it was discovered in Connecticut a few years later. Because of the seriousness of the disease and the importance of the elm as a shade tree, the Station began to study the fungus and to co6perate wi1.h tlie United States Department of Agricnltnre in its control.
    [Show full text]
  • Reader 19 05 19 V75 Timeline Pagination
    Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.
    [Show full text]
  • 2012 Illinois Forest Health Highlights
    2012 Illinois Forest Health Highlights Prepared by Fredric Miller, Ph.D. IDNR Forest Health Specialist, The Morton Arboretum, Lisle, Illinois Table of Contents I. Illinois’s Forest Resources 1 II. Forest Health Issues: An Overview 2-6 III. Exotic Pests 7-10 IV. Plant Diseases 11-13 V. Insect Pests 14-16 VI. Weather/Abiotic Related Damage 17 VII. Invasive Plant Species 17 VIII. Workshops and Public Outreach 18 IX. References 18-19 I. Illinois’ Forest Resources Illinois forests have many recreation and wildlife benefits. In addition, over 32,000 people are employed in primary and secondary wood processing and manufacturing. The net volume of growing stock has Figure 1. Illinois Forest Areas increased by 40 percent since 1962, a reversal of the trend from 1948 to 1962. The volume of elms has continued to decrease due to Dutch elm disease, but red and white oaks, along with black walnut, have increased by 38 to 54 percent since 1962. The area of forest land in Illinois is approximately 5.3 million acres and represents 15% of the total land area of the state (Figure 1). Illinois’ forests are predominately hardwoods, with 90% of the total timberland area classified as hardwood forest types (Figure 2). The primary hardwood forest types in the state are oak- hickory, at 65% of all timberland, elm-ash-cottonwood at 23%, and maple-beech which covers 2% of Illinois’ timberland. 1 MERALD ASH BORER (EAB) TRAP TREE MONITORING PROGAM With the recent (2006) find ofMajor emerald ashForest borer (EAB) Types in northeastern Illinois and sub- sequent finds throughout the greater Chicago metropolitan area, and as far south as Bloomington/Chenoa, Illinois area, prudence strongly suggests that EAB monitoring is needed for the extensive ash containing forested areas associated with Illinois state parks, F U.S.
    [Show full text]
  • Pest Risk Assessment for Dutch Elm Disease
    Evira Research Reports 1/2016 Pest Risk Assessment for Dutch elm disease Evira Research Reports 1/2016 Pest Risk Assessment for Dutch elm disease Authors Salla Hannunen, Finnish Food Safety Authority Evira Mariela Marinova-Todorova, Finnish Food Safety Authority Evira Project group Salla Hannunen, Finnish Food Safety Authority Evira Mariela Marinova-Todorova, Finnish Food Safety Authority Evira Minna Terho, City of Helsinki Anne Uimari, Natural Resources Institute Finland Special thanks J.A. (Jelle) Hiemstra, Wageningen UR Tytti Kontula, Finnish Environment Institute Åke Lindelöw, Swedish University of Agricultural Sciences Michail Yu Mandelshtam, Saint Petersburg State Forest Technical University Alberto Santini, Institute for Sustainable Plant Protection, Italy Juha Siitonen, Natural Resources Institute Finland Halvor Solheim, Norwegian Institute of Bioeconomy Research Joan Webber, Forest Research, UK Cover pictures: Audrius Menkis DESCRIPTION Publisher Finnish Food Safety Authority Evira Title Pest Risk Assessment for Dutch elm disease Authors Salla Hannunen, Mariela Marinova-Todorova Abstract Dutch elm disease (DED) is a fungal disease that causes high mortality of elms. DED and its vector beetles are widely present in most of the countries in the Northern Hemisphere, but they are not known to be present in Finland. DED is a major risk to plant health in Finland. DED and its vectors are moderately likely to enter Finland by natural spread aided by hitchhiking, because they are present in areas close to Finland. Entry via other pathways is much less likely, mainly due to the low volume of trade of untreated wood and plants for planting. DED and its vectors could likely establish in the southern parts of the country, since they currently occur in similar climatic conditions in other countries.
    [Show full text]
  • Vectors of Dutch Elm Disease in Northern Europe
    insects Article Vectors of Dutch Elm Disease in Northern Europe Liina Jürisoo 1,*, Ilmar Süda 2, Ahto Agan 1 and Rein Drenkhan 1 1 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, 51006 Tartu, Estonia; [email protected] (A.A.); [email protected] (R.D.) 2 Ilmar Süda FIE, Rõõmu tee 12-5, 50705 Tartu, Estonia; [email protected] * Correspondence: [email protected] Simple Summary: Dutch elm disease (DED) has been killing elms for more than a century in northern Europe; the trees’ health status has worsened substantially in recent decades. Elm bark beetles Scolytus spp. are vectors of DED. Our aim was to estimate the distribution range of elm bark beetles and to detect potential new vectors of DED agents in northern Europe. Beetles were caught with bottle traps and manually. Then DNA from each specimen was extracted and analysed by the third generation sequencing method. DED agents were detected on the following bark beetles for Europe: Scolytus scolytus,S. triarmatus, S. multistriatus, S. laevis, and on new vectors: Xyleborus dispar and Xyleborinus saxesenii. The spread of Scolytus triarmatus, S. multistriatus and Xyleborinus saxesenii has been remarkable for the last two decades, and S. triarmatus and X. saxesenii are relatively recent newcomers in the northern Baltics. The problem is that the more vectoring beetles there are, the faster spread of Dutch elm disease from tree to tree. Abstract: Potential Dutch elm disease vector beetle species were caught with pheromone bottle traps and handpicked in 2019: in total, seven species and 261 specimens were collected.
    [Show full text]
  • Infrastructure Update
    November | December 2015 Update Infrastructure Rainbow Bridge showing the rocky ramp and inflatable cofferdam Haggart Island Dam Decommissioning Work is now complete on decommissioning the weir under the Rainbow Bridge in Stewart Park (Town of Perth). The old weir has been replaced with a rocky ramp, which is an innovative dam replacement option and river restoration technique. The ramp allows the Tay River to “flow split” into channels which help alleviate flooding in the park. This restoration technique allows for better fish habitat and fish passage as well. The ramp maintains historic upstream water levels that are important to the community while still being aesthetically pleasing. Canoeists and kayakers can now safely navigate downstream. This project is a good balance between community and environmental needs while being a great alternative and innovative method to decommission old and failing dams. One of the construction highlights was the use of an inflatable cofferdam, which enabled work to be completed safety and efficiently with the least impact on the river. MIKE can give you more information at ext. 1176 or michael. yee@ rvca.ca. Motts Mills dam replacement — earthen berm with arched steel pipe culverts and two drop inlet water control structure on the far side Motts Mills Dam Replacement Work to decommission the failing, 63-year-old dam located just off County Road 1 in Elizabethtown- Kitley is now complete. Ducks Unlimited Canada guided construction which saw the installation of an large clay berm across the creek. Within the berm, trenches were dug for two steel and concrete water level control devices (drop inlet structures) and two large arched steel pipe culverts; together these will control water levels in Hutton Marsh.
    [Show full text]
  • Disease Resistant Elm Selections Bruce R
    RESEARCH LABORATORY TECHNICAL REPORT Disease Resistant Elm Selections Bruce R. Fraedrich, PhD, Plant Pathology Many hybrids and selections of Asian elm that have reliable resistance to Dutch elm disease (DED) are available for landscape planting. In addition to disease resistance, these elms tolerate urban stress and are adapted to a wide range of soil conditions. These selections are suitable for routine planting in areas where they are adapted to the climate. Descriptions in this report are based primarily on performance of trees growing in the arboretum at the Bartlett Tree Research Laboratories in Charlotte, North Carolina (Zone 8). Accolade Elm in Northern Plains States where low temperatures and low rainfall limit successful use of other cultivars. Ulmus davidiana var. japonica ‘Morton’ A selection of Japanese elm, Accolade elm exhibits Commendation Elm strong resistance to DED and is expected to be resistant to elm yellows. This selection is a favored host Ulmus ‘Morton Stalwart’ of Japanese beetle which can cause defoliation in years A hybrid between U. carpinifolia, U. pumila and U. with heavy outbreaks. Accolade grows rapidly and davidiana var. japonica, Commendation has the has a vase shape with a mature height of 60 feet. It has fastest growth of any of the Morton Arboretum been planted extensively in many Midwestern cities introductions. This cultivar has an upright, vase shape (zone 4). Danada Charm (Ulmus ‘Morton Red Tip’) is but has a distinctively wider crown spread than an open pollinated selection from Accolade and has Accolade or Triumph. The leaves are larger than most similar habit and appearance. Danada Charm does hybrid elms and approach the same size as American not grow as rapidly as Accolade or Triumph in elm.
    [Show full text]