Interspecific Hybridisation and Interaction with Cultivars Affect the Genetic Variation of Ulmus Minor and Ulmus Glabra in Flanders K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heybroek HM, 2015
Commentary - doi: 10.3832/ifor1244-008 ©iForest – Biogeosciences and Forestry Collection: 3rd International Elm Conference, Florence (Italy - 2013) more or less comparable to U. glabra. A wi- “The elms after 100 years of Dutch Elm disease” der range of genotypes of that species from Guest Editors: A. Santini, L. Ghelardini, E. Collin, A. Solla, J. Brunet, M. Faccoli, A. Scala, the colder valleys of the Himalaya seemed S. De Vries, J. Buiteveld desirable. So, after extensive preparations, I found myself in beautiful Kashmir, in the foothills The elm, tree of milk and wine of the Himalaya, in August 1960. The valley of Kashmir, with its large lakes, lies at some 1600 m a.s.l.; as U. wallichiana occurs (1-2) Hans M Heybroek roughly at altitudes of between 1800 and 3000 m, we had to ascend into the surroun- ding hills. The Indian Forest Service, and the Elm has played an important role in European culture for thousands of years, Botanical Survey of India provided liberal in many roles, with regional variation. In material culture, its wood has assis- assistance. Soon, in a mixed coniferous fo- ted in hunting and warfare for over seven thousand years; but more impor- rest that looked like our alpine forests, we tantly, its leaves and bark were semi-indispensable for the production of milk found our first U. wallichiana. What a disap- and meat, and served as an emergency food for humans. In the Mediterranean, pointment! It was a crooked stump, with elm was the main tool for the production of a good quality wine by providing hardly any branches or twigs. -
The Elms of Co Cork- a Survey of Species, Varieties and Forms
IRISH FORESTRY The elms of Co Cork- a survey of species, varieties and forms Gordon L. Mackenthun' Abstract In a survey of the elms in County Cork, Ireland, some 50 single trees, groups of trees and populations were examined. Four main taxa were recognised, these being 'W)'ch elm, Cornish elm, Coritanian elm and Dutch elm plus a number of ambiguous hybrids. While a large overall number of elms were found, the number of mature or even ancient elms is relatively small. Still, there are sufficient numbers of elms in the county to base a future elm protection programme 011. Keywords Ulmus, 'N)'ch elm, field elm, hybrid elm, Dutch elm disease. Introduction Elm taxonomy is known to be notoriously difficult. For the British Isles there are many different concepts, varying between just two elm species and more than one hundred so-called microspecies (Richens 1983, Armstrong 1992, Armstrong and Sell 1996). The main reason for the difficulty with elm taxonomy lies in the fact that the variability within the genus is extreme. This is especially tme for the group of elms we know under the name field elm. As a result, there is no generally accepted system for classification of the elms of the world. Some British researchers claim to host up to eight elm species in their country (Melville 1975, Clapham et a1. 1987, Stace 1997). The approach taken here follows the lines being drawn by Richard H. Richens (1983) who followed a fairly simple strategy. He assumcd that there are just two species of elms prescnt in the British Isles, the native wych elm, Ulmus glabra and the introduced field ehil, U minor. -
Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus Pumila L.) Within Arid Regions of Northeast
Article Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus pumila L.) within Arid Regions of Northeast Asia Go Eun Park 1, Don Koo Lee 2,†, Ki Woo Kim 3,†, Nyam-Osor Batkhuu 4,†, Jamsran Tsogtbaatar 5,†, Jiao-Jun Zhu 6,†, Yonghuan Jin 6,†, Pil Sun Park 2,†, Jung Oh Hyun 2,† and Hyun Seok Kim 2,7,8,9,* 1 Center for Forest and Climate Change, National Institute of Forest Science, Seoul 02455, Korea; [email protected] 2 Department of Forest Sciences, Seoul National University, Seoul 08826, Korea; [email protected] (D.K.L.); [email protected] (P.S.P.); [email protected] (J.O.H.) 3 School of Ecology and Environmental System, Kyungpook National University, Sangju 37224, Korea; [email protected] 4 Department of Forestry, National University of Mongolia, Ulaanbaatar 210646, Mongolia; [email protected] 5 Institute of Geoecology, Mongolian Academy of Sciences, Ulaanbaatar 211238, Mongolia; [email protected] 6 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; [email protected] (J.-J.Z.); [email protected] (Y.J.) 7 Institute of Future Environmental and Forest Resources, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea 8 National Center for Agro Meteorology, Seoul 08826, Korea 9 Interdisciplinary Program in Agriculture and Forest Meteorology, Seoul National University, Seoul 08826, Korea * Correspondence: [email protected]; Tel.: +82-2-880-4752; Fax: +82-2-873-3560 † These authors contributed equally to this work. Academic Editors: Jarmo K. Holopainen and Timothy A. Martin Received: 31 August 2016; Accepted: 8 November 2016; Published: 17 November 2016 Abstract: The Siberian elm (Ulmus pumila L.) is one of the most commonly found tree species in arid areas of northeast Asia. -
Dutch Elm Disease, Graphium Ulmi
~ .- . Bulletin 389 October, 1936 I DUTCH ELM DISEASE Graphium uhi G. P. CLINTONrn Fwmm A. MCCORYT~ Bulletin 389 October, 1936 DUTCH ELM DISEASE Graphium ulmi ..,....... ..,...... .... d.-.. Y'." c:::: d.... c.... m... DUTCH ELM DISEASE Graphium ulmi Introduction HE DUTCHELM DISEASE is the common name of a trouble first described T from Holland in 1921, and nine years later identified in the United States. Early in its history this disease was found to be caused by a fungus new to science and called Graphium ulmi, ulmi being the generic name of the host upon which it occurred. Later it was discovered that this Graphium is only a stage in the life history of the fungus and that its mature stage is an Ascomycete of the genus Ceratostomella. Therefore tlie fungus is now usually called Ceraloslomella ulmi. More recently still the genus Ceratostomella has been divided, and the elm fungus has been placed by Nannfeldt (39) under the genus Ophiostoma, becoming Ophi- osloma ulmi. So we have at least three scientific names for the Dutch elm disease. As the imperfect stages of the fungus cause the injury to elm trees, in this laboratory we use the one name Graphium ulmi, rather than its saprophytic asco stage, though another imperfect stage, known usually as Cephalosporium, is associated with the tiraphium but is less distinct in its fruiting structure. The Dutch elm disease was fitfound in this country in Ohio in 1930. After several preliminary searches it was discovered in Connecticut a few years later. Because of the seriousness of the disease and the importance of the elm as a shade tree, the Station began to study the fungus and to co6perate wi1.h tlie United States Department of Agricnltnre in its control. -
'Camperdownii' Samt Ulmus Minor 'Hoersholmiensis'
Efter almsjukan Förslag till ersättare för Ulmus glabra, Ulmus glabra ©Camperdownii© samt Ulmus minor ©Hoersholmiensis© Självständigt arbete vid LTJ-fakulteten, SLU Landskapsingenjörsprogrammet 2009 Marcus Persson SLU, Sveriges Lantbruksuniversitet Fakulteten för landskapsplanering, trädgårds- och jordbruksvetenskap, LTJ Författare: Marcus Persson Titel: Ersättare för alm Nyckelord: Ulmus, glabra, Camperdownii, minor, Hoersholmiensis, alm, almsjuka, ersättare. Handledare: Mark Huisman Examinator: Eva-Lou Gustafsson Kurstitel: Examensarbete för Landskapsingenjörer Kurskod: EX0359 Omfattning, högskolepoäng: 15hp Nivå och fördjupning: C-nivå Utgivningsort: Alnarp Utgivningsår: 2009 Fotot på försättsbladet är en frisk Ulmus glabra vilken är i full gång att slå ut sina blad på försommaren. Trädet är planterat år 1859 utanför gamla fängelset i Visby hamn. Foto av Arne Persson. II Förord Detta examensarbete är skrivet vid Sveriges Lantbruksuniversitet, SLU, fakulteten för landskapsplanering, trädgårds- och jordbruksvetenskap inom Landskapsingenjörsprogrammet. Ämnet är landskapsplanering. Jag skulle vilja tacka min handledare Mark Huisman för att ha gett sig tid och stöttat mig igenom hela arbetet. Jag skulle även vilja tacka de som har bidragit med fotografier. III Sammanfattning Jag valde att skriva om ersättare för alm då jag sett almar av olika slag dö bort och försvinna i städer, parker och andra platser med ett snabbt förlopp på grund av almsjukan. Under sommaren 2008 när jag arbetade med att inventera alm och almsjuka på Gotland väcktes frågan om vilket träd som skulle kunna ersätta almen. Sedan den aggressiva formen av almsjuka kom till Sverige under 1980 ± talet har många almar fått ge vika. Almsjukan är en vissningssjukdom vilken uppstår då en svamp täpper till trädets kärlsträngar. Detta bidrar till att trädet inte får någon tillgång till vatten och näring. -
New York Non-Native Plant Invasiveness Ranking Form
NEW YORK NON-NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Ulmus pumila L. USDA Plants Code: ULPU Common names: Siberian elm Native distribution: Asia Date assessed: October 18, 2009 Assessors: Gerry Moore Reviewers: LIISMA SRC Date Approved: Form version date: 10 July 2009 New York Invasiveness Rank: Moderate (Relative Maximum Score 50.00-69.99) Distribution and Invasiveness Rank (Obtain from PRISM invasiveness ranking form) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Widespread Moderate 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 (20) 3 2 Biological characteristic and dispersal ability 25 (25) 19 3 Ecological amplitude and distribution 25 (25) 17 4 Difficulty of control 10 (10) 3 Outcome score 100 (80)b 42.00a † Relative maximum score 52.50 § New York Invasiveness Rank Moderate (Relative Maximum Score 50.00-69.99) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places. §Very High >80.00; High 70.00−80.00; Moderate 50.00−69.99; Low 40.00−49.99; Insignificant <40.00 Not Assessable: not persistent in NY, or not found outside of cultivation. -
Reader 19 05 19 V75 Timeline Pagination
Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla. -
Classic Lacebark Elm
Athena ‘Emer I’ Classic Lacebark Elm Lineage Ulmus parvifolia (Chinese elm, Lacebark elm, Drake elm). Also known as ‘Emerald Isle’. PP7551 Introduced in 1989 (Dave’s Garden, 2011). Tree Form A medium-sized tree with a broad rounded canopy, often with a trunk that forks resulting in a vase shape similar to that of the American elm (Floridata, updated 11/18/2010). Tree size, leaf size and growth rate half of that of the American elm, and they are often planted as a single tree (Warren, 2000). Height: 30 to 40 feet Width: 35 to 45, up to 60 foot wide crown spread (Delmar Learning, undated; UConn, undated)) Foliage Dark green in summer, leathery, almost black; bronze to bronze-brown in fall (Cornell, undated). Leaves simple, 1 to 2 inches long, but half as wide. Ovate, margins rounded to serrate (Delmar Learning, undated). Late deciduous, almost evergreen in mild climates (Floridata, 2010). Culture NA Disease and Insect Information Literature (Dutch elm disease studies, insect resistance assessments, etc.): Resistant to Dutch Elm Disease (DED), phloem necrosis and Elm Leaf Beetles (Delmar Learning, undated). It resists DED and shows very good performance under dry conditions (UConn, undated). Completely immune to Gypsy Moth, and only 10% of the leaf tissue was consumed by Japanese Beetle, the lowest of all the asian elms tested in a no-choice study (Paluch et al., 2006). When the Japanese Beetles were given a choice of species they did not feed on the U. parvifolia at all (Paluch et al., 2006). In an earlier similar study, U. parvifolia was the most resistant of all cultivars and hybrids to the Japanese Beetle (Miller et al., 1999). -
Disease Resistant Elm Selections Bruce R
RESEARCH LABORATORY TECHNICAL REPORT Disease Resistant Elm Selections Bruce R. Fraedrich, PhD, Plant Pathology Many hybrids and selections of Asian elm that have reliable resistance to Dutch elm disease (DED) are available for landscape planting. In addition to disease resistance, these elms tolerate urban stress and are adapted to a wide range of soil conditions. These selections are suitable for routine planting in areas where they are adapted to the climate. Descriptions in this report are based primarily on performance of trees growing in the arboretum at the Bartlett Tree Research Laboratories in Charlotte, North Carolina (Zone 8). Accolade Elm in Northern Plains States where low temperatures and low rainfall limit successful use of other cultivars. Ulmus davidiana var. japonica ‘Morton’ A selection of Japanese elm, Accolade elm exhibits Commendation Elm strong resistance to DED and is expected to be resistant to elm yellows. This selection is a favored host Ulmus ‘Morton Stalwart’ of Japanese beetle which can cause defoliation in years A hybrid between U. carpinifolia, U. pumila and U. with heavy outbreaks. Accolade grows rapidly and davidiana var. japonica, Commendation has the has a vase shape with a mature height of 60 feet. It has fastest growth of any of the Morton Arboretum been planted extensively in many Midwestern cities introductions. This cultivar has an upright, vase shape (zone 4). Danada Charm (Ulmus ‘Morton Red Tip’) is but has a distinctively wider crown spread than an open pollinated selection from Accolade and has Accolade or Triumph. The leaves are larger than most similar habit and appearance. Danada Charm does hybrid elms and approach the same size as American not grow as rapidly as Accolade or Triumph in elm. -
Conserving Intraspecific Biodiversity of Forest Trees in France and Europe
The necessary scientific contribution 26 to defining public policies for biodiversity conservation Conserving intraspecifi c biodiversity of forest trees in France and Europe Using examples drawn from his work on elms and his experience as secretary of the Forest genetic resources commission, Éric Collin illustrates the issues and methods for the conservation of genetic diversity of forest trees in light of climate change. or the general public, the slogan "Stop bio- but the criteria or combinations of criteria used to defi ne diversity erosion" means taking measures an ESU (inter-population differentiation measured using to protect plants and animals whose sur- molecular markers and/or adaptive characters) are simply vival as a species is threatened. The Eura- guidelines for our work, not absolute truths. sian lynx, the common snipe, Hermann's F tortoise and the Aveyron ophrys are thus all listed for protection in the 2010 Biodiversity agenda for ➊ Distribution of the Cornish elm continental France. Forest trees will probably be excluded, (Ulmus stricta Lindley) according to Richens (1983). except perhaps elms, the well known victims of a terrible epidemic, and the Spanish black pine, a rare species of which only a few communities still exist in Languedoc and the eastern Pyrenees. For specialists in forest genetic resources, it is however indispensable and urgent to address the intraspecifi c bio- diversity of forest trees, i.e. the diversity within species. This diversity is not very visible and generally has no name, but it is crucial for species adaptation. It is neces- sary to stop its erosion if we want to avoid endangering species. -
Onderzoekers Van Het Eerste Uur Had- Den Veel Uithoudingsvermogen En Inventiviteit” Terugkijkend Op Een Kleine Eeuw Iepziekte En Iepenveredeling
“Onderzoekers van het eerste uur had- den veel uithoudingsvermogen en inventiviteit” Terugkijkend op een kleine eeuw iepziekte en iepenveredeling Dr. Marie Ledeboer (links), the Dutch National Fungus Culture Collection with Prof. Dr. Westerdijk (midden) en Dr. Harmanna Diddens (rechts). De foto is genomen in 1933. Bron: “Dutch Elm Disease – The Early Papers”, auteurs F.W. Holms en H.M. Heybroek. APS Press, The American Phytopathological Society © 1990 De iep is ongetwijfeld de meest onderzochte boomsoort in de afgelopen eeuw. Talloze publicaties zijn er over te vinden en het comfortabele is dat voor het lezen hiervan kennis van vreemde talen eigenlijk niet nodig is, omdat juist Nederlandse wetenschappers baanbrekend werk hebben verricht inzake het ontwikkelen van steeds resistentere iepenklonen. Een enorme klus die begon in 1920 in Baarn en Wageningen. Auteur: Ronnie Nijboer Als oud Frederiksoorder leerde ik midden jaren terug vinden op schilderijen van beroemde mees- hét prototype van de boom die we ons wensen tachtig van plantenkennis-leraar Theo Janson dat ters. Later begonnen kwekers met enten en in het vlakke polderland. iepen met terughoudendheid geplant dienden te afleggen van bepaalde selecties. De bekendste is Heerlijk zijn de oude zwart-wit foto’s van lange worden, vanwege de iepziekte. Ook later, toen ik ongetwijfeld de ‘Belgica’. Deze kloon groeide snel lanen iepen slingerend door sappige weiden met de Ulmus ‘New Horizon’ bij groenbeheerders tot een hoge en brede iep, eigenlijk nog steeds aan de horizon het spitse torentje van de dorps- onder de aandacht bracht, ontmoette ik veel scepsis: “Ach ja hoor, daar is weer een kweker die beweert een resistente iep te hebben. -
Section 5 Landscaping City of Titusville Technical Design Manual
City of Titusville, Florida Code of Ordinance, Volume II Land Development Regulations, Landscaping Technical Manual 1 2 3 4 Section 5 Landscaping City of Titusville Technical Design Manual 5 Page 1 of 12 City of Titusville, Florida Code of Ordinance, Volume II Land Development Regulations, Landscaping Technical Manual 1 Contents 2 5.1. INTENT. .......................................................................................................................... 3 3 5.2. TREES AND SHRUBS. ................................................................................................... 3 4 5 Page 2 of 12 City of Titusville, Florida Code of Ordinance, Volume II Land Development Regulations, Landscaping Technical Manual 1 LANDSCAPING 2 3 5.1. INTENT. 4 The City of Titusville Technical Design Standards have been adopted by the Titusville City Council. 5 These standards are required to be met when applying to the City for a Development Order (permit). The 6 Land Development Regulations (LDR) will continue to have overall policy requirements specific to each 7 section. The landscaping regulations can be found in Chapter 30 of the LDR. 8 5.2. TREES AND SHRUBS. 9 Table 1 includes the City’s approved trees and shrubs recommended for use in all landscaped 10 areas and the City’s list of nuisance trees recommended for removal. Table 1. Approved trees and shrubs recommended for use in all landscaped areas Water Common Name Botanical Name Usage CANOPY TREES (50—100' ht) Bald cypress* Taxodium distichum M, H Cedar Cedrus sp. L Chinese elm/Drake