Quantitative Genetic Methods to Dissect Heterogeneity in Complex Traits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analyse Genetischer Stabilität in Den Nachkommen Bestrahlter Zellen Mittels Klassischer Chromosomenbänderung Und Verschiedener Hochdurchsatz-Techniken
Analyse genetischer Stabilität in den Nachkommen bestrahlter Zellen mittels klassischer Chromosomenbänderung und verschiedener Hochdurchsatz-Techniken Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Julia Flunkert geboren in Schwerte Würzburg, 2018 Eingereicht am: …………………………………………….................... Mitglieder der Promotionskommission: Vorsitzender: Gutachter: Univ.-Prof. Dr. med. Thomas Haaf Gutachter: Univ.-Prof. Dr. Thomas Dandekar Tag des Promotionskolloquiums: ……………………….................. Doktorurkunde ausgehändigt am: ………………………................. Eidesstattliche Versicherung Die vorliegende Arbeit wurde von November 2014 bis September 2018 am Institut für Humangenetik der Universität Würzburg unter Betreuung von Herrn Univ.-Prof. Dr. med. Thomas Haaf angefertigt. Hiermit erkläre ich an Eides statt, die Dissertation: „Analyse genetischer Stabilität in den Nachkommen bestrahlter Zellen mittels klassischer Chromosomenbänderung und verschiedener Hochdurchsatz-Techniken“, eigenständig, d. h. insbesondere selbständig und ohne Hilfe eines kommerziellen Promotionsberaters, angefertigt und keine anderen, als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben. Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen Prüfungsverfahren vorgelegen hat. Weiterhin erkläre ich, dass bei allen Abbildungen und Texten bei denen die Verwer- tungsrechte (Copyright) nicht bei mir liegen, diese von den Rechtsinhabern -
Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. -
Pathway-Based Genome-Wide Association Analysis of Coronary Heart Disease Identifies Biologically Important Gene Sets
European Journal of Human Genetics (2012) 20, 1168–1173 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets Lisa de las Fuentes1,4, Wei Yang2,4, Victor G Da´vila-Roma´n1 and C Charles Gu*,2,3 Genome-wide association (GWA) studies of complex diseases including coronary heart disease (CHD) challenge investigators attempting to identify relevant genetic variants among hundreds of thousands of markers being tested. A selection strategy based purely on statistical significance will result in many false negative findings after adjustment for multiple testing. Thus, an integrated analysis using information from the learned genetic pathways, molecular functions, and biological processes is desirable. In this study, we applied a customized method, variable set enrichment analysis (VSEA), to the Framingham Heart Study data (404 467 variants, n ¼ 6421) to evaluate enrichment of genetic association in 1395 gene sets for their contribution to CHD. We identified 25 gene sets with nominal Po0.01; at least four sets are previously known for their roles in CHD: vascular genesis (GO:0001570), fatty-acid biosynthetic process (GO:0006633), fatty-acid metabolic process (GO:0006631), and glycerolipid metabolic process (GO:0046486). Although the four gene sets include 170 genes, only three of the genes contain a variant ranked among the top 100 in single-variant association tests of the 404 467 variants tested. Significant enrichment for novel gene sets less known for their importance to CHD were also identified: Rac 1 cell-motility signaling pathway (h_rac1 Pathway, Po0.001) and sulfur amino-acid metabolic process (GO:0000096, Po0.001). -
A Research Agenda for DSM-V
A Research Agenda for DSM-V Edited by David J. Kupfer, M.D. Michael B. First, M.D. Darrel A. Regier, M.D., M.P.H. Published by the American Psychiatric Association Washington, D.C. Note: The authors have worked to ensure that all information in this book is accu- rate at the time of publication and consistent with general psychiatric and medical standards, and that information concerning drug dosages, schedules, and routes of administration is accurate as of the time of publication and consistent with stan- dards set by the U.S. Food and Drug Administration and the general medical com- munity. As medical research and practice continue to advance, however, therapeutic standards may change. Moreover, specific situations may require a spe- cific therapeutic response not included in this book. For these reasons and because human and mechanical errors sometimes occur, we recommend that readers follow the advice of physicians directly involved in their care or the care of a member of their family. The findings, opinions, and conclusions of this report do not necessarily represent the views of the officers, trustees, or all members of the American Psychiatric Asso- ciation. The views expressed are those of the authors of the individual chapters. Typeset in Adobe's Janson Text and Frutiger Copyright ã 2002 American Psychiatric Association ALL RIGHTS RESERVED Manufactured in the United States of America on acid-free paper 06 05 04 03 02 5 4 3 2 1 First Edition American Psychiatric Association 1400 K Street, N.W., Washington, DC 20005 www.psych.org Library of Congress Cataloging-in-Publication Data A research agenda for DSM-V / edited by David J. -
The Role of Genetic Variation in Predisposition to Alcohol-Related Chronic Pancreatitis
The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Marianne Lucy Johnstone April 2015 The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis 2015 Abstract Background Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main causative agent. However, only a small proportion of alcoholics develop chronic pancreatitis. Genetic polymorphism may affect pancreatitis risk. Aim To determine the factors required to classify a chronic pancreatic population and identify genetic variations that may explain why only some alcoholics develop chronic pancreatitis. Methods The most appropriate method of diagnosing CP was assessed using a systematic review. Genetics of different populations of alcohol-related chronic pancreatitics (ACP) were explored using four different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. Results EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93). -
PPP1R12B Rabbit Pab
Leader in Biomolecular Solutions for Life Science PPP1R12B Rabbit pAb Catalog No.: A17510 Basic Information Background Catalog No. Myosin phosphatase is a protein complex comprised of three subunits: a catalytic A17510 subunit (PP1c-delta, protein phosphatase 1, catalytic subunit delta), a large regulatory subunit (MYPT, myosin phosphatase target) and small regulatory subunit (sm-M20). Two Observed MW isoforms of MYPT have been isolated--MYPT1 and MYPT2, the first of which is widely 110kDa expressed, and the second of which may be specific to heart, skeletal muscle, and brain. Each of the MYPT isoforms functions to bind PP1c-delta and increase phosphatase Calculated MW activity. This locus encodes both MYTP2 and M20. Alternatively spliced transcript variants encoding different isoforms have been identified. Related pseudogenes have been Category defined on the Y chromosome. [provided by RefSeq, Oct 2011] Primary antibody Applications WB Cross-Reactivity Human Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 4660 O60237 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 660-930 of human PPP1R12B (NP_002472.2). Synonyms MYPT2;PP1bp55;PPP1R12B Contact Product Information 400-999-6126 Source Isotype Purification Rabbit IgG Affinity purification [email protected] www.abclonal.com.cn Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using PPP1R12B antibody (A17510) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. -
Regulation of Signaling and Metabolism by Lipin-Mediated Phosphatidic Acid Phosphohydrolase Activity
biomolecules Review Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity Andrew J. Lutkewitte and Brian N. Finck * Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA; [email protected] * Correspondence: bfi[email protected]; Tel: +1-3143628963 Received: 4 September 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms. Keywords: phosphatidic acid; diacylglycerol; lipin; signaling 1. Introduction Foundational work many decades ago by the laboratory of Dr. Eugene Kennedy defined the four sequential enzymatic steps by which three fatty acyl groups were esterified onto the glycerol-3-phosphate backbone to synthesize triglyceride [1]. -
The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2. -
Overexpression of Hormone-Sensitive Lipase Prevents Triglyceride Accumulation in Adipocytes
Overexpression of hormone-sensitive lipase prevents triglyceride accumulation in adipocytes. C Sztalryd, … , M C Komaromy, F B Kraemer J Clin Invest. 1995;95(6):2652-2661. https://doi.org/10.1172/JCI117967. Research Article Hormone-sensitive lipase (HSL) is a cytosolic neutral lipase that hydrolyzes intracellular stores of triglycerides within adipocytes and is thought to be the rate limiting enzyme in lipolysis; however, direct evidence to prove this concept has been lacking. The present study was designed to establish the function of HSL in adipocytes. A 2360-bp fragment containing the entire HSL coding region was cloned into the vector pCEP4 and was used to transfect the 3T3-F442A adipogenic cell line. Nondifferentiated, transfected cells were screened for HSL overexpression by indirect immunofluorescence microscopy and confirmed by immunoblotting cell extracts with anti-HSL/fusion protein antibodies and by Northern blots for HSL mRNA. Stable transfectants overexpressing HSL were obtained and cloned. Compared with undifferentiated 3T3-F442A cells transfected with pCEP4 not containing the insert (vector alone) where HSL expression was very low, undifferentiated HSL transfectants had up to a 100-fold increase in HSL activity. Likewise, immunoreactive HSL protein and HSL mRNA levels were increased up to 100-fold in HSL transfectants. When confluent cells were allowed to differentiate by exposure to insulin, HSL expression increased in vector alone transfected cells, but remained below that observed in HSL transfectants. A similar degree of differentiation was seen in both vector alone and HSL transfectants when based on the induction of lipoprotein lipase. Cellular triglyceride content increased dramatically in the vector alone transfected cells […] Find the latest version: https://jci.me/117967/pdf Overexpression of Hormone-sensitive Lipase Prevents Triglyceride Accumulation in Adipocytes Carole Sztalryd, Michael C. -
Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo -
Aprioritized Panel of Candidate Genes
In: Advances in Genetics Research. Volume 9 ISBN: 978-1- 62081-466-6 Editor: Kevin V. Urbano © 2012 Nova Science Publishers, Inc No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 1 A PRIORITIZED PANEL OF CANDIDATE GENES TO BE EXPLORED FOR ASSOCIATIONS WITH THE BLOOD PRESSURE RESPONSE TO EXERCISE Garrett I. Ash,1,Amanda L. Augeri,2John D. Eicher,3 Michael L. Bruneau, Jr.1 and Linda S. Pescatello1 1University of Connecticut, Storrs, CT, US 2Hartford Hospital, Hartford, CT, US 3Yale University School of Medicine, New Haven, CT, US ABSTRACT Introduction. Identifying genetic variants associated with the blood pressure (BP) response to exercise is hindered by the lack of standard criteria for candidate gene selection, underpowered samples, and a limited number of conclusive whole genome studies. We developed a prioritized panel of candidate genetic variants that may increase the likelihood of finding genotype associations with the BP response to exercise when used alone or in conjunction with high throughput genotyping studies. Methods. We searched for candidate genetic variants meeting preestablished criteria using PubMed and published systematic reviews. -
Pancreatic Carboxyl Ester Lipase: a Circulating Enzyme That Modifies Normal and Oxidized Lipoproteins in Vitro
Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro. R Shamir, … , D W Morel, E A Fisher J Clin Invest. 1996;97(7):1696-1704. https://doi.org/10.1172/JCI118596. Research Article Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate. Originally thought to be confined to the gastrointestinal system, CEL has been reported in the plasma of humans and other mammals, implying its potential in vivo to modify lipids associated with LDL, HDL (CE, TG), and oxidized LDL (lysophosphatidylcholine, lysoPC). We measured the concentration of CEL in human plasma as 1.2+/-0.5 ng/ml (in the range reported for lipoprotein lipase). Human LDL and HDL3 reconstituted with radiolabeled lipids were incubated with purified porcine CEL without or with cholate (10 or 100 microM, concentrations achievable in systemic or portal plasma, respectively). Using a saturating concentration of lipoprotein-associated CE (4 microM), with increasing cholate concentration there was an increase in the hydrolysis of LDL- and HDL3-CE; at 100 microM cholate, the present hydrolysis per hour was 32+/-2 and 1.6+/-0.1, respectively, indicating that CEL interaction varied with lipoprotein class. HDL3-TG hydrolysis was also observed, but was only approximately 5-10% of that for HDL3-CE at either 10 or 100 microM cholate. Oxidized LDL (OxLDL) is enriched with lysoPC, a proatherogenic compound. After a 4-h incubation with CEL, the lysoPC content of OxLDL was depleted 57%. Colocalization of CEL in the vicinity of OxLDL formation was supported by demonstrating in human aortic homogenate a cholate-stimulated […] Find the latest version: https://jci.me/118596/pdf Pancreatic Carboxyl Ester Lipase: A Circulating Enzyme That Modifies Normal and Oxidized Lipoproteins In Vitro Raanan Shamir,*‡ William J.