An Updated Short History of the British Diving Apparatus Manufacturers

Total Page:16

File Type:pdf, Size:1020Kb

An Updated Short History of the British Diving Apparatus Manufacturers 18 The International Journal of Diving History The International Journal of Diving History 19 Fig. 1. Some key persons from the firm of Siebe Gorman. 1a. (Christian) Augustus Siebe An Updated Short History of the British Diving Apparatus (1788-1872). Company founder. Manufacturers, Siebe Gorman and Heinke 1b. William Augustus Gorman (formerly O’Gorman; 1834-1904). by Michael Burchett, HDS, and Robert Burchett, HDS. Joint partner with Henry H. Siebe (1830-1885) at Siebe & Gorman (later Siebe Gorman & Co.). PART 1. THE SIEBE GORMAN COMPANY 1c. Sir Robert Henry Davis Introduction 1a. 1b. 1c. (1870-1965). Managing Director This account endeavours to produce a short, updated history of the Siebe Gorman and Heinke of Siebe Gorman & Co. manufacturing companies using past and present sources of literature. It does not attempt to include every aspect of the two company histories, but concentrates on key events with an emphasis on 1d. Henry Albert Fleuss the manufacture of diving apparatus. However, an understanding of their histories is not complete (1851-1933). Designer of the first without some knowledge of the social history and values of the period. Victorian and Edwardian practical ‘self-contained breathing society engendered moral values such as hard work, thrift, obedience and loyalty within a class-ridden apparatus’. system, in which poverty, harsh working conditions and basic education were normal for the working 1e. Professor John Scott Haldane classes. With intelligence and application, people could ‘better themselves’ and gain respect in an age of (1860-1936). Diving physiologist innovation, when Britain led the industrial world. who produced the first naval The businesses of Augustus Siebe and ‘Siebe, Gorman’ (in one form or another) survived for over 170 ‘Decompression Dive Tables’. years (1819-1999). Yet throughout their long history, there were only a few key individuals involved in 1f. Capt. G.C.C. Damant RN owning and running them. They include Christian ‘Augustus’ Siebe, Henry Herapath Siebe, William who helped J.S. Haldane with deep Augustus O’Gorman, Robert Henry Davis (Fig. 1) and to a lesser extent, Albert Vickers. The family diving experiments and was the firm of ‘Heinke’ was founded at about the same time as ‘A. Siebe’. In common with Augustus Siebe, the 1d. 1e. 1f. first Inspector of Diving. founder, Gotthilf Frederick Heinke, was also an immigrant. Frederick Heinke moulded his company into a ‘family firm’ but later family rifts jeopardized the company’s future. There was always competition between the two manufacturing companies, but Heinke was mostly over-shadowed by its much larger practical, working products. He traded under the name of Augustus Siebe (A. Siebe) and chose to drop rival. Eventually the Heinke Company was taken over by Siebe, Gorman & Co. Ltd. after over 100 his first name. In 1819 he married Susannah Gliddon (1796-1856) from Sherwell in Devon. Apart years of trading as a manufacturer of diving apparatus. from the development and manufacturing of diving apparatus, (for which he is most remembered) he also produced a breech-loading firearm (1819), paper-making machinery, measuring machinery, a screw The Company: ‘A. Siebe’ (1819-1870) tap for thread cutting (for which he was awarded the Vulcan medal in 1823), a patented rotary water- The early development and manufacture of ‘standard’ diving apparatus is inextricably linked to the pump (1828) and improved refrigeration machinery (1850). company of Siebe Gorman. The company arose from the pioneering exploits of the gifted engineer, In 1828, Siebe moved to new premises at 5 Denmark Street, London, which he initially rented, Christian Augustus Siebe (1788-1872). He was born in Saxony, educated in Berlin and apprenticed to a before purchasing the leasehold in 1831 (Fig. 2a). He lived ‘over the shop’ and worked at this address brass founder. In 1812 he fought as an Artillery Lieutenant at the Battle of Leipzig against the invading for the rest of his life. He raised several children there, including one daughter, and in due course French and narrowly escaped death. In 1816 (following Napoleon’s defeat at Waterloo in 1815), some of his sons worked in the family business. Unfortunately, by 1868 Augustus Siebe was forced Siebe emigrated to England, and settled in London. He quickly obtained successive employment as a to retire because of old age and failing health. He had already out-lived four of his sons, and the only watchmaker, gunmaker and instrument maker. For business reasons, he applied for, and was granted, one remaining (his second son, Henry Herapath Siebe, 1830-1887) still survived. In 1870, Augustus British citizenship in 1856, some 46 years after he entered the country. decided to bequeath his business jointly and equally to his son Henry, and his son-in-law, William In 1819, Christian Augustus (Fig. 1a) started his own business as a manufacturing engineer at 145 Augustus Gorman (formerly O’Gorman, 1834-1904), an Irish sea captain who had married Mary High Holborn (London), and his mechanical gifts enabled him to turn theoretical problems into Siebe (1830-1869), his daughter. In time, they also raised a daughter and son (Augustus Gorman) who worked in the company for a short period. 20 The International Journal of Diving History The International Journal of Diving History 21 Fig 2. Company premises. Fig 3. Development of the ‘standard’ diving dress apparatus. Fig. 2a. Premises at Five Fig. 2b. Old works in Mason Street, Lambeth, London (later re-named Boniface Denmark Street, Soho, Street. 1876-1941). London (1828-1870). Augustus Siebe had bought the freehold of 5 Denmark Street, Soho in 1868. By the following year he had retired ‘upstairs’ and handed over the business to the new partnership of Henry H. Siebe and William A. Gorman. In 1870 the business started trading under the new name of ‘Siebe & Gorman’. Augustus Siebe died of bronchitis at his 5 Denmark Street home on 15th April 1872 (aged 84) and was buried at the West Norwood Cemetery. Fig. 3a. Charles Deane’s Fig. 3b. Deane’s Fig. 3c. Augustus Siebe’s first Fig. 3d. The improved ‘smoke helmet’ (1823), ‘diving helmet’ and the ‘Closed’ dress diving apparatus ‘standard’ 12-bolt diving Development of the Diving Dress which was adapted for ‘Open’ dress diving with 12 equally spaced dress apparatus with Augustus Siebe had manufactured several of Charles Anthony Deane’s (1796-1848) patented (1823) diving trials. apparatus (1832). thumb-screws and a wide modified seals, valves, corselet (circa1840). fittings separate bonnet smoke helmets and bellows (Fig. 3a) for used in a Deptford shipyard. Over the next two years, Charles and narrow corselet. Deane and his brother John (1800-1884) developed an ‘Open’ diving helmet, by modifying Charles’ After about 1870, this patented smoke helmet. In 1830, they contacted Augustus Siebe again with their idea of commissioning basic design remains an improved, ‘Open Helmet Diving Dress’ with attached canvas jacket and a more powerful forced air relatively unchanged. pump for diving use (Fig. 3b). These were made for the Deane brothers and proved useful for shallow water work, even though the diver needed to remain in an upright working position to prevent flooding Deane brothers, George Edwards and Charles Pasley. Small modifications and improvements were of the dress. In 1838, George Edwards (1804-1893), a Lowestoft harbour engineer, altruistically gave subsequently made to valves and communication systems, but the basic ‘Standard’ diving dress with the Siebe his ideas for design improvements to the Deane brothers ‘Open’ diving dress apparatus. By 12 bolt helmet remained relatively unchanged from 1870, until its slow decline from the mid-1950s clamping the diving dress to the helmet using a loose flange arrangement, the ‘Open’ diving dress (Fig. 3d). It is interesting to note that the serial production numbers of ‘standard’ dress helmets had could be converted into a flexible ‘Closed’ diving dress. Wrist ties were later replaced with proper already reached the half way stage about the middle of the 1920s. rubber wrist seals. This would allow the diver to remain dry and work in any position. In 1839, Siebe manufactured the first ‘Closed’ diving dress, using 12 equally spaced bolts to clamp the full dress to ‘Siebe & Gorman’ (1870-1879) the breastplate (Fig. 3c). From 1840 to 1844 Colonel Charles Pasley and his team of Royal Engineers In 1876 the firm of ‘Siebe & Gorman’ moved their business operation to a new premises at 17 Mason used this ‘Closed’ diving dress with great success to clear the wreck of HMS Royal George in The Solent, Street, Westminster Bridge Road, Lambeth, London (later re-named Boniface Street by London County off Portsmouth (Fig. 4). Colonel Pasley suggested a further improvement of allowing the helmet’s Council). It was a former cork making factory, but it had 8,000sq.ft. of space which would allow for ‘bonnet’ and breastplate to be separated using an ‘interrupted thread’. Thus the basic ‘Standard’ Diving rapid company expansion. It eventually employed 30 men and included a non-ferrous foundry and Dress with a 12 bolt helmet was realised by Siebe, with major suggestions and design inputs from the blacksmith’s and coppersmith’s shops. The company traded from this address for the next 10 years. 22 The International Journal of Diving History The International Journal of Diving History 23 shareholders. They were looking for new innovations which would expand their marine engineering and armaments empire. Albert Vickers (Chairman of Vickers Ltd.) took over the firm in 1904, a severe disappointment to the ambitions of Robert Davis. However, because of his extensive experience, Davis was made Managing Director. The take-over changed Davis’s business outlook, and he filed many subsequent patents in his own name, which would be out of the control of the new company.
Recommended publications
  • An Evaluation of Oivi Ng and Submersible Systems I
    I , \ I AN EVALUATION OF OIVI NG AND SUBMERSIBLE SYSTEMS I. BY ROGE R W. COOK AND JEFFREYR. PRENTICE PRESENTED TO: THE MON ITOR NATIONAL CON FE REt~CE RALEIGH) NORTH CAROLINA APRI L 2 - 4, 1978 I. HARBOR BRANCH FOUNDATION TECHNICAL REPORT No.21 , HISTORY ·One of the first written records of man's ability to work underwater is found in the writings of Herodotus in the 5th Century B.C. He tells of a diver named Scyllis who worked to recover sunken treasure for King Xerxes. There are many other accounts of divers working underwater by holding their breath for two to three minutes but it was not until 1500-1800 A.D. that any significant advancements were made which could be attributed to present day diving technology. During the period after 1500, a device called a diving bell came into the forefront as a practical tool to explore the underwater world. The device was called a bell because it resembled a typical church bell of the times. The first account of such equipment being used was in 1531. Bells did not advance much until the 1680's when an adventurer named William Phipps from Massachusetts supplied air toa bell by lowering inverted, weighted buckets of air to the divers. The famed astronomer, Edmund Halley, also developed a bell and demonstrated his system in 1690. Other inventions by various people were developed but were all like the first diving bells limited by the fact that air could not oe continuously supplied to the divers. It was not until the turn of the 19th Century that a hand oper­ ated air pump was developed which could deliver a continuous supply of air.
    [Show full text]
  • Review of Diver Noise Exposure
    doi:10.3723/ut.29.021 International Journal of the Society for Underwater Technology, Vol 29, No 1, pp 21–39, 2010 Review of diver noise exposure TG Anthony, NA Wright and MA Evans QinetiQ Ltd, Hampshire, UK Technical Paper Abstract • Assess the risk to all employees, including divers, Divers are exposed to high noise levels from a variety from noise at work of sources both above and below water. The noise • Take action to reduce the noise exposure that exposure should comply with `The Control of Noise produces these risks at Work Regulations 2005' (CoNaWR05, 2005). A • Provide hearing protection if the noise risk detailed review of diver noise exposure is presented, cannot be reduced sufficiently by other methods encompassing diver hearing, noise sources, exposure • Ensure legal limits on noise exposure are not levels and control measures. Divers are routinely exceeded exposed to a range of noise sources of sufficiently high • Provide employees with information, instruction intensity to cause auditory damage, and audiometric and training studies indicate that diver hearing is impaired by • Conduct health surveillance where there is a risk exposure to factors associated with diving. Human to health. hearing under water, in cases where the diver's ear is The CoNaWR05 requires employers to take wet, is less sensitive than in air and should be assessed specific action at certain noise action values. These using an underwater weighting scale. Manufacturers of relate to the levels of exposure to noise of divers diving equipment and employers of divers have a joint averaged over a working day or week and the responsibility to ensure compliance with the exposure maximum noise (peak sound pressure) to which values in the CoNaWR05, although noise is only one they may be exposed.
    [Show full text]
  • Scuba Diving History
    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
    [Show full text]
  • Siebe Gorman
    dr" www.mcdoa.org.uk The design is simple and strong, clamping mechanism has been ini proved, and the valve is made ( Imo corrosive chrome-Bladed brass. Safety AIR RESERVE VALVE The wets are fitted with 11,7401'N'I` Valve. in It cannot be left 11,14.1111,111111ty on `Reserve' when Lhe cylinder r, Comfort empty. '1'he valve has no cam no iou which can wear or jaw. HARNESS The new nylee welihnil harness is designed wilhotil, n i1iii.,1 strap, to make a wcir ld i„,i ) „„„.,, The Essgee 'Mistral' Aqualung by comfortable to weir. ' I' I rrin on Siebe, Gorman based on the famous quick-requick-release iiicl 1 1114 '11. Cousteau-Cagnan design has all the take off the set below Icny ) I li.. latest refinements that research has water, or jettison it i suggested and experiment realised. TWIN CYLINDER CONVERSION `§te DEMAND VALVE The double-lever You can convert, ,„101 ----4040aP action reduces opening resistance Aqualung into 41, twin sot, didolummolimosiiiiiiiiiill111111111111111111111111113mmi to a minimum, and the single stage * Write £0 Its fol. fall defisiln fif thy reduction gives maximum air-flow. Essgee 'Mistral'. N-7 The 5tebe, Gorman 'Mistral' - The World's most reliable Aqualung SIEBE, GORMAN & CO. LTD. E. Ng Neptune Works, Davis Road, `FILM MAKING'—see page 54 hit,8 Chessington, Surrey. SIEBE Telephone: Elmbridge 500() Iluommlimiliiiil 'ill? Manchester Office: 274, Deansgate. 1111111111!!!4""m41111111111111111111111111111111111111111IIIIIIIIIiiii mil IIII Telephone: Deanegate 6000 GORMAN • -^°1,0" oh, COA9D1 & CO I TD. PDD ID. www.mcdoa.org.uk Vol. 8 No. 2 H.M.S.
    [Show full text]
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • A History of Closed Circuit O2 Underwater Breathing Apparatus
    Rubicon Research Repository (http://archive.rubicon-foundation.org) A HISTORY OF CLOSED CIRCUIT OXYGEN UNDEnWATER BRDA'1'HIllG AJ'PARATU'S, by , Dan Quiok Project 1/70 School of Underwater Medicine, H MAS PENGUIN, Naval P.O. Balmoral, IT S W .... 2091. May, 1970 Rubicon Research Repository (http://archive.rubicon-foundation.org) TABLE OF CONTENTS. Foreword. Page No. 1 Introduction. " 2 General History. " 3 History Il: Types of CCOUBA Used In 11 United Kingdom. " History & Types of CCOUBA Used In 46 Italy. " History & Types o:f CCOUBJl. Used In 54 Germany. " History & Types of CCOUEA Used In 67 Frr>.!1ce. " History·& Types of CeOUM Used In 76 United States of America. " Summary. " 83 References. " 89 Acknowledgements. " 91 Contributor. " 91 Alphabetical Index. " 92 Rubicon Research Repository (http://archive.rubicon-foundation.org) - 1 - FOREWORD I am very pleased to have the opportunity of introducing this history, having been responsible for the British development of the CCOt~ for special operations during World War II and afterwards. This is a unique and comprehensive summary of world wide development in this field. It is probably not realised what a vital part closed circuit breathing apparatus played in World War II. Apart from escapes from damaged and sunken submarines by means of the DSEA, and the special attacks on ships by human torpedoes and X-craft, including the mortal damage to the "Tirpitz", an important part of the invasion forces were the landing craft obstruction clearance units. These were special teams of frogmen in oxygen breathing sets who placed demolition charges on the formidable underwater obstructions along the north coast of France.
    [Show full text]
  • Miller Manual
    MILLER DIVING EQUIPMENT INC. Miller 400 Diving Helmet Maintenance Manual © Miller Diving All Rights Reserved Document # 030715001 1 MILLER 400 DIVING HELMET OPERATIONS AND MAINTENANCE MANUAL Part # 100-900 TABLE OF CONTENTS WARRANTY ............................................................................................................................... 3 DEFINITIONS OF SIGNAL WORDS ........................................................................................ 4 IMPORTANT SAFETY INFORMATION .................................................................................. 5 SECTION 1: GENERAL INFORMATION 1-A INTRODUCTION ............................................................................................. 7 1-B GENERAL DESCRIPTION OF MILLER 400 ................................................ 7 SECTION 2: OPERATING INSTRUCTIONS AND PROCEDURES 2-A PRE-DIVE PROCEDURE .................................................................................8 2-B DRESSING INTO THE MILLER HELMET ....................................................8 2-C OPERATING INSTRUCTIONS .......................................................................9 2-D EMERGENCY PROCEDURES ........................................................................9 2-E RECOMMENDED MATERIALS FOR MAINTENANCE .............................10 SECTION 3: DESCRIPTIONS, MAINTENANCE AND REPLACEMENT 3-A HELMET SHELL ..............................................................................................12 3-B FACE PLATE AND FACE RING .....................................................................12
    [Show full text]
  • Draft Underwater Archaeological Assessment.Pdf
    DRAFT UNDERWATER ARCHAEOLOGICAL ASSESSMENT Proposed Submarine Cable Route & Dock Facilities – Amherst Island Wind Energy Project North Gap between Amherst Island and Millhaven, Ontario Project No. 160960595-208 Prepared for: Windlectric Inc. (c/o Algonquin Power Co) 2845 Bristol Circle Oakville, Ontario L6H 7H7 November 30, 2012 DRAFT UNDERWATER ARCHAEOLOGICAL ASSESSMENT PROPOSED SUBMARINE CABLE ROUTE & DOCK FACILITIES – AMHERST ISLAND WIND ENERGY PROJECT Table of Contents EXECUTIVE SUMMARY ............................................................................................................ I 1.0 INTRODUCTION .............................................................................................................. 1.1 2.0 PROJECT CONTEXT ....................................................................................................... 2.2 2.1 DEVELOPMENT CONTEXT ............................................................................................. 2.2 2.1.1 Project Description ............................................................................................. 2.2 2.1.2 O.Reg.359/09 ..................................................................................................... 2.3 2.2 ARCHAEOLOGICAL CONTEXT ....................................................................................... 2.4 2.2.1 Project Study Area ............................................................................................. 2.4 2.2.2 Archaeological Culture History of Terrestrial Eastern Ontario ............................
    [Show full text]
  • Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
    Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences,
    [Show full text]
  • Carbon Dioxide & Diving Apparatus
    Carbon Dioxide & Diving Apparatus Carbon Dioxide & Diving Apparatus Testing for Re-Inspired Carbon Dioxide Mike F. Ward February 26, 2020 © Copyright 2020 Dive Lab® Inc. All rights reserved. 1 Rev. February 25, 2020 Carbon Dioxide & Diving Apparatus SECTION ONE PAGES 1.0 Understanding CO2 & Diving 1.1 Understanding the Effects of CO2 1.2 CO2 Production 1.3 Breathing Rate/ Work Rate 1.4 Re-inspired CO2 1.5 Primary Factors Influencing Re-inspired CO2 1.6 Dead Space 1.7 Gas Flow Path 1.8 Breathing Resistance 1.9 Improper Ventilation 1.10 Symptoms of CO2 Exposure 1.11 Minimizing CO2 for the Diver 1.12 Summary SECTION TWO 2.0 Measuring Re-inspired CO2 Concept 2.1 Breathing Rate/Work Rate 2.2 Primary Factors Influencing Re-inspired CO2 using a Breathing Simulator 2.3 Dead Space 2.4 Gas Flow Path 2.5 Breathing Resistance SECTION THREE 3.0 Basic Test Configuration 3.1 CO2 Sampling 3.2 System Calibration 3.3 CO2 Expression 3.4 CO2 Injection 3.5 Stabilizing End Tidal 3.6 Sample Delay 3.7 Understanding the Test Loop 3.8 Sample Catheter SECTION FOUR 4.0 European CE Breath by Breath Washout Testing © Copyright 2020 Dive Lab® Inc. All rights reserved. 2 Rev. February 25, 2020 Carbon Dioxide & Diving Apparatus ALPM Actual Liters Per Minute ATA Atmospheres Absolute - 1 ATA=14.7 psig BAR Bar - one bar = 14.5 psig BPM Breaths Per Minute CE Symbol for European Conformance ET End Tidal - the end of exhalation where gas flow stops ET CO2 End Tidal Carbon Dioxide - the level of CO2 in exhaled gas at the very end of exhalation EU European Union FSW Feet Sea Water J/L Joules Per Liter LPM Liters Per Minute MBR MILLIBARS - pressure measurement often used for atmospheric pressure readings and partial pressure reading of gases within a mixture of gases MSW Meter Sea Water PSI Pounds Per Square Inch PSIG Pounds Per Square Inch Gauge RMV Respiratory Minute Volume - the volume of gas moved in and out of the lungs in one minute.
    [Show full text]
  • Three from One = 4000 Magazi
    www.mcdoa.org.uk N A V AS MAGAzi totzsin Three from One = 4000 iiiiiiimmommhill111111111111111111111111111111111111111111111101111111111111111111miniiiimnum 11 •_„,,• Siebe Gorman present a now air compressor and cylinder charging decanting set, with an integrated control panel, which can be used for three distinct operations:— To charge large high pressure air storage cylinders to 40001b./sq.in. To decant air from storage cylinders into breathing apparatus or aqualung cylinders. To charge breathing apparatus cylin- ders direct from the compressor. filter and,control panel is mounted In a tubujik.Steel carrying frame and Neptune 4000 weighs-aiiiiroximately 400 lb. It can be Siebe Gorman's new high pressure used independently or incorporated compressor set is designed to provide in a static installation. a versatile unit for charging breathing apparatus or aqualung cylinders with clean, dry air to pressures between ;14,44, 1800 and 4000 p.s.i. Driven by either a `1AN Marineland—see page 9 Ut`, 4 stroke petrol engine or electric 01 ENGLAND -t motor, the air-cooled compressor has For further information, nii, write to 111111111111111141111 1111„i an output of 4.5 cu. ft. of nominal free Siebe Gorman & Co. Ltd., """"""1111111111IM11111111111111111111111 iiiiiiiiiimilimill111191111111111111111111111111111111111111111411 „1040 Neptune Works, Davis Road, F 0,40 air per minute. The complete appara- Chessington, Surrey. -.0.4640 tus, consisting of motor, compressor, Telephone: Lower Hook 8171/8 Printed by Coasby & Co. Ltd., St. James's Road, Southsea, Hai is www.mcdoa.org.uk Vol. 11 No. 1 2/- www.mcdoa.org.uk We specialise in EVERYTHING FOR THE UNDERWATER SPORTSMAN including the latest designs and all the better makes of LUNGS DIVING SUITS SWIMMING GEAR & EQUIPMENT Stainless steel Roles- Oyster, f37.
    [Show full text]
  • Mark V Diving Helmet
    Historical Diver, Number 5, 1995 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 06/10/2021 19:38:35 Link to Item http://hdl.handle.net/1834/30848 IDSTORI DIVER The Offical Publication of the Historical Diving Society U.S.A. Number 5 Summer 1995 "Constant and incessant jerking and pulling on the signal line or pipe, by the Diver, signifies that he must be instantly pulled up .... " THE WORLDS FIRST DIVING MANUAL Messrs. C.A. and John Deane 1836 "c:lf[{[J a:tk o{ eadz. u.adn l;t thi:1- don't di£ wllfzoul fz.a1Jin5 Co't'towe.J, dofen, pwu!.hau:d O'l made a hefmd a{ :toorh, to gfimju.e (o'r. !JOU'tul{ thl:1 new wo'l.fJ''. 'Wifl'iam 'Bube, "'Beneath 'J,opic dlw;" 1928 HISTORICAL DIVING SOCIETY HISTORICAL DIVER MAGAZINE USA The official publication of the HDSUSA A PUBLIC BENEFIT NON-PROFIT CORPORATION HISTORICAL DIVER is published three times a year C/0 2022 CLIFF DRIVE #119 by the Historical Diving Society USA, a Non-Profit SANTA BARBARA, CALIFORNIA 93109 U.S.A. Corporation, C/0 2022 Cliff Drive #119 Santa Barbara, (805) 963-6610 California 93109 USA. Copyright© 1995 all rights re­ FAX (805) 962-3810 served Historical Diving Society USA Tel. (805) 963- e-mail HDSUSA@ AOL.COM 6610 Fax (805) 962-3810 EDITORS: Leslie Leaney and Andy Lentz. Advisory Board HISTORICAL DIVER is compiled by Lisa Glen Ryan, Art Bachrach, Ph.D. J. Thomas Millington, M.D. Leslie Leaney, and Andy Lentz.
    [Show full text]