DIG Application Manual for Filter Hybridization.Indb

Total Page:16

File Type:pdf, Size:1020Kb

DIG Application Manual for Filter Hybridization.Indb 778/779 DIG Hyb ManualCover_1AK 30.07.2008 14:32 Uhr Seite 3 C M Y CM MY CY CMY K Probedruck DIG_Filter_ManualCover_RZ 01.08.2008 15:00 Uhr Seite 4 C M Y CM MY CY CMY K Intended use Our preparations are exclusively intended to be used in life science research applications.* They must not be used in or on human beings since they were neither tested nor intended for such utilization. Preparations with hazardous substances Our preparations may represent hazardous substances to work with. The dangers which, to our knowledge, are involved in the handling of these preparations (e.g., harmful, irritant, toxic, etc.), are separately mentioned on the labels of the packages or on the pack inserts; if for certain preparations such danger references are missing, this should not lead to the conclusion that the corresponding preparation is harmless. All preparations should only be handled by trained personnel. Preparations of human origin The material has been prepared exclusively from blood that was tested for Hbs antigen and for the presence of antibodies to the HIV-1, HIV-2, HCV and found to be negative. Nevertheless, since no testing method can offer complete assurance regarding the absence of infectious agents, products of human origin should be handled in a manner as recommended for any potentially infectious human serum or blood specimen. Liability The user is responsible for the correct handling of the products and must follow the instructions of the pack insert and warnings on the label. Roche Diagnostics shall not assume any liability for damages resulting from wrong handling of such products. Because of its outstanding tactile sensitivity, the Red-Eyed-Tree Frog (Agalychnis callidryas) was chosen to represent the high sensitivity of the DIG System. * exeption: instruments specifically intended for in-vitro diagnostic use. Impressum © 2008 by Roche Diagnostics GmbH Editorial Management: Doris Eisel Oliver Seth, PH.D. Stefanie Grünewald-Janho Bettina Kruchen, PH.D. Barbara Rüger, PH.D. Art Direction and Design: Designgruppe Fanz & Neumayer Schifferstadt Layout and Typesetting: ACTIVE ARTWARE Gruppe Saarbrücken Probedruck DIG Application Manual for Filter Hybridization __DIGDIG AApplicationpplication MManualanual fforor FFilterilter HHybridization.indbybridization.indb 1 005.08.20085.08.2008 110:20:490:20:49 __DIGDIG AApplicationpplication MManualanual fforor FFilterilter HHybridization.indbybridization.indb 2 005.08.20085.08.2008 110:20:560:20:56 Table of Contents Chapter 1 Introduction Introduction to the DIG System and the DIG Application Manual .......................8 An Overview of the DIG Nonradioactive Nucleic Acid Labeling and Detection System ............................................................................................................8 An Overview of the DIG Application Manual ............................................................12 Chapter 2 DIG Basics 1. Introduction ............................................................................................................. 16 2. DIG Labeling ........................................................................................................... 17 2.1 Overview of Nonradioactive DIG Labeling Methods ..................................18 2.2 Comparison of PCR Labeling Random Primed Labeling and RNA Labeling ...................................................................................................20 3. Evaluation of Probe Labeling Effi ciency ................................................... 23 3.1 Overview of Direct Detection Procedure .........................................................23 3.2 Analysis of PCR-labeled Probes by Gel Electrophoresis ........................... 25 4. Electrophoresis of Target Nucleic Acids on Agarose Gels ............ 26 4.1 Amount of Target Nucleic Acid To Load ..........................................................26 4.2 Pouring and Running the Agarose Gel ............................................................26 5. Blot Transfer of Target Nucleic Acids to a Membrane ..................... 28 5.1 Comments on Blot Membranes..........................................................................30 6. Hybridization of Probe to Target ...................................................................31 6.1 Concentration of DIG-labeled Probe During Hybridization .....................31 6.2 Determining an Optimal Hybridization Temperature ..................................31 6.3 Components of the Hybridization Buffer .........................................................33 6.4 Hybridization Time Required ................................................................................34 7. Stringent Washes of Blot .................................................................................. 35 8. Detection of Probe-Target Hybrids..............................................................36 9. Stripping and Reprobing the Membrane ................................................38 10. Equipping a DIG Labeling and Detection Lab ......................................40 11. Product Literature and Support Material ................................................ 43 12. DIG Product Selection Guide and Ordering Information ...............44 3 __DIGDIG AApplicationpplication MManualanual fforor FFilterilter HHybridization.indbybridization.indb 3 005.08.20085.08.2008 110:20:560:20:56 Table of Content Chapter 3 Procedures for Nonradioactive 1. Introduction .............................................................................................................54 Labeling and Detection 2. Techniques for DIG Labeling of Hybridization Probes ..................... 55 2.1 Random Primed Labeling of DNA Probes (High Yield Method) ............ 57 2.1.1 Materials Required for Random Primed Labeling .......................................58 2.1.2 Procedures ..................................................................................................................58 2.1.3 Getting the Best Results from Random Primed Labeling .........................62 2.2 PCR Labeling of DNA Probes..............................................................................64 2.2.1 Materials required for PCR Labeling ................................................................64 2.2.2 Procedures .................................................................................................................. 65 2.2.3 Getting the Best Results from PCR Labeling ................................................ 70 2.2.4 Typical Results with DIG-labeled Probes Generated by PCR.................. 73 2.3 Transcriptional Labeling of RNA Probes .........................................................74 2.3.1 Materials Required for RNA Probe Labeling .................................................75 2.3.2 Procedures .................................................................................................................. 77 2.3.3 Getting the Best Results from Transcriptional Labeling ............................81 2.3.4 Typical Results with DIG-labeled RNA probes .............................................83 2.4 DIG Oligonucleotide Labeling .............................................................................84 2.5 Estimation of Probe Yield by the Direct Detection Procedure ................85 2.5.1 Materials Required for Direct Detection Procedure ...................................85 2.5.2 Procedures ..................................................................................................................86 3. Techniques for Hybridization of DIG-labeled Probes to a Blot ...94 3.1 Hybridization of DNA Probes to a Southern Blot .........................................94 3.1.1 Materials Required for Electrophoresis, Blotting, and Hybridization ....95 3.1.2 Procedures ..................................................................................................................96 3.1.3 How To Use DIG-labeled Oligonucleotide Probes To Detect DNA Targets on a Southern Blot .................................................102 3.2 Hybridization of RNA Probes to a Northern Blot .......................................103 3.2.1 Materials Required for Electrophoresis, Blotting, and Hybridization ..103 3.2.2 Procedures ................................................................................................................105 3.2.3 How To Use DIG-labeled DNA Probes To Detect RNA Targets on a Northern Blot ...........................................................................................................111 3.3 Getting the Best Results from Blots ................................................................112 3.3.1 Critical Hints about Electrophoresis, Blotting, and Hybridization ........112 3.3.2 Troubleshooting the Hybridization Blot ........................................................114 4 DIG Application Manual for Filter Hybridization __DIGDIG AApplicationpplication MManualanual fforor FFilterilter HHybridization.indbybridization.indb 4 005.08.20085.08.2008 110:20:560:20:56 Table of Content Chapter 3 Procedures for Nonradioactive 4. Techniques for Detection of Hybridization Probes on a Blot .....115 Labeling and Detection 4.1 Chemiluminescent Methods for Detection of Probes on a Blot ...........115 4.1.1 Materials Required for Chemiluminescent Detection ..............................116 4.1.2 Procedure ..................................................................................................................116 4.1.3 Troubleshooting the Chemiluminescent Detection
Recommended publications
  • Protein Blotting Guide
    Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells
    [Show full text]
  • Hybridization Probes the Most Direct Way to Monitor PCR Amplification for Quantification and Mutation Detection
    LightCycler™ Hybridization Probes The most direct way to monitor PCR amplification for quantification and mutation detection. Brian Erich Caplin1, Randy P. Rasmussen1, Philip S. Bernard2, and Carl T. Wittwer1,2 1 ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108 2 Department of Pathology, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, UT 84132 IIntroduction The polymerase chain reaction (PCR) is perhaps the from the donor probe. The acceptor probe is labeled most powerful modern tool available for today's with a LightCycler specific fluorophore, LightCycler molecular biologist. Its extraordinary sensitivity Red 640 (LC Red 640). Fluorescence from the accep- allows for the detection of only a few molecules of tor probe will only occur when both the donor probe DNA. The sensitivity of PCR is often complimented by and the acceptor probe have annealed to the prod- the specificity of hybridization techniques such as uct. This process of transferring the energy from one Southern blotting or oligonucleotide hybridization. fluorescent dye, to a second fluorescent dye is called Amplification and hybridization techniques are Fluorescence Resonance Energy Transfer (FRET; R E usually performed separately. However, with the Figure 1). Hybridization probes use FRET to provide L C recent development of LightCycler™ technology, PCR a homogeneous real-time measure of amplification Y C amplification and hybridization probe detection occur product formation. T H G simultaneously in homogeneous solution. That is, I both amplification and hybridization analysis can pro- L ceed in the same reaction. Because the LightCycler Instrument uses rapid cycling techniques (12), the entire process is finished in 15–30 min.
    [Show full text]
  • Molecular Biology and Applied Genetics
    MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included.
    [Show full text]
  • DIG Application Manual for Nonradioactive in Situ Hybridization 4Th Edition
    DIG_InSitu_ManualCover_RZ 30.07.2008 17:28 Uhr Seite 3 C M Y CM MY CY CMY K DIG Application Manual for Nonradioactive In Situ Hybridization 4th Edition Probedruck DIG_InSitu_ManualCover_RZ 30.07.2008 17:28 Uhr Seite 4 C M Y CM MY CY CMY K Intended use Our preparations are exclusively intended to be used in life science research applications.* They must not be used in or on human beings since they were neither tested nor intended for such utilization. Preparations with hazardous substances Our preparations may represent hazardous substances to work with. The dangers which, to our knowledge, are involved in the handling of these preparations (e.g., harmful, irritant, toxic, etc.), are separately mentioned on the labels of the packages or on the pack inserts; if for certain preparations such danger references are missing, this should not lead to the conclusion that the corresponding preparation is harmless. All preparations should only be handled by trained personnel. Preparations of human origin The material has been prepared exclusively from blood that was tested for Hbs antigen and for the presence of antibodies to the HIV-1, HIV-2, HCV and found to be negative. Nevertheless, since no testing method can offer complete assurance regarding the absence of infectious agents, products of human origin should be handled in a manner as recommended for any potentially infectious human serum or blood specimen. Liability The user is responsible for the correct handling of the products and must follow the instructions of the pack insert and warnings on the label. Roche Diagnostics shall not assume any liability for damages resulting from wrong handling of such products.
    [Show full text]
  • Real-Time PCR Detection Chemistry
    Clinica Chimica Acta 439 (2015) 231–250 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Invited critical review Real-time PCR detection chemistry E. Navarro a,⁎, G. Serrano-Heras a,M.J.Castañoa,J.Solerab a Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain b Internal Medicine Department, General University Hospital, Hermanos Falcó 37, 02006 Albacete, Spain article info abstract Article history: Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology Received 18 March 2014 merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to Received in revised form 9 October 2014 monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination Accepted 11 October 2014 of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, Available online 22 October 2014 which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative fl Keywords: to conventional PCR. The present paper attempts to provide a rigorous overview of uorescent-based methods Real-time PCR for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chem- DNA detection chemistries istries have been classified into two main groups; the first group comprises double-stranded DNA intercalating DNA binding dye molecules,
    [Show full text]
  • In Situ Hybridization Probe Design and Synthesis
    Ben Vincent and Gavin Rice, June 2019. Adapted from Rebeiz Lab protocols. In situ hybridization probe design and synthesis ! Reagents Design probes Nuclease Free H20 We design 200-300bp probes, although we note that other labs design longer HyClone HyPure Molecular Biology Grade probes for fluorescent in situ hybridization experiments in Drosophila (http:// Water. GE SH30538.02 fly-fish.ccbr.utoronto.ca/). DNeasy Blood and Tissue Kit" Qiagen catalog #69504 For a given gene of interest, Identify a large exon using the Get Dec- orated FASTA tool from flybase.org. Ensure that exon is present in PCR Master Mix Phusion Flash High-Fidelity PCR Master Mix. all annotated transcripts using the UCSC Genome Browser. ThermoFisher F548S Use Primer3Plus to select primers that will amplify a 200-300 bp re- T7 RNA polymerase and buffer gion of the selected exon. Use the In Silico PCR tool from the UCSC ThermoFisher EP0112 Genome Browser to ensure that the selected pair will amplify a single DIG-labelled NTP mix region from the genome. If desired, use the In Silico PCR tool to Roche / Sigma 11277073910 screen suggested primer pairs from Primer3Plus for their ability to RNAse inhibitor amplify the same region of DNA in multiple Drosophila species. SUPERase-in, ThermoFisher AM 2694 Order your selected primers using IDTDNA or another service, en- Linear polyacrylamide VWR K548-1mL suring that the reverse primer (the primer that forms the 5’ end of the antisense strand) has a T7 RNA polymerase binding sequence (5’ Formamide TAATACGACTCACTATAG 3’) on its 5’ end. Fisher, BP 227-500 Amplify probe template Isolate genomic DNA from your experimental strain using the (Qia- gen) DNeasy kit.
    [Show full text]
  • Input Template Epg Pathshala
    Paper No. : 16 Molecular Genetics Module : 21 Methods for gene identification: In-situ Hybridization Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Co-Principal Investigator: Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator: Prof. Namita Agrawal Department of Zoology, University of Delhi Content Writer: Dr. Jasvinder Kaur, Dr. Poonam Sharma, Gargi College, University of Delhi Content Reviewer: Dr. Surajit Sarkar Department of Genetics, South Campus, University of Delhi 1 ZOOLOGY Molecular Genetics In-situ Hybridization Description of Module Subject Name ZOOLOGY Paper Name Zool 016: Molecular Genetics Module Name/Title Methods for gene identification Module ID M21: In-situ Hybridization Keywords In-situ Hybridization, Probe, Radioactive label, Fish, Chromosome painting Glossary Avidin: Biotin binding protein, found in the egg whites of birds, amphibians and reptiles (produced in their oviducts). Chromosome mapping: Technique using which genes belonging to same gene families can be detected by hybridization with suitable labeled probes. Chromosome painting: Multiple fluorochromes can be used in FISH technique which produces a multicolored and painted effect with unique color at each hybridization site in the chromosomes being studied giving the effect of chromosome painting. Fluorescent in-situ hybridization:It is a cytogenetic technique that uses fluorescent probes to detect the presence or absence of specific DNA sequences on chromosomes. Hybridization probe:Probe is a fragment of DNA or RNA of variable length, which can be radioactively labelled. Used to detect nucleotide sequence, complementary to the sequence in the probe. Immunohistochemistry: Technique used to localize proteins such as antibodies in tissue sections by antigen-antibody interactions.
    [Show full text]
  • Use of Dot Blots Analysis in the Separation of Anti-HIV Antibodies in Animals
    aphy & S r ep og a t r a a t m i o o r n Justiz Vaillant et al., J Chromat Separation Techniq 2013, 4:5 h T e C c f Journal of Chromatography h DOI: 10.4172/2157-7064.1000181 o n l i a q ISSN:n 2157-7064 u r e u s o J Separation Techniques Research Article OpenOpen Access Access Use of Dot Blots Analysis in the Separation of Anti-HIV Antibodies in Animals Angel Alberto Justiz Vaillant1*, Norma McFarlane-Anderson2, Patrick Eberechi Akpaka1, Monica P Smikle3, Niurka Ramirez4 and Armando Cadiz5 1Department of Para-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago 2Department of Basic Medical Sciences, The University of the West Indies, Mona campus, Jamaica 3Department of Microbiology, The University Hospital of West Indies, Mona campus, Jamaica 4Department of Internal Medicine, Freyre de Andrade Hospital, Havana city, Cuba 5Carlos J. Finlay Vaccine and Serum Institute, Havana, Cuba Abstract In this study antibodies against the fragment 254-274 from gp120 of human immunodeficiency virus (HIV) were produced in cats, rats and chicken that can be used as reagents in the preparation of diagnostic kits. Enzyme linked immunosorbent assay showed the presence of anti-HIVgp120 antibodies. Dot blot analysis was used as a separation technique and confirmed the results, proving its efficiency in the detection of proteins. This study also demonstrated that orally given antibodies to an animal as oral vaccine, initiated immune responses of the antibodies in the animals which may be useful for protection, antibody purification and development of reagents for immunodiagnostic procedures.
    [Show full text]
  • Snail1 Controls Telomere Integrity and Transcription and Telomerase Expression
    Department of Experimental and Health Sciences Faculty of Health and Life Sciences Universitat Pompeu Fabra Doctoral Thesis 2017 Snail1 controls telomere integrity and transcription and telomerase expression Dissertation presented by Núria Gonzàlez Busqué For the degree of Doctor in Biomedical Research Work carried out under the supervision of Dr. Antonio García de Herreros and Sílvia Canudas Puig in the Epithelial to Mesenchymal Transition and Tumor Progression Group, the Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM) Barcelona 2017 Dr. Sílvia Canudas Puig Dr. Antonio García de Herreros Núria Gonzàlez Busqué (Thesis co-director) (Thesis co-director) (PhD Student) Temps, Només un moment, D’abraçar la gent És curt però és intens És qüestió de temps. Temps, D’ensenyar les dents De cantar el que sents D’encendre el present Val molt més que l’or que tens TOTHOM HO SAP A la meva mare A la maternitat, per haver-me revolucionat la vida iv AKNOWLEDGMENTS Mare meva!!! Realitzar i escriure aquesta tesi ha sigut un gran repte per mi….Tota la meva vida he tingut clar que volia ser “mare-metge”, i ho sóc! Però també tenia molta curiositat per “investigar”: de petita tenia un microscopi que utilitzava molt sovint per mirar la diversitat de coses que us pogueu imaginar, i també m’encantava el “cheminova” (els de la meva generació segur que sabeu quin joc és!). Així que poder estar aquests anys fent recerca bàsica i manufacturant la tesi amb les meves pròpies mans ha sigut moltes coses, una de les quals és complir un somni que tenia de petita.
    [Show full text]
  • Optimization of RNA in Situ Hybridization for Mrna Localization Detection in Mature Tissue of Cucumber Seedlings
    plants Article Optimization of RNA In Situ Hybridization for mRNA Localization Detection in Mature Tissue of Cucumber Seedlings Zixi Liu y, Xi Hu y, Jing Nie, Xiaojun Li, Qing Wang, Wenqian Liu, Tao Wang, Xiaohong Lu, Shunli Gao, Lihong Gao and Wenna Zhang * Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; [email protected] (Z.L.); [email protected] (X.H.); [email protected] (J.N.); [email protected] (X.L.); [email protected] (Q.W.); [email protected] (W.L.); [email protected] (T.W.); [email protected] (X.L.); [email protected] (S.G.); [email protected] (L.G.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 7 October 2020; Accepted: 27 October 2020; Published: 29 October 2020 Abstract: Cucumber (Cucumis sativus L.) is one of the main vegetable crops in China. The physiological cultivation mechanism and gene function characteristics of cucumber are of great significance to the construction of modern agriculture. Due to the low genetic transformation rate of cucumber, only in situ hybridization, which does not involve the progress of gene modified transformation, is convenient to study mRNA localization, so it is more suitable for determination on mRNA localization in the mature tissue of cucumber. At present, the existing in situ hybridization technology system is more suitable for cucumber meristem than for the mature tissue of cucumber seedlings. Therefore, we optimized
    [Show full text]
  • Chapter 5 Mapping Genomes
    4/8/2020 Mapping Genomes - Genomes - NCBI Bookshelf NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Brown TA. Genomes. 2nd edition. Oxford: Wiley-Liss; 2002. Chapter 5 Mapping Genomes Learning outcomes When you have read Chapter 5, you should be able to: Explain why a map is an important aid to genome sequencing Distinguish between the terms ‘genetic map’ and ‘physical map’ Describe the different types of marker used to construct genetic maps, and state how each type of marker is scored Summarize the principles of inheritance as discovered by Mendel, and show how subsequent genetic research led to the development of linkage analysis Explain how linkage analysis is used to construct genetic maps, giving details of how the analysis is carried out in various types of organism, including humans and bacteria State the limitations of genetic mapping Evaluate the strengths and weaknesses of the various methods used to construct physical maps of genomes Describe how restriction mapping is carried out Describe how fluorescent in situ hybridization (FISH) is used to construct a physical map, including the modifications used to increase the sensitivity of this technique Explain the basis of sequence tagged site (STS) mapping, and list the various DNA sequences that can be used as STSs Describe how radiation hybrids and clone libraries are used in STS mapping describe the techniques and strategies used to obtain genome sequences. DNA sequencing is obviously paramount among these techniques, but sequencing has one major limitation: even with the most sophisticated technology it is rarely possible to obtain a sequence of more than about 750 bp in a single experiment.
    [Show full text]
  • Advancement of Nucleic Acid Biosensors Based on Morpholino
    American Journal of Biomedical Sciences ISSN: 1937-9080 nwpii.com/ajbms Advancement of Nucleic Acid Biosensors Based on Morpholino Weiwen Hu,1 Ge Fu2, Jinming Kong1*, Shufeng Zhou3, Nikki Scafa4, Xueji Zhang1,4,5* 1 School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China. 2 School of Pharmaceutical Sciences, Peking University, Beijing 100083,P. R. China. 3 College of Pharmacy, University of South Florida, East Fowler Ave, Tampa, Florida 33620-4202, USA. 4 World Precision Instruments, Sarasota, Florida, 34240, USA. 5 Department Of Chemistry, University of South Florida, East Fowler Ave, Tampa, Florida 33620-4202, USA. *Corresponding Author Jinming Kong, or Prof. Xueji Zhang School of Environmental and Biological Engineering Nanjing University of Science & Technology Nanjing 210094 P. R. China. Email: [email protected], [email protected] (Prof. Xueji Zhang) Received: 1 March 2015; | Revised: 12 March 2015; | Accepted: 22 March 2015 Abstract Morpholino has drawn considerable attention as a result of its advantageous properties. In the past few decades, morpholino has demonstrated in applications as being the premier knockdown tool in developmental biology because of its cytosolic delivery in the embryos through micro-injection. Morpholino has outstanding affinity for nucleic acids and the destabilizing effect of mismatches in morpholino- containing heterodimers is higher than in a DNA or RNA double strand. Therefore, morpholino-based nucleic acid biosensors have high sensitivity and specificity for nucleic acid detection. In this review, the characteristics of morpholino are briefly introduced, followed by highlights of nucleic acid biosensors based on morpholino, including fabrication, analytical characteristics and biological applications.
    [Show full text]