Protein Blotting Guide

Total Page:16

File Type:pdf, Size:1020Kb

Protein Blotting Guide Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells 13 Opti-4CN™ and Amplified Opti-4CN Substrate Trans-Blot® SD Semi-Dry Cell 14 and Detection Kits 38 Detection 66 Trans-Blot® Turbo™ System 14 Chemiluminescence Detection 38 Immunodetection 66 ™ ™ ™ Microfiltration Apparatus 14 Immun-Star AP Kits, Clarity and Clarity Max Multiscreen Apparatus 68 ® ® Bio-Dot and Bio-Dot SF Apparatus 14 Western ECL Substrates 40 Total Protein Detection 68 Power Supplies for Electrophoretic Transfers 15 Fluorescence Detection 40 PowerPac™ HC Power Supply 15 Other Detection Methods 41 PowerPac™ Universal Power Supply 15 Bioluminescence 41 Appendix 70 Chemifluorescence 42 Chapter 3 Membranes and Transfer Buffers 17 Autoradiography 42 Protein Standards for Blotting 70 Immunogold Labeling 42 Unstained Standards for Protein Blotting 71 Membranes and Blotting Papers 18 Stripping and Reprobing 42 Precision Plus Protein Unstained Standards 71 Nitrocellulose and Supported Nitrocellulose 18 Prestained Standards for Western Blotting 72 Polyvinylidene Difluoride (PVDF) 18 Imaging — Analysis and Documentation 43 Precision Plus Protein Prestained Standards 72 Immun-Blot® and Immun-Blot LF PVDF for Western Blotting 18 Luminescence Detection 43 Precision Plus Protein™ WesternC™ Standards 73 Sequi-Blot™ PVDF for Protein Sequencing 18 Digital Imaging for Fluorescence, Chemifluorescence, Blotting Filter Papers 19 and Colorimetric Detection 44 Glossary 74 Membrane/Filter Paper Sandwiches 19 Autoradiography 44 Analysis Software 44 References and Related Reading 78 Transfer Buffers 19 Towbin and Bjerrum Schafer-Nielsen Buffers Ordering Information 80 (Tris/Glycine Buffers) 20 Part 2 Methods 47 CAPS Buffer 20 Discontinuous Tris-CAPS Buffer System Protocols 48 (for Semi-Dry Transfer) 20 Electrophoretic Transfers 48 Dunn Carbonate Buffer 21 Reagent and Materials Preparation 48 Other Buffers 21 Tank Blotting Procedure 49 Prepare the Gel and Membrane Sandwich 49 Chapter 4 Transfer Conditions 23 Assemble the Tank and Program the Power Supply 50 General Workflow – Electrophoretic Transfer 24 Semi-Dry Blotting Procedure 51 Trans-Blot® Turbo™ Blotting Procedure 52 Power Conditions 24 Microfiltration 53 Useful Equations 24 Blot Stripping and Reprobing 54 Joule Heating and Other Factors Affecting Transfer 24 Total Protein Detection 55 Relationship Between Power Settings and Transfer Times 24 SYPRO Ruby Stain 55 High-Intensity Field Transfers 24 Ponceau S Stain 55 Standard Field Transfers 26 Colloidal Gold Total Protein Stain 55 Selecting Power Supply Settings 26 Immunodetection 56 Transfers Under Constant Voltage 26 Notes for Multiplex Detection 56 Transfers Under Constant Current 26 Notes for Chemiluminescence Detection 57 Transfers Under Constant Power 26 Notes for Fluorescence Detection 57 General Guidelines for Transfer Buffers and Note for Protein G-HRP Detection 57 Transfer Conditions 26 Notes for Amplified Opti-4CN™ Detection 57 Notes for Amplified AP Detection 57 2 3 Protein Blotting Guide Theory and Products PART 1 Theory and Products CHAPTER 1 Overview of Protein Blotting Protein blotting, the transfer of proteins to solid-phase membrane supports, is a powerful and popular technique for the visualization and identification of proteins. When bound to membranes, proteins are readily accessible for immunological or biochemical analyses, quantitative staining, or demonstration of protein- protein or protein-ligand interactions. This chapter provides an overview of the methods and workflow of protein blotting, which involves two phases: transfer and detection. 4 5 Protein Blotting Guide Theory and Products Transfer a result of the need to probe for proteins that were The first phase of protein blotting is the transfer step, inaccessible to antibodies while in polyacrylamide Protein Blotting Workflow which involves moving the proteins from a solution or gels. Western blotting involves the transfer of proteins gel and immobilizing them on a synthetic membrane that have been separated by gel electrophoresis onto support (blot). Proteins can be transferred to a membrane, followed by immunological detection membranes using a number of methods but the most of these proteins. Western blotting combines the Select the method common are electrophoretic transfer and microfiltration resolution of gel electrophoresis with the specificity of (dot blotting). Though diffusion or capillary blotting immunoassays, allowing individual proteins in mixtures methods may also be used to transfer proteins from to be identified and analyzed. Method selection depends largely on the starting sample gels, generally electrophoretic transfer is used to Since the development of immunoblotting techniques, (liquid protein sample or gel) transfer proteins following electrophoretic separation other probing and detection techniques have been by native or SDS-polyacrylamide gel electrophoresis developed for functional protein characterization (for (SDS-PAGE) and microfiltration is used to transfer a review, see Kurien and Scofield 2003). This manual proteins that are in solution. summarizes the most commonly used techniques, Detection provides information about the wide selection of blotting apparatus and detection reagents available from Bio-Rad, The second phase, detection, entails probing the Select the equipment and offers troubleshooting tips and technical advice. membrane with either a total protein stain or primary antibody specific to the protein of interest and General Considerations and Workflow Consider the experimental approach, sample subsequent visualization of the labeled proteins. The protein blotting workflow involves selection of the format, and desired resolution and throughput This involves a number of steps, including the appropriate method, apparatus, membrane, buffer, selection of the appropriate method, reagents, and and transfer conditions. Once proteins are immobilized imaging equipment. on a membrane, they are available for visualization, The most commonly used protein blotting technique, detection, and analysis. western blotting (immunoblotting), was developed as Prepare the reagent Selecting the appropriate membrane and transfer buffer is critical to successful protein transfer. Consider the size and charge of the proteins, the transfer method, and the binding properties of the membrane Perform the transfer Set up the transfer apparatus. For electrophoretic transfer, select the transfer conditions; use the highest electric field strength (V/cm) possible within the heat dissipation capabilities of the system Detect and image the protein The choice of staining or detection technique is determined by sensitivity requirements and the imaging equipment available 6 7 Protein Blotting Guide Theory and Products CHAPTER 2 Methods and Instrumentation The initial step in any blotting experiment is the selection of transfer method and appropriate transfer instrumentation. Method selection depends largely on the starting sample (liquid protein sample or gel); the instrumentation depends on the sample format and desired resolution and throughput. This chapter describes a number of the most common techniques and systems used today. 8 9 Protein Blotting Guide Theory and Products Protein Blotting Methods transfer or may cause the transfer buffer to lose its The two most common methods for protein buffering capacity. In addition, excessive heat may + – transfer are (Fig. 2.1): cause the gel to deteriorate and stick to the membrane. The major limitation of any electrophoretic transfer n Electrophoretic transfer — for proteins already method is the ability of the chamber to dissipate heat. separated in gels (for example, following + – polyacrylamide gel electrophoresis, or PAGE), There are two main types of electrophoretic blotting + ++ + ++ - electrophoretic transfer preserves the high- apparatus and transfer procedures (Table 2.1): – – resolution separation of proteins by PAGE n Tank transfer systems — gels and membranes are n Microfiltration — for proteins in solution, submerged under transfer buffer in
Recommended publications
  • Supplementary Materials and Method Immunostaining and Western Blot
    Supplementary Materials and Method Immunostaining and Western Blot Analysis For immunofluorescence staining, mouse and human cells were fixed with 4% paraformaldehyde- PBS for 15 min. Following Triton-X100 permeabilization and blocking, cells were incubated with primary antibodies overnight at 4°C following with Alexa 594-conjugated secondary antibodies at 4°C for 1 hour (Thermo Fisher Scientific, 1:1000). Samples were mounted using VECTASHIELD Antifade Mounting Medium with DAPI (Vector Laboratories) and immunofluorescence was detected using Olympus confocal microscopy. For western blot analysis, cells were lysed on ice using RIPA buffer supplemented with protease and phosphatase inhibitors (Sigma). Primary Antibodies for Immunostaining and Western Blot Analysis: Yap (14074, Cell Signaling), pYAP (4911, Cell Signaling), Lats1 (3477, Cell Signaling), pLats1( 8654, Cell Signaling), Wnt5a (2530, Cell Signaling), cleaved Caspase-3 (9661, Cell Signaling), Ki-67 (VP-K451, Vector Laboratories), Cyr61 (sc-13100, Santa Cruz Biotechnology), CTGF (sc-14939, Santa Cruz Biotechnology), AXL (8661, Cell Signaling), pErk (4376, Cell Signaling), pMEK (4376, Cell Signaling), Ck-19 (16858-1-AP, Proteintech), Actin (A2228, Sigma Aldrich), Vinculin (V4139, Sigma Aldrich), Kras (sc-30, Santa Cruz Biotechnology). Ectopic expression of YAP1 and WNT5A in mouse and human cells To generate YAP1S127A-expressing stable Pa04C cells, Pa04C cells were transfected with a linearized pcDNA3.1 plasmid with or without YAP1 cDNA containing S127A substitution. Two days post-transfection using Lipofectamine1000, cultures were selected in G418 (Sigma) and single clones were picked and expanded for further analysis. Overexpression of YAPS127A or WNT5A in human or mouse cells other than Pa04C were acheieved with lentivral infection. Briefly, lentivirus infection was performed by transfecting 293T cells with either GFP control, YAP1S127A, or WNT5A cloned in pHAGE lentivirus vector {EF1α promoter-GW-IRES-eGFP (GW: Gateway modified)}.
    [Show full text]
  • Agarose Gel Electrophoresis
    Laboratory for Environmental Pathogen Research Department of Environmental Sciences University of Toledo Agarose gel electrophoresis Background information Agarose gel electrophoresis of DNA is used to determine the presence and distinguish the type of nucleic acids obtained after extraction and to analyze restriction digestion products. Desired DNA fragments can be physically isolated for various purposes such as sequencing, probe preparation, or for cloning fragments into other vectors. Both agarose and polyacrylamide gels are used for DNA analysis. Agarose gels are usually run to size larger fragments (greater than 200 bp) and polyacrylamide gels are run to size fragments less than 200 bp. Typically agarose gels are used for most purposes and polyacrylamide gels are used when small fragments, such as digests of 16S rRNA genes, are being distinguished. There are also specialty agaroses made by FMC (e.g., Metaphor) for separating small fragments. Regular agarose gels may range in concentration from 0.6 to 3.0%. Pouring gels at less or greater than these percentages presents handling problems (e.g., 0.4% agarose for genomic DNA partial digests requires a layer of supporting 0.8% gel). For normal samples make agarose gels at 0.7%. The chart below illustrates the optimal concentrations for fragment size separation. The values listed are approximate and can vary depending on the reference that is used. If you do not know your fragment sizes then the best approach is to start with a 0.7% gel and change subsequently if the desired separation is not achieved. Nucleic acids must be stained prior to visualization. Most laboratories use ethidium bromide but other stains (e.g., SYBR green, GelStar) are available.
    [Show full text]
  • 890 Part 1238—Microforms Records Management
    § 1237.30 36 CFR Ch. XII (7–1–10 Edition) (h) Document information about dig- 40–2007 (incorporated by reference, see ital photographic images as they are § 1237.3). produced. For permanent or unsched- (3) Follow the packing and shipping uled images descriptive elements must of nitrate film as specified in Depart- include: ment of Transportation regulations (49 (1) An identification number; CFR 172.101, Hazardous materials table; (2) Information about image content; 172.504, Transportation; 173.24, Stand- (3) Identity and organizational affili- ard requirements for all packages; and ation of the photographer; 173.177, Motion picture film and X-ray (4) Existence of any copyright or film—nitrocellulose base). other potential restrictions on image (b) Agencies must inspect cellulose- use; and acetate film periodically for an acetic (5) Technical data including file for- odor, wrinkling, or the presence of mat and version, bit depth, image size, crystalline deposits on the edge or sur- camera make and model, compression face of the film that indicate deteriora- method and level, custom or generic tion. Agencies must notify the Na- color profiles (ICC/ICM profile), and, tional Archives and Records Adminis- where applicable, Exchangeable Image tration, Modern Records Program File Format (EXIF) information em- (NWM), 8601 Adelphi Road, College bedded in the header of image files by Park, MD 20740, phone number (301) certain digital cameras. 837–1738, immediately after inspection (i) Provide a unique file name to about deteriorating permanent or un- identify the digital image. scheduled audiovisual records com- (j) Develop finding aids sufficiently posed of cellulose acetate so that they detailed to ensure efficient and accu- can be copied by the agency prior to rate retrieval.
    [Show full text]
  • SOP Template Northern Blotting with P-32
    Standard Operating Procedure Procedure Northern Blotting using 32P Department Location SOP Prepared By: Section 1: Purpose Northern blotting is a standard method for the detection and quantification of RNA from a cell. This is done by isolating and purifying RNA and using a radioactively-labeled DNA or RNA probe to hybridize to and detect the RNA. Using this technique, temporal and spatial location of RNA expression can be found8. Unlike RT-PCR (real-time PCR), which quantifies the amount of RNA or DNA at various times, Northern blotting can be used not only to quantify but also determine the size of the RNA. It is also useful to perform Northern blotting when studying transfer RNA (tRNA), which appears as the two lowest bands on a gel1. The probes used in Northern blotting do not have to be radioactive, but radioactive probes still have the greatest sensitivity. Quantifying mRNA of tRNA can provide insight into gene expression in cells that are exposed to different environments. Section 2: Personal Protective Equipment and Survey Equipment PPE: • Nitrile Gloves • Lab coat or lab gown • Proper enclosed shoes • Safety glasses Other Equipment: • Geiger counter • Personal chest dosimeter Section 3: Radioactive Material 32P, specific type varies according to what procedure is followed for probe design Supplier: Perkin Elmer Starting activity: 10 mCi/mL Typical use quantities: no more than 10uCi per experiment • Radioactive material (RAM) benchtop exposure time: ~10-20 minutes Activity used per experiment: _______________ RAM handling time: _______________ Frequency of experiment: _______________ Section 4: Potential Hazards • 32P is a high-energy beta emitter and has a half-life of 14.29 days.
    [Show full text]
  • Glycoprotein Detection with the Odyssey Infrared Imaging System
    Glycoprotein Detection with the Odyssey ® Infrared Imaging System Julie A. Champoux, Kristi L.H. Ambroz, Joseph B. Hwang, William M. Volcheck, and Amy R. Schutz-Geshwender LI-COR Biosciences, Lincoln, NE 68504 INTRODUCTION bination of lectins can also be used to dissect the Glycosylation is one of the most common and carbohydrate composition of a target protein. important events in post-translational modifica- For more information about IRDye products tion, with over half of all proteins believed to be used in this study, go to http://www.licor.com/bio/ glycosylated.1 Cellular glycoconjugates play reagents/irdyes.jsp. important roles in many biological processes and have been implicated in cancer development, MATERIALS AND METHODS retrovirus infection and other diseases. Carbohy- Sensitivity of biotinylated Con A / IRDye drate-binding proteins known as lectins bind to 800CW-streptavidin and IRDye 800CW-Con A specific oligosaccharides, and can serve as markers Two-fold serial dilutions of α2-macroglobulin, to identify certain cell types or cellular compo- glucose oxidase and RNAse B (Sigma Cat# nents. Lectins have very high binding specificity M6159, 49178 and NEB Cat# P7817S were and have been used to characterize and purify mixed and separated on 4-12% polyacrylamide oligosaccharides.2 This application note describes Tris-glycine gels (Novex/Invitrogen). Samples the use of lectins to detect glycoproteins in West- were electrophoretically transferred onto nitro- ern blot format using the Odyssey® Infrared cellulose membrane (Osmonics). For all blots in Imaging System. this study, blocking was carried out with Odyssey Concanavalin A (Con A) is a carbohydrate- Blocking Buffer (LI-COR, Part # 927-40000) for 1 h binding protein that binds specifically to the at room temperature; washing was performed in most commonly occurring sugars: α-D-mannose, PBST (PBS + 0.1% Tween®-20) for 4 x 5 min, fol- α-D-glucose and, with lower affinity, α-N-acetyl- lowed by a 5 min rinse in PBS before imaging.
    [Show full text]
  • Blotting Techniques Blotting Is the Technique in Which Nucleic Acids Or
    Blotting techniques Blotting is the technique in which nucleic acids or proteins are immobilized onto a solid support generally nylon or nitrocellulose membranes. Blotting of nucleic acid is the central technique for hybridization studies. Nucleic acid labeling and hybridization on membranes have formed the basis for a range of experimental techniques involving understanding of gene expression, organization, etc. Identifying and measuring specific proteins in complex biological mixtures, such as blood, have long been important goals in scientific and diagnostic practice. More recently the identification of abnormal genes in genomic DNA has become increasingly important in clinical research and genetic counseling. Blotting techniques are used to identify unique proteins and nucleic acid sequences. They have been developed to be highly specific and sensitive and have become important tools in both molecular biology and clinical research. General principle The blotting methods are fairly simple and usually consist of four separate steps: electrophoretic separation of protein or of nucleic acid fragments in the sample; transfer to and immobilization on paper support; binding of analytical probe to target molecule on paper; and visualization of bound probe. Molecules in a sample are first separated by electrophoresis and then transferred on to an easily handled support medium or membrane. This immobilizes the protein or DNA fragments, provides a faithful replica of the original separation, and facilitates subsequent biochemical analysis. After being transferred to the support medium the immobilized protein or nucleic acid fragment is localized by the use of probes, such as antibodies or DNA, that specifically bind to the molecule of interest. Finally, the position of the probe that is bound to the immobilized target molecule is visualized usually by autoradiography.
    [Show full text]
  • Microchip Electrophoresis
    Entry Microchip Electrophoresis Sammer-ul Hassan Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK; [email protected] Definition: Microchip electrophoresis (MCE) is a miniaturized form of capillary electrophoresis. Electrophoresis is a common technique to separate macromolecules such as nucleic acids (DNA, RNA) and proteins. This technique has become a routine method for DNA size fragmenting and separating protein mixtures in most laboratories around the world. The application of higher voltages in MCE achieves faster and efficient electrophoretic separations. Keywords: electrophoresis; microchip electrophoresis; microfluidics; microfabrications 1. Introduction Electrophoresis is an analytical technique that has been applied to resolve complex mixtures containing DNA, proteins, and other chemical or biological species. Since its discovery in the 1930s by Arne [1], traditional slab gel electrophoresis (SGE) has been widely used until today. Meanwhile, new separation techniques based on electrophoresis continue to be developed in the 21st century, especially in life sciences. Capillary electrophoresis (CE) provides a higher resolution of the separated analytes and allows the automation of the operation. Thus, it has been widely used to characterize proteins and peptides [2], biopharmaceutical drugs [3], nucleic acids [4], and the genome [5]. The development of microfabrication techniques has led to the further miniaturization of electrophoresis known Citation: Hassan, S.-u. Microchip as microchip electrophoresis (MCE). MCE offers many advantages over conventional Electrophoresis. Encyclopedia 2021, 1, capillary electrophoresis techniques such as the integration of different separation functions 30–41. https://dx.doi.org/10.3390/ onto the chip, the consumption of small amounts of sample and reagents, faster analyses encyclopedia1010006 and efficient separations [6,7].
    [Show full text]
  • Near-Infrared Fluorescent Northern Blot
    Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press METHOD Near-infrared fluorescent northern blot BRET R. MILLER,1,4 TIANQI WEI,1,4 CHRISTOPHER J. FIELDS,1,2 PEIKE SHENG,1,2 and MINGYI XIE1,2,3 1Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA 2UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA 3UF Genetics Institute, University of Florida, Gainesville, Florida 32610, USA ABSTRACT Northern blot analysis detects RNA molecules immobilized on nylon membranes through hybridization with radioactive 32P-labeled DNA or RNA oligonucleotide probes. Alternatively, nonradioactive northern blot relies on chemiluminescent reactions triggered by horseradish peroxidase (HRP) conjugated probes. The use of regulated radioactive material and the complexity of chemiluminescent reactions and detection have hampered the adoption of northern blot techniques by the wider biomedical research community. Here, we describe a sensitive and straightforward nonradioactive northern blot method, which utilizes near-infrared (IR) fluorescent dye-labeled probes (irNorthern). We found that irNorthern has a detection limit of ∼0.05 femtomoles (fmol), which is slightly less sensitive than 32P-Northern. However, we found that the IR dye-labeled probe maintains the sensitivity after multiple usages as well as long-term storage. We also present al- ternative irNorthern methods using a biotinylated DNA probe, a DNA probe labeled by terminal transferase, or an RNA probe labeled during in vitro transcription. Furthermore, utilization of different IR dyes allows multiplex detection of dif- ferent RNA species. Therefore, irNorthern represents a more convenient and versatile tool for RNA detection compared to traditional northern blot analysis.
    [Show full text]
  • NORTHERN BLOT SEM.I Dr.Ramesh Pathak the Northern Blot Is Also
    NORTHERN BLOT SEM.I Dr.Ramesh Pathak The Northern blot is also called RNA blot. It is a technique used in molecular biology to study gene expression by detection of RNA in a sample. The northern blot technique developed by James Alwine, David Kemp and Jeorge Stark at Stanford University with contribution from Gerhard Heinrich in 1977.Northern blotting takes its name from its similarity to the first blotting technique, the southern blotting named after biologist Edwin Southern. Procedure The blotting process starts with extraction of total RNA from a homogenized tissue sample or cells on agarose gel containing formaldehyde which is a denaturing agent for the RNA to limit secondary structure. Eukaryotic mRNA can then be isolated through the use of oligo(dT) cellulose chromatography to isolate only those RNAs with a poly A tail. RNA samples are then separated by gel electrophoresis. Since the gels are fragile and the probes are unable to enter matrix, the RNA samples, now separated by size, are transferred to nylon membrane through a capillary or vacuum blotting system. A nylon membrane with a positive charge, is the most effective for use in northern blotting since the negatively charged nucleic acids have a high affinity for them. The transfer buffer used for the blotting usually contain formamide because it lowers the annealing temperature of the probe-RNA interaction, thus eliminating the need for high temperature, which could cause RNA degradation. Once the RNA has been transferred to the membrane, it is immobilized through covalent linkage to the membrane by UV light or heat.
    [Show full text]
  • Western Blotting Guidebook
    Western Blotting Guidebook Substrate Substrate Secondary Secondary Antibody Antibody Primary Primary Antibody Antibody Protein A Protein B 1 About Azure Biosystems At Azure Biosystems, we develop easy-to-use, high-performance imaging systems and high-quality reagents for life science research. By bringing a fresh approach to instrument design, technology, and user interface, we move past incremental improvements and go straight to innovations that substantially advance what a scientist can do. And in focusing on getting the highest quality data from these instruments—low backgrounds, sensitive detection, robust quantitation—we’ve created a line of reagents that consistently delivers reproducible results and streamlines workflows. Providing scientists around the globe with high-caliber products for life science research, Azure Biosystems’ innovations open the door to boundless scientific insights. Learn more at azurebiosystems.com. cSeries Imagers Sapphire Ao Absorbance Reagents & Biomolecular Imager Microplate Reader Blotting Accessories Corporate Headquarters 6747 Sierra Court Phone: (925) 307-7127 Please send purchase orders to: Suite A-B (9am–4pm Pacific time) [email protected] Dublin, CA 94568 To dial from outside of the US: For product inquiries, please email USA +1 925 307 7127 [email protected] FAX: (925) 905-1816 www.azurebiosystems.com • [email protected] Copyright © 2018 Azure Biosystems. All rights reserved. The Azure Biosystems logo, Azure Biosystems™, cSeries™, Sapphire™ and Radiance™ are trademarks of Azure Biosystems, Inc. More information about Azure Biosystems intellectual property assets, including patents, trademarks and copyrights, is available at www.azurebiosystems.com or by contacting us by phone or email. All other trademarks are property of their respective owners.
    [Show full text]
  • QPNC-PAGE Standardized Protocol for Acidic, Basic and Neutral Metalloproteins MW 6 - > 200Kda USE ONLY FRESH GELS
    QPNC-PAGE Standardized Protocol For Acidic, Basic and Neutral Metalloproteins MW 6 - > 200kDa USE ONLY FRESH GELS Correspondence: Bernd Kastenholz • Research Centre Juelich • Institute of Chemistry and Dynamics of the Geosphere – Phytosphere (ICG-3) • Juelich 52425 • Germany • E-mail: [email protected] Recommended Tools (Bio-Rad) Model 491 Prep Cell (U.S. patent no. 4,877,510) Power Pac 1000: Constant Power: 5 W; Time: 8 hr Model EP-1 Econo Pump: 1 mL/min; 5 mL/fraction; 80 mL prerun V; 480 ml total V (Eluent) Model 2110 Fraction Collector: 80 Fractions Model EM-1 Econo UV Monitor: AUFS 1.0; Detection Wavelength 254 nm Model 1327 Econo Recorder: Range: 100 mV; Chart Speed: 6 cm/hr Model SV-3 Diverter Ventil Buffer Recirculation Pump: Flow Rate: 95 mL/min (Electrophoresis Buffer) Stock Solutions 1) 200 mM Tris-HCl 10 mM NaN3 pH 10.00 – Keep RT. 2) 200 mM Tris-HCl 10 mM NaN3 pH 8.00 – Keep RT. 3) 40 % Acrylamide/Bis 2.67 % C - Keep 4°C. 4) 10 % Ammonium Persulfate (APS) - Keep 4°C (freshly prepared). Electrophoresis Buffer 20 mM Tris-HCL 1 mM NaN3 pH 10.00 degassed – Keep 4°C Upper Electrophoresis Chamber (Prep Cell): 500 mL Electrophoresis Buffer Lower Electrophoresis Chamber (Prep Cell): 2000 mL Electrophoresis Buffer Eluent 20 mM Tris-HCL 1 mM NaN3 pH 8.00 degassed – Keep 4°C Elution Chamber (Prep Cell): 700 mL Elution Buffer Separating Gel Acrylamide 4% T Volume: 40 mL ingredients: 4 mL 40 % Acrylamide/Bis 2.67 % C 4 mL 200 mM Tris-HCl 10 mM NaN3 pH 10.00 32 mL H2O 200 µL 10% APS 20 µL TEMED Add TEMED and APS at the end.
    [Show full text]
  • Control of Molecular Motor Motility in Electrical Devices
    Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules.
    [Show full text]