Impact Factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 REVIEW ON: ELECTROPHORESIS: METHOD for PROTEIN SEPARATION Shindedipa

Total Page:16

File Type:pdf, Size:1020Kb

Impact Factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 REVIEW ON: ELECTROPHORESIS: METHOD for PROTEIN SEPARATION Shindedipa Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 Pharma Science Monitor 7(2),Apr-Jun 2016 PHARMA SCIENCE MONITOR AN INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES Journal home page: http://www.pharmasm.com REVIEW ON: ELECTROPHORESIS: METHOD FOR PROTEIN SEPARATION ShindeDipa V.*, JasminaSurati Department of Quality Assurance, Shree NaranjibhaiLalbhai Patel College of Pharmacy,Umrakh -394 345,Bardoli, Gujarat, India. ABSTRACT Electrophoresis is one of the widely used techniques in molecular biochemistry, microbiology, biomedical research. It is a type of protein separation method .It is one of the highly efficient techniques of analysis and sole method for separation of proteins for western blot, RNA studies etc. It is a both qualitative and quantitative analysis technique. Separation depend upon electrophoretic mobility.Electrophoresis technique are of various type like Moving boundary electrophoresis ,Zone electrophoresis ,Affinity electrophoresis ,Pulsed field electrophoresis ,Dielectrophoresis.this technique mainly used in antibiotic analysis,vaccine analysis DNA analysis and protein analysis as well as fingerprint analysis. KEYWORDS:Electrophoresis, Electrophoretic mobility,Zone Electrophoresis, Moving boundary Electrophoresis, Dielectricphoresis. INTRODUCTION Electrophoresis is a physical method of analysis based on the migration of electrically charged proteins, colloids, molecules or other particles dissolved or dispersed in an electrolyte solution in the direction of the electrode bearing the opposite polarity when an electric current is passed through it. Separations may be conducted in systems without support phases (such as free solution separation in capillary electrophoresis) or in stabilising media such as thin-later plates, filins or gels. The electrophoretic mobility is the rate of movement in metres per second of the charged particles under the action of an electric field of I volt per metre and is expressed in square metres per volt second. For practical reasons it is given in squarecentimetres per volt second cm2 V-iS-I. The mobility is specific for a given electrolyte under precisely determined operational conditions. Depending on the method used, the electrophoretic mobility is either measured directly or compared with that of a reference substance. Dipa et al. / Pharma Science Monitor 7(2),Apr-Jun 2016, 192-203 Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 193 Principle of Electrophoresis: The term Electrophoresis means Electro=electric field + Phoresis=migration. So as the name indicates, “Electrophoresis is a method of separation where in charged molecules migrate in differential speeds in an applied electric field.” The charged molecules under the influence of electric field migrate towards oppositely charged electrodes. Those molecules with +ve charge move towards cathode and -ve molecules move towards Anode. The migration is due to charge on the molecules and potential applied across the electrodes. The sample under test is placed at one end of the paper near one of electrodes. When electricity is applied, the molecules start moving to respective electrodes. But the movement is influenced by molecular weight of the molecule. So when a mixture isplaced on the electrophoresis paper or gel, different bands are seen along the paper after the process.This is due differentialrate of movement by molecules based on their weight. Those molecules with higher molecular weight move slower. While those with small weight move faster. Also the size of the molecule also influences the movement. The bigger size molecule experience more friction than smaller ones in motion. These molecules migrate at different speed and to different lengths based on their charge, mass and shape. Based on type of apparatus used in electrophoretic method divided in two category: 1) Zone electrophoresis a) Paper electrophoresis b) Gel electrophoresis c) Thin layer electrophoresis d) Cellulose acetate electrophoresis Dipa et al. / Pharma Science Monitor 7(2),Apr-Jun 2016, 192-203 Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 194 2) Moving boundary electrophoresis a) Capillary electrophoresis b) Isoatchophoresis c) Isoelectric focussing d) Immuno electrophoresis. Also other type of electrophoresis is : a) Affinity electrophoresis b) Dielectrophoresis c) Electroblotting d) Plused field gel electrophoresis 1) ZONE ELECTROPHORESIS(4-5) : This method requires the use of small samples only.In zone electrophoresis, the sample is introduced as a narrow zone or spot in a column, slab or film of buffer. Migration of the components as narrow zones perrrrits their complete separation. Remixing of the separated zones by thermal convection is prevented by stabilising the electrolyte in a porous matrix such as powdered solid, or a fibrous material such as paper, foil or gel such as agar, starch or polyarcylamide. The rate of migration depends on four main factors viz. The mobility of the charged particle, the electro-endosmoticflow,the evaporation flow, and the strength of the field. It is necessary to operate under clearly defined experimental conditions and to use, wherever possible, reference substances. a) Paper electrophoresis : Paper electrophoresis is a techniques which employs a Whattman filter paper No.1 which is moistened by a buffer and then connected at two ends to two opposite charged electrodes. Then sample is applied on to one end and let for separation of components under electric field. After separation, the paper is dried and stained to get colored bands. These colored bands are recognized for the nature of sample by comparing with the standard. For a sample of serum, 5 bands of proteins can be separated by paper electrophoresis. Dipa et al. / Pharma Science Monitor 7(2),Apr-Jun 2016, 192-203 Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 195 b) Gel electrophoresis (6) : Gel electrophoresis is a method for separation and analysis of macromolecules (DNA, RNA and proteins) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge and/or size (IEF agarose, essentially size independent) and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge. Nucleic acid molecules are separated by applying an electric field to move the negatively charged molecules through a matrix of agarose or other substances. Shorter molecules move faster and migrate farther than longer ones because shorter molecules migrate more easily through the pores of the gel. This phenomenon is called sieving.Proteins are separated by charge in agarose because the pores of the gel are too large to sieve proteins. Gel electrophoresis can also be used for separation of nanoparticles. Dipa et al. / Pharma Science Monitor 7(2),Apr-Jun 2016, 192-203 Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 196 Type of gel gel electrophoresis are classified as 1) Agarose gel electrophoresis 2) Polyacrylamide gel electrophoresis 1) Agarose gel electrophoresis : Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of DNA or proteins in a matrix of agarose. The proteins may be separated by charge and/or size (isoelectric focusing agarose electrophoresis is essentially size independent), and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.[2] 2) Polyacrylamide gel electrophoresis : Polyacrylamide gel electrophoresis (PAGE), describes a technique widely used in biochemistry, forensics, genetics, molecular biologyand biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Mobility is a function of the length, conformation and charge of the molecule. As with all forms of gel electrophoresis, molecules may be run in their native state, preserving the molecules' higher-order structure or a chemical denaturant may be added to remove this structure and turn the molecule into an unstructured linear chain whose mobility depends only on its length and mass-to-charge ratio. For nucleic acids, urea is the most commonly used denaturant. For proteins,sodium dodecyl sulfate (SDS) is an anionic detergent applied to protein samples to linearize proteins and to impart a negative charge to linearized proteins. This procedure is called SDS-PAGE. In most proteins, the binding of SDS to the polypeptide chain imparts an even distribution of charge per unit mass, thereby resulting in a fractionation by approximate size during electrophoresis. Proteins that have a greater hydrophobic content, for instance many membrane proteins, and those that interact with surfactants in their native environment, are intrinsically harder to treat accurately using this method, due to the greater variability in the ratio of bound SDS.[1] Dipa et al. / Pharma Science Monitor 7(2),Apr-Jun 2016, 192-203 Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 197 2 )MOVING BOUNDARY ELECTROPHORESIS(7) :This method is chiefly employed with substances of high relative molecular weight and low diffusibility. In the method a buffered solution of proteins in a U-shaped cell is subjected to an electric current which causes the proteins to form series of layers in order of decreasing mobility, which are
Recommended publications
  • Control of Molecular Motor Motility in Electrical Devices
    Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules.
    [Show full text]
  • Simultaneous Electroporation and Dielectrophoresis in Non-Electrolytic Micro/Nano- Electroporation
    UC Berkeley UC Berkeley Previously Published Works Title Simultaneous electroporation and dielectrophoresis in non-electrolytic micro/nano- electroporation. Permalink https://escholarship.org/uc/item/3c79p198 Journal Scientific Reports, 8(1) Authors Lyu, Chenang Wang, Jianping Powell-Palm, Matthew et al. Publication Date 2018-02-06 DOI 10.1038/s41598-018-20535-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Simultaneous electroporation and dielectrophoresis in non- electrolytic micro/nano- Received: 27 October 2017 Accepted: 19 January 2018 electroporation Published: xx xx xxxx Chenang Lyu1,2, Jianping Wang1, Matthew Powell-Palm2 & Boris Rubinsky2 It was recently shown that electrolysis may play a substantial detrimental role in microfuidic electroporation. To overcome this problem, we have developed a non-electrolytic micro/nano electroporation (NEME) electrode surface, in which the metal electrodes are coated with a dielectric. A COMSOL based numerical scheme was used to simultaneously calculate the excitation frequency and dielectric material properties dependent electric feld delivered across the dielectric, fuid fow, electroporation feld and Clausius-Mossotti factor for yeast and E. coli cells fowing in a channel fow across a NEME surface. A two-layer model for yeast and a three-layer model for E. coli was used. The numerical analysis shows that in NEME electroporation, the electric felds could induce electroporation and dielectrophoresis simultaneously. The simultaneous occurrence of electroporation and dielectrophoresis gives rise to several interesting phenomena. For example, we found that a certain frequency exists for which an intact yeast cell is drawn to the NEME electrode, and once electroporated, the yeast cell is pushed back in the bulk fuid.
    [Show full text]
  • Development of Capillary Electrophoresis-Based Microfluidic
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Development of capillary electrophoresis-based microfluidic devices for future medical diagnostics: separation and detection of DNA adducts and other related biomarkers Abdulilah Abdulqader Dawoud Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Dawoud, Abdulilah Abdulqader, "Development of capillary electrophoresis-based microfluidic devices for future medical diagnostics: separation and detection of DNA adducts and other related biomarkers " (2006). Retrospective Theses and Dissertations. 1503. https://lib.dr.iastate.edu/rtd/1503 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Development of capillary electrophoresis-based microfluidic devices for future medical diagnostics: separation and detection of DNA adducts and other related biomarkers by Abdulilah Abdulqader Dawoud A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Physical Chemistry (Chemical Instrumentation) Program of Study Committee: Ryszard Jankowiak, Co-major Professor Mark Gordon, Co-major Professor Edward Yeung Mark Hargrove Mei Hong Iowa State University Ames, Iowa 2006 Copyright © Abdulilah Abdulqader Dawoud, 2006. All rights reserved. UMI Number: 3229064 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Molecular Biologist's Guide to Proteomics
    Molecular Biologist's Guide to Proteomics Paul R. Graves and Timothy A. J. Haystead Microbiol. Mol. Biol. Rev. 2002, 66(1):39. DOI: 10.1128/MMBR.66.1.39-63.2002. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/66/1/39 These include: REFERENCES This article cites 172 articles, 34 of which can be accessed free http://mmbr.asm.org/ at: http://mmbr.asm.org/content/66/1/39#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on November 20, 2014 by UNIV OF KENTUCKY Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2002, p. 39–63 Vol. 66, No. 1 1092-2172/02/$04.00ϩ0 DOI: 10.1128/MMBR.66.1.39–63.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Molecular Biologist’s Guide to Proteomics Paul R. Graves1 and Timothy A. J. Haystead1,2* Department of Pharmacology and Cancer Biology, Duke University,1 and Serenex Inc.,2 Durham, North Carolina 27710 INTRODUCTION .........................................................................................................................................................40 Definitions..................................................................................................................................................................40 Downloaded from Proteomics Origins ...................................................................................................................................................40
    [Show full text]
  • Protein Facility
    Supporting core service facilities for biotechnology research by faculty, student, government, and industry scientists. More Office of Biotechnology at www.biotech.iastate.edu/service_facilities. Protein Facility Iowa State University’s Protein purification of proteins and of protein samples from 1D or 2D Facility provides expertise for the peptides can be accomplished. gels. Gel spots can be digested analysis, characterization, and with a variety of enzymes, and synthesis of proteins and peptides. Mass Spectrometry the resulting peptides can be After training, users can operate A matrix-assisted laser desorption/ analyzed to identify the protein. many instruments themselves. ionization time-of-flight (MALDI- TOF) mass spectrometer can be used SDS-PAGE / Electroblotting for determining the molecular weight The facility conducts sodium of proteins, peptides, glycoproteins, dodecyl sulfate polyacrylamide oligosaccharides, oligonucleotides, gel electrophoresis (SDS-PAGE) of and polymers. A quadrapole- proteins for purity and molecular TOF tandem mass spectrometer weight estimation. Gels can be is also available for obtaining electroblotted to nitrocellulose peptide sequence information. or to PVDF for immuno- detection and protein/peptide Peptide Synthesis sequencing, respectively. The facility can do both large- and small-scale peptide synthesis, 2-D Gel Electrophoresis including phosphopeptides, peptides The facility does two-dimensional with unusual amino acids, and electrophoresis by separating proteins multiple antigenic peptides (MAP). in the first dimension according to charge (isoelectric focusing), Circular Dichroism Protein and Peptide Sequencing followed by separating the focused Researchers who want to detect The Protein Facility provides proteins in the second dimension and quantitate the chirality of N-terminal protein/peptide sequence according to their molecular weight.
    [Show full text]
  • Bioanalytical Chemistry 8. Gel Electrophoresis and Blotting
    91 Bioanalytical chemistry 8. Gel electrophoresis and blotting Suggested reading: Sections 9.1, 9.2.3, 9.2.4, 9.5.1, 10.1 to 10.7, 11.1 to 11.5, and 15.5 of Mikkelsen and Cortón, Bioanalytical Chemistry Primary Source Material • Chapter 4 and 6 of Biochemistry: Berg, Jeremy M.; Tymoczko, John L.; and Stryer, Lubert (NCBI bookshelf). • Chapter 3 and 7 of Molecular Cell Biology 4th ed. (Ch. 9, 5th ed.): Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. (NCBI bookshelf). • Chapter 12 of Introduction to Genetic Analysis Anthony: J.F. Griffiths, Jeffrey H. Miller, David T. Suzuki, Richard C. Lewontin, William M. Gelbart (NCBI bookshelf). • Some animations are from http://www.wiley-vch.de/books/info/3-527-30300-6/. • Cancer examples from Weinberg, Robert (2007). The Biology of Cancer. Garland Science. • http://www.piercenet.com/ Electrophoresis 92 The velocity of migration (v) of a molecule in an electric field depends on the electric field strength (E), the net charge on the protein (z), and the frictional coefficient (f). Ez v = f The frictional coefficient f depends on both the mass and shape of the migrating molecule and the viscosity (η) of the medium. For a sphere of radius r, f = 6πηr € The speed of migration is therefore proportional to the charge:mass ratio. z Will the charge to mass ratio differ v ∝ between proteins? Between r different DNA molecules? € • Electrophoresis is a technique for separating, or resolving, molecules in a mixture under the influence of an applied electric field.
    [Show full text]
  • Permease from Escherichia Coli
    Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli Mikhail Bogdanova,1, Philip Heacocka, Ziqiang Guanb, and William Dowhana,1 aDepartment of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX, 77030; and bDepartment of Biochemistry, Duke University Medical Center, Durham, NC 27710 Edited by William T. Wickner, Dartmouth Medical School, Hanover, NH, and approved July 15, 2010 (received for review May 9, 2010) Phosphatidylcholine (PC) has been widely used in place of naturally N-terminal two-TM helical hairpin of PheP and GabP are in- occurring phosphatidylethanolamine (PE) in reconstitution of verted with respect to their orientation in PE-containing cells bacterial membrane proteins. However, PC does not support native and the remaining TMs. These permeases do not carry out pro- structure or function for several reconstituted transport proteins. ton-coupled energy-dependent uphill transport of substrate in Lactose permease (LacY) of Escherichia coli, when reconstituted cells lacking PE, but still display energy-independent downhill in E. coli phospholipids, exhibits energy-dependent uphill and transport. LacY reconstituted into total E. coli phospholipids car- energy-independent downhill transport function and proper con- ries out uphill transport with domains C6 and P7 on opposite formation of periplasmic domain P7, which is tightly linked to sides of the membrane bilayer as observed in wild-type cells uphill transport function. LacY expressed in cells lacking PE and (9). Leaving out PE during reconstitution results in only downhill containing only anionic phospholipids exhibits only downhill trans- transport with domains C6 and P7 residing on the same side of port and lacks native P7 conformation.
    [Show full text]
  • Protein Blotting Guide
    Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells
    [Show full text]
  • MICROFLUIDIC PARTICLE and CELL MANIPULATION USING RESERVOIR- BASED DIELECTROPHORESIS Saurin Patel Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 8-2014 MICROFLUIDIC PARTICLE AND CELL MANIPULATION USING RESERVOIR- BASED DIELECTROPHORESIS Saurin Patel Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Mechanical Engineering Commons Recommended Citation Patel, Saurin, "MICROFLUIDIC PARTICLE AND CELL MANIPULATION USING RESERVOIR-BASED DIELECTROPHORESIS" (2014). All Dissertations. 1323. https://tigerprints.clemson.edu/all_dissertations/1323 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MICROFLUIDIC PARTICLE AND CELL MANIPULATION USING RESERVOIR-BASED DIELECTROPHORESIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Mechanical Engineering by Saurin H.Patel Aug 2014 Accepted by: Dr. Xiangchun Xuan, Committee Chair Dr. John R. Saylor Dr. Richard S. Miller Dr. Rui Qiao i ABSTRACT Controlled manipulation of synthetic particles and biological cells from a complex mixture is important to a wide range of applications in biology, environmental monitoring, and pharmaceutical industry. In the past two decades microfluidics has evolved to be a very useful tool for particle and cell manipulations in miniaturized devices. A variety of force fields have been demonstrated to control particle and cell motions in microfluidic devices, among which electrokinetic techniques are most often used. However, to date, studies of electrokinetic transport phenomena have been primarily confined within the area of microchannels. Very few works have addressed the electrokinetic particle motion at the reservoir-microchannel junction which acts as the interface between the macro (i.e., reservoir) and the micro (i.e., microchannel) worlds in real microfluidic devices.
    [Show full text]
  • Electrophoresis SUBJECT FORENSIC SCIENCE
    SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 4: Instrumental Methods and Analysis Module No. and Title MODULE No. 34: Electrophoresis Module Tag FSC_P4_M34 FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.34: Electrophoresis TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Principle and Methodology 4. Classification of Electrophoretic Techniques 5. Common Mediums used in Electrophoresis 6. Types of Electrophoresis 7. Summary FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.34: Electrophoresis 1. Learning Outcomes After studying this module, you shall be able to know about: The significance of Electrophoresis The basic principle and methodology of Electrophoresis The types and application of Electrophoresis 2. Introduction Electrophoresis may be defined as the migration of colloidal particles through a solution under the influence of an electrical field. Electrophoresis basically is the movement of distributed particles corresponding to a fluid under the influence of electric field. Electrophoresis is mostly known as еlеctro - kinеtic phеnomеna. Thе tеchniquе of еlеctrophorеsis was discovеrеd by Rеuss in 1809 whеn hе еxpеrimеntеd that soil particlеs dispеrsеd in watеr migratе undеr еffеct of an appliеd еlеctric fiеld. Еlеctrophorеsis takеs placе bеcausе particlеs dispеrsеd in a fluid nеarly at all times carry an electric surface charge. The charged molecule migrates to their oppositely charged electrodes but that electric field is removed before it reaches there completely. Passage of charged particle in an electric field provides differential motion to the sample on the basis of charge and consequently resolve them. An electric field exerts electrostatic Coulomb forcе on thе particlеs through thеsе chargеs.
    [Show full text]
  • Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis
    micromachines Article Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis Maria F. Romero-Creel, Eric Goodrich, Danielle V. Polniak and Blanca H. Lapizco-Encinas * ID Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA; [email protected] (M.F.R.-C.); [email protected] (E.G.); [email protected] (D.V.P.) * Correspondence: [email protected]; Tel.: +1-585-475-2773 Received: 7 July 2017; Accepted: 30 July 2017; Published: 2 August 2017 Abstract: The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP) have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 µm were studied employing microchannels for insulator based DEP (iDEP) and low frequency (<1000 Hz) AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior.
    [Show full text]
  • Wave Electroblotting, 2D, Complete Electrophoresis Systems And
    Instruction Manual WAVE Standard and Tetrad Electroblotting, 2-D and Complete Electrophoresis Systems Electroblotting VS20WAVECBS AND WAVETETRAD1CBS Includes VS20WAVESYS and WAVEBI SW20 & WAVEBI 2-D Electrophoresis WAVEC2DS Includes VS20WAVESYS and VS20WAVEDCI VS20WAVEDC Complete (Electroblotting & 2-D Electrophoresis) VS20WAVECES AND WAVETETRAD1CES Includes VS20WAVECBS and VS20WAVEDCI 1 Contents:- Page 1) Safety Instructions 3 2) Packing Lists 4 3) Care and Maintenance 6 4) Usage Guidance and restrictions: 7 5) Set Up 8 6) Gel Casting 13 7) Gel Preparation 20 8) Gel Selection 20 9) Gel Pouring 22 10) Sample Preparation and Loading 23 11) Buffer Volume 25 12) Gel Running 25 13) Solutions 26 14) Vertical Gel Electrophoresis References 28 15) Combs 29 16) Protein Blotting using the WAVE 31 17) Buffer Volumes 32 18) Passive and Active Cooling 32 19) Run Conditions 34 20) Blotting References 35 21) Buffers 36 22) Blotting Troubleshooting 37 23) 1st Dimension Electrophoresis using the WAVEDCI Tube Gel Module 41 24) Capillary Tube Gel Pouring 41 25) 1st Dimension (IEF) Phase Tube Gel Running 43 26) 2-D, Size Determination Phase 44 27) Warranty 45 2 SAFETY PRECAUTION WHEN USED CORRECTLY, THESE UNITS POSE NO HEALTH RISK. HOWEVER, THESE UNITS CAN DELIVER DANGEROUS LEVELS OF ELECTRICITY AND ARE TO BE OPERATED ONLY BY QUALIFIED PERSONNEL FOLLOWING THE GUIDELINES LAID OUT IN THIS INSTRUCTION MANUAL. ANYONE INTENDING TO USE THIS EQUIPMENT SHOULD READ THE COMPLETE MANUAL THOROUGHLY. THE UNIT MUST NEVER BE USED WITHOUT THE SAFETY LID CORRECTLY IN POSITION. THE UNIT SHOULD NOT BE USED IF THERE IS ANY SIGN OF DAMAGE TO THE EXTERNAL TANK OR LID.
    [Show full text]