Permease from Escherichia Coli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blotting Techniques Blotting Is the Technique in Which Nucleic Acids Or
Blotting techniques Blotting is the technique in which nucleic acids or proteins are immobilized onto a solid support generally nylon or nitrocellulose membranes. Blotting of nucleic acid is the central technique for hybridization studies. Nucleic acid labeling and hybridization on membranes have formed the basis for a range of experimental techniques involving understanding of gene expression, organization, etc. Identifying and measuring specific proteins in complex biological mixtures, such as blood, have long been important goals in scientific and diagnostic practice. More recently the identification of abnormal genes in genomic DNA has become increasingly important in clinical research and genetic counseling. Blotting techniques are used to identify unique proteins and nucleic acid sequences. They have been developed to be highly specific and sensitive and have become important tools in both molecular biology and clinical research. General principle The blotting methods are fairly simple and usually consist of four separate steps: electrophoretic separation of protein or of nucleic acid fragments in the sample; transfer to and immobilization on paper support; binding of analytical probe to target molecule on paper; and visualization of bound probe. Molecules in a sample are first separated by electrophoresis and then transferred on to an easily handled support medium or membrane. This immobilizes the protein or DNA fragments, provides a faithful replica of the original separation, and facilitates subsequent biochemical analysis. After being transferred to the support medium the immobilized protein or nucleic acid fragment is localized by the use of probes, such as antibodies or DNA, that specifically bind to the molecule of interest. Finally, the position of the probe that is bound to the immobilized target molecule is visualized usually by autoradiography. -
Control of Molecular Motor Motility in Electrical Devices
Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules. -
Molecular Biologist's Guide to Proteomics
Molecular Biologist's Guide to Proteomics Paul R. Graves and Timothy A. J. Haystead Microbiol. Mol. Biol. Rev. 2002, 66(1):39. DOI: 10.1128/MMBR.66.1.39-63.2002. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/66/1/39 These include: REFERENCES This article cites 172 articles, 34 of which can be accessed free http://mmbr.asm.org/ at: http://mmbr.asm.org/content/66/1/39#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on November 20, 2014 by UNIV OF KENTUCKY Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2002, p. 39–63 Vol. 66, No. 1 1092-2172/02/$04.00ϩ0 DOI: 10.1128/MMBR.66.1.39–63.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Molecular Biologist’s Guide to Proteomics Paul R. Graves1 and Timothy A. J. Haystead1,2* Department of Pharmacology and Cancer Biology, Duke University,1 and Serenex Inc.,2 Durham, North Carolina 27710 INTRODUCTION .........................................................................................................................................................40 Definitions..................................................................................................................................................................40 Downloaded from Proteomics Origins ...................................................................................................................................................40 -
Protein Facility
Supporting core service facilities for biotechnology research by faculty, student, government, and industry scientists. More Office of Biotechnology at www.biotech.iastate.edu/service_facilities. Protein Facility Iowa State University’s Protein purification of proteins and of protein samples from 1D or 2D Facility provides expertise for the peptides can be accomplished. gels. Gel spots can be digested analysis, characterization, and with a variety of enzymes, and synthesis of proteins and peptides. Mass Spectrometry the resulting peptides can be After training, users can operate A matrix-assisted laser desorption/ analyzed to identify the protein. many instruments themselves. ionization time-of-flight (MALDI- TOF) mass spectrometer can be used SDS-PAGE / Electroblotting for determining the molecular weight The facility conducts sodium of proteins, peptides, glycoproteins, dodecyl sulfate polyacrylamide oligosaccharides, oligonucleotides, gel electrophoresis (SDS-PAGE) of and polymers. A quadrapole- proteins for purity and molecular TOF tandem mass spectrometer weight estimation. Gels can be is also available for obtaining electroblotted to nitrocellulose peptide sequence information. or to PVDF for immuno- detection and protein/peptide Peptide Synthesis sequencing, respectively. The facility can do both large- and small-scale peptide synthesis, 2-D Gel Electrophoresis including phosphopeptides, peptides The facility does two-dimensional with unusual amino acids, and electrophoresis by separating proteins multiple antigenic peptides (MAP). in the first dimension according to charge (isoelectric focusing), Circular Dichroism Protein and Peptide Sequencing followed by separating the focused Researchers who want to detect The Protein Facility provides proteins in the second dimension and quantitate the chirality of N-terminal protein/peptide sequence according to their molecular weight. -
Impact Factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 REVIEW ON: ELECTROPHORESIS: METHOD for PROTEIN SEPARATION Shindedipa
Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 Pharma Science Monitor 7(2),Apr-Jun 2016 PHARMA SCIENCE MONITOR AN INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES Journal home page: http://www.pharmasm.com REVIEW ON: ELECTROPHORESIS: METHOD FOR PROTEIN SEPARATION ShindeDipa V.*, JasminaSurati Department of Quality Assurance, Shree NaranjibhaiLalbhai Patel College of Pharmacy,Umrakh -394 345,Bardoli, Gujarat, India. ABSTRACT Electrophoresis is one of the widely used techniques in molecular biochemistry, microbiology, biomedical research. It is a type of protein separation method .It is one of the highly efficient techniques of analysis and sole method for separation of proteins for western blot, RNA studies etc. It is a both qualitative and quantitative analysis technique. Separation depend upon electrophoretic mobility.Electrophoresis technique are of various type like Moving boundary electrophoresis ,Zone electrophoresis ,Affinity electrophoresis ,Pulsed field electrophoresis ,Dielectrophoresis.this technique mainly used in antibiotic analysis,vaccine analysis DNA analysis and protein analysis as well as fingerprint analysis. KEYWORDS:Electrophoresis, Electrophoretic mobility,Zone Electrophoresis, Moving boundary Electrophoresis, Dielectricphoresis. INTRODUCTION Electrophoresis is a physical method of analysis based on the migration of electrically charged proteins, colloids, molecules or other particles dissolved or dispersed in an electrolyte solution in the direction of the electrode bearing the opposite polarity when an electric current is passed through it. Separations may be conducted in systems without support phases (such as free solution separation in capillary electrophoresis) or in stabilising media such as thin-later plates, filins or gels. The electrophoretic mobility is the rate of movement in metres per second of the charged particles under the action of an electric field of I volt per metre and is expressed in square metres per volt second. -
Bioanalytical Chemistry 8. Gel Electrophoresis and Blotting
91 Bioanalytical chemistry 8. Gel electrophoresis and blotting Suggested reading: Sections 9.1, 9.2.3, 9.2.4, 9.5.1, 10.1 to 10.7, 11.1 to 11.5, and 15.5 of Mikkelsen and Cortón, Bioanalytical Chemistry Primary Source Material • Chapter 4 and 6 of Biochemistry: Berg, Jeremy M.; Tymoczko, John L.; and Stryer, Lubert (NCBI bookshelf). • Chapter 3 and 7 of Molecular Cell Biology 4th ed. (Ch. 9, 5th ed.): Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. (NCBI bookshelf). • Chapter 12 of Introduction to Genetic Analysis Anthony: J.F. Griffiths, Jeffrey H. Miller, David T. Suzuki, Richard C. Lewontin, William M. Gelbart (NCBI bookshelf). • Some animations are from http://www.wiley-vch.de/books/info/3-527-30300-6/. • Cancer examples from Weinberg, Robert (2007). The Biology of Cancer. Garland Science. • http://www.piercenet.com/ Electrophoresis 92 The velocity of migration (v) of a molecule in an electric field depends on the electric field strength (E), the net charge on the protein (z), and the frictional coefficient (f). Ez v = f The frictional coefficient f depends on both the mass and shape of the migrating molecule and the viscosity (η) of the medium. For a sphere of radius r, f = 6πηr € The speed of migration is therefore proportional to the charge:mass ratio. z Will the charge to mass ratio differ v ∝ between proteins? Between r different DNA molecules? € • Electrophoresis is a technique for separating, or resolving, molecules in a mixture under the influence of an applied electric field. -
Protein Blotting Guide
Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells -
(12) Patent Application Publication (10) Pub. No.: US 2006/0019285 A1 Horecka Et Al
US 20060019285A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0019285 A1 Horecka et al. (43) Pub. Date: Jan. 26, 2006 (54) ANALYSIS OF INTRACELLULAR Publication Classification MODIFICATIONS (51) Int. Cl. CI2O I/68 (2006.01) (76) Inventors: Joseph Horecka, Fremont, CA (US); GOIN 33/53 (2006.01) Peter Fung, Sunnyvale, CA (US); (52) U.S. Cl. .................................................. 435/6; 435/7.1 Richard M. Eglen, Los Altos, CA (US) (57) ABSTRACT Correspondence Address: Improved methods of determining the intracellular State of a PETERS VERNY JONES & SCHMITT, L.L.P. protein as well as modifications of the protein are provided 425 SHERMANAVENUE by introducing a Surrogate fusion protein comprising a SUTE 230 member of an enzyme fragment complementation complex and a target protein. After exposing cells transformed with PALO ALTO, CA 94.306 (US) the Surrogate fusion protein to a change in environment, e.g. Appl. No.: 11/170,123 a candidate drug, the cells are lysed, the lysate Separated into (21) fractions or bands, conveniently by gel electrophoresis and (22) Filed: Jun. 29, 2005 transferring the proteins by Western blot to a membrane. The bands on the membrane are developed using the other Related U.S. Application Data member of the enzyme fragment complementation complex and a Substrate providing a detectable Signal. The method is (60) Provisional application No. 60/584,709, filed on Jun. found to provide high sensitivity and the ability to observe 30, 2004. modifications of the target protein. Patent Application Publication Jan. 26, 2006 Sheet 1 of 7 US 2006/0019285 A1 FIG. -
Wave Electroblotting, 2D, Complete Electrophoresis Systems And
Instruction Manual WAVE Standard and Tetrad Electroblotting, 2-D and Complete Electrophoresis Systems Electroblotting VS20WAVECBS AND WAVETETRAD1CBS Includes VS20WAVESYS and WAVEBI SW20 & WAVEBI 2-D Electrophoresis WAVEC2DS Includes VS20WAVESYS and VS20WAVEDCI VS20WAVEDC Complete (Electroblotting & 2-D Electrophoresis) VS20WAVECES AND WAVETETRAD1CES Includes VS20WAVECBS and VS20WAVEDCI 1 Contents:- Page 1) Safety Instructions 3 2) Packing Lists 4 3) Care and Maintenance 6 4) Usage Guidance and restrictions: 7 5) Set Up 8 6) Gel Casting 13 7) Gel Preparation 20 8) Gel Selection 20 9) Gel Pouring 22 10) Sample Preparation and Loading 23 11) Buffer Volume 25 12) Gel Running 25 13) Solutions 26 14) Vertical Gel Electrophoresis References 28 15) Combs 29 16) Protein Blotting using the WAVE 31 17) Buffer Volumes 32 18) Passive and Active Cooling 32 19) Run Conditions 34 20) Blotting References 35 21) Buffers 36 22) Blotting Troubleshooting 37 23) 1st Dimension Electrophoresis using the WAVEDCI Tube Gel Module 41 24) Capillary Tube Gel Pouring 41 25) 1st Dimension (IEF) Phase Tube Gel Running 43 26) 2-D, Size Determination Phase 44 27) Warranty 45 2 SAFETY PRECAUTION WHEN USED CORRECTLY, THESE UNITS POSE NO HEALTH RISK. HOWEVER, THESE UNITS CAN DELIVER DANGEROUS LEVELS OF ELECTRICITY AND ARE TO BE OPERATED ONLY BY QUALIFIED PERSONNEL FOLLOWING THE GUIDELINES LAID OUT IN THIS INSTRUCTION MANUAL. ANYONE INTENDING TO USE THIS EQUIPMENT SHOULD READ THE COMPLETE MANUAL THOROUGHLY. THE UNIT MUST NEVER BE USED WITHOUT THE SAFETY LID CORRECTLY IN POSITION. THE UNIT SHOULD NOT BE USED IF THERE IS ANY SIGN OF DAMAGE TO THE EXTERNAL TANK OR LID. -
Blotting Techniques M.W
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector RESEARCH TECHNIQUES MADE SIMPLE North, South, or East? Blotting Techniques M.W. Nicholas1 and Kelly Nelson2 Journal of Investigative Dermatology (2013) 133, e10; doi:10.1038/jid.2013.216 One of the cornerstones of modern molecular biology, blotting is a powerful and sensitive technique for identifying WHAT BLOTTING DOES the presence of specific biomolecules within a sample. • Blotting allows specific and sensitive detection of a Subtypes of blotting are differentiated by the target protein (western) or specific DNA or RNA sequence molecule that is being sought. The first of these tech (Southern, northern) within a large sample isolate. niques developed was the Southern blot, named for Dr. • Targets are first separated by size/charge via gel Edwin Southern, who developed it to detect specific DNA electrophoresis and then identified using a very sequences (Southern, 1975). Subsequently, the method was sensitive probe. modified to detect other targets. The nomenclature of these • Variations of these techniques can detect post techniques was built around Dr. Southern’s name, resulting translational modifications and DNAbound proteins. in the terms northern blot (for detection of RNA), western blot (for detection of protein), eastern blot (for detection • Western blotting may also be used to detect a of posttranslationally modified proteins), and south circulating antibody in a patient sample or confirm western blot (for detection of DNA binding proteins). Most an antibody’s specificity. researchers consider the eastern blot and the southwestern blot variations of western blots rather than distinct entities. -
Power and Limitations of Electrophoretic Separations in Proteomics Strategies
Power and limitations of electrophoretic separations in proteomics strategies Thierry. Rabilloud 1,2, Ali R.Vaezzadeh 3 , Noelle Potier 4, Cécile Lelong1,5, Emmanuelle Leize-Wagner 4, Mireille Chevallet 1,2 1: CEA, IRTSV, LBBSI, 38054 GRENOBLE, France. 2: CNRS, UMR 5092, Biochimie et Biophysique des Systèmes Intégrés, Grenoble France 3: Biomedical Proteomics Research Group, Central Clinical Chemistry Laboratory, Geneva University Hospitals, Geneva, Switzerland 4: CNRS, UMR 7177. Institut de Chime de Strasbourg, Strasbourg, France 5: Université Joseph Fourier, Grenoble France Correspondence : Thierry Rabilloud, iRTSV/LBBSI, UMR CNRS 5092, CEA-Grenoble, 17 rue des martyrs, F-38054 GRENOBLE CEDEX 9 Tel (33)-4-38-78-32-12 Fax (33)-4-38-78-44-99 e-mail: Thierry.Rabilloud@ cea.fr Abstract: Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry( i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed. Keywords: electrophoresis, two-dimensional electrophoresis, isoelectric focusing, immobilized pH gradients, peptides, proteins, proteomics. Table of contents I. Introduction II. The principles at play III. How to use electrophoresis in a proteomics strategy III.A. -
Electroblot Proteins by Wet Or Semi-Dry Transfer
TECH TIP #73 Electroblot proteins by wet or semi -dry transfer TR0073.1 Introduction Typical Western blotting experiments involve polyacrylamide gel electrophoresis (PAGE) of protein samples followed by transfer of the size-separated proteins from gel to nitrocellulose or PVDF membrane. Bands or spots of specific proteins are then visualized on the membrane surface when probed with antibodies and detected with enzyme-substrate reporter systems. Three different methods can be used for protein transfer: passive-diffusion blotting, vacuum blotting, and electroblotting. Among these methods, electroblotting is the most popular because it is both faster and more efficient than the others. Electrophoretic transfer also is more quantitative. Proteins are transferred by an electric current passed through the gel. Wet (tank) transfer and semi-dry transfer have been developed to electrophoretically blot proteins and nucleic acids from gels to membranes. Transfer efficiency in these two variants of electroblotting is dependant upon gel type, membrane type, transfer buffer composition, equilibration time, size of protein(s), transfer temperature, number of gels, and volume of buffer. The purpose of this Tech Tip is to provide very simple, generalized protocols for wet and semi-dry transfer of proteins from standard mini gels (approx. 10cm × 10cm) using typical commercial transfer devices and power supplies. When possible consult and follow the instructions for the specific equipment you own. Relevant Thermo Scientific™ Pierce™ products are mentioned in each protocol, and a fuller list of these products occurs at the end this document. Protein blotting using a wet (tank) transfer apparatus 1. Separate the proteins in the sample by gel electrophoresis (e.g., reducing, denaturing SDS-PAGE).