Permease from Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

Permease from Escherichia Coli Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli Mikhail Bogdanova,1, Philip Heacocka, Ziqiang Guanb, and William Dowhana,1 aDepartment of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX, 77030; and bDepartment of Biochemistry, Duke University Medical Center, Durham, NC 27710 Edited by William T. Wickner, Dartmouth Medical School, Hanover, NH, and approved July 15, 2010 (received for review May 9, 2010) Phosphatidylcholine (PC) has been widely used in place of naturally N-terminal two-TM helical hairpin of PheP and GabP are in- occurring phosphatidylethanolamine (PE) in reconstitution of verted with respect to their orientation in PE-containing cells bacterial membrane proteins. However, PC does not support native and the remaining TMs. These permeases do not carry out pro- structure or function for several reconstituted transport proteins. ton-coupled energy-dependent uphill transport of substrate in Lactose permease (LacY) of Escherichia coli, when reconstituted cells lacking PE, but still display energy-independent downhill in E. coli phospholipids, exhibits energy-dependent uphill and transport. LacY reconstituted into total E. coli phospholipids car- energy-independent downhill transport function and proper con- ries out uphill transport with domains C6 and P7 on opposite formation of periplasmic domain P7, which is tightly linked to sides of the membrane bilayer as observed in wild-type cells uphill transport function. LacY expressed in cells lacking PE and (9). Leaving out PE during reconstitution results in only downhill containing only anionic phospholipids exhibits only downhill trans- transport with domains C6 and P7 residing on the same side of port and lacks native P7 conformation. Reconstitution of LacY in the bilayer as observed in PE-lacking cells (9). Reconstitution E. coli the presence of -derived PE, but not dioleoyl-PC, results in into proteoliposomes where dioleoyl-PC (diC18∶1PC) replaces uphill transport. We now show that LacY exhibits uphill transport PE results in wild-type topology and downhill transport (9) but and native conformation of P7 when expressed in a mutant of not uphill transport (9–11). An ionizable amine or hydrogen bond BIOCHEMISTRY E. coli in which PC completely replaces PE even though the structure donor capacity is also required for uphill transport because is not completely native. E. coli-derived PC and synthetic PC species methylation of the amine of PE progressively reduces activity containing at least one saturated fatty acid also support the native (10, 11). PE but not diC18∶1PC or eukaryotic-derived PC also sup- conformation of P7 dependent on the presence of anionic phos- ports uphill transport by the multidrug transporter (LmrP) of pholipids. Our results demonstrate that the different effects of Lactococcus lactis (12, 13), the leucine permease of Pseudomonas PE and PC species on LacY structure and function cannot be ex- aeruginosa (14), the branched chain amino acid transporter of plained by differences in the direct interaction of the lipid head Streptococcus cremoris (15), the ABC transporter HorA from groups with specific amino acid residues alone but are due to more Lactococcus lactis (16), and the Ca2þ ATPase of the sarcoplasmic complex effects of the physical and chemical properties of the lipid reticulum (17). environment on protein structure. This conclusion is supported by Another feature of LacY that is strongly correlated with uphill the effect of different lipids on the proper folding of domain P7, transport is the structure of the extramembrane domain P7 (3) which indirectly influences uphill transport function. that is exposed to the periplasm and connects TMs VII and VIII. The conformation-specific monoclonal antibody (mAb) 4B1 ver 35% of all proteins are integrated into cell membranes, recognizes this domain in membranes and on Western blots of Oand many others interact at the membrane surface. There- LacY that has been assembled in PE-containing but not in fore, determining how lipid-protein interactions govern protein PE-lacking E. coli membranes (7). Binding of mAb 4B1 also in- structure and function is fundamental to understanding cellular hibits uphill transport by LacY (2, 3). Epitope recognition is re- processes at the molecular level. Although reconstitution of stored to LacY from PE-lacking membranes by exposure to PE purified membrane proteins with lipids is necessary to study but not diC18∶1PC blotted to the same solid support prior to lipid-protein interactions, the complexity of lipid molecular forms Western blot analysis (8). Recognition by mAb 4B1 appears to that make up the lipidome has largely been ignored in most be a reliable indicator of the proper topological and structural studies, which have employed lipid mixtures that rarely reflect organization of LacY in the vicinity of domain P7 (Fig. 1) and the composition of host membranes. of LacY uphill transport function. Phosphatidylcholine (PC) has been extensively used in recon- The inability of PC to support the full function of several trans- stitution studies because it spontaneously organizes into bilayers. port systems as well as the native structure of domain P7 of LacY However, use of PC for reconstitution of membrane proteins raises several questions of broad significance to studies of from bacterial sources that do not contain PC may not provide membrane protein structure, function, and lipid interaction in re- reliable information, because there are no data on the in vivo constituted systems. Is lack of functional and structural support function of these proteins in membranes where PC replaces the major phospholipid phosphatidylethanolamine (PE). Therefore, a distinction between a biological preference for PE over PC and Author contributions: M.B., P.H., and W.D. designed research; M.B., P.H., and Z.G. an artifact in a reconstituted system cannot be made. performed research; P.H. and Z.G. contributed new reagents/analytic tools; M.B. and W.D. analyzed data; and M.B. and W.D. wrote the paper. The topological orientation and function of the 12 transmem- brane (TM) domain-spanning membrane integrated permeases The authors declare no conflict of interest. for lactose (LacY), phenylalanine (PheP), and γ-aminobutyrate This article is a PNAS Direct Submission. (GabP) of Escherichia coli are dependent on membrane lipid 1To whom correspondence may be addressed at: 6431 Fannin Street, Suite 6.200, Department of Biochemistry and Molecular Biology, University of Texas Medical School composition (1). In mutants lacking PE (normally ca. 70% of at Houston, Houston, TX, 77030. E-mail: [email protected] or William. total phospholipid) and containing only anionic phospholipids [email protected]. [primarily phosphatidylglycerol (PG) and cardiolipin (CL)], the This article contains supporting information online at www.pnas.org/lookup/suppl/ N-terminal six TM helical bundle of LacY (see Fig. 1) and the doi:10.1073/pnas.1006286107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1006286107 PNAS Early Edition ∣ 1of6 Downloaded by guest on October 2, 2021 H205 Legionella pneumophila pcsA gene (22) under induction control NT CT by arabinose of the promoter P . PC is synthesized from Q340 araB L5 C4 C6 R285 endogenous CDP-diacylglycerol and choline from the growth G71 C2 R135 C10 medium. The L. pneumophila gene was selected because the Si- G13 C8 L14 norhizobium meliloti or Bradyrhizobium japonicum genes (22) were unstable in E. coli. Full induction by arabinose and supple- mentation of the medium with choline resulted in a level of PC I II III IV V VIVII VIII IX X XI XII (70%, see Fig. S1) equivalent to the level of PE (70%) in wild- type cells (1). The remaining lipids were primarily CL (27%) and F PG (3%) with the former being higher and the latter being lower F* R than that found in wild-type cells (usually ca. 20–25% PG and I103 T163 T T A312 G* P11 – P1 P3 P5 S P7 P9 5 10% CL). Cells lacking PE contain equal amounts of PG S41 250 F* Q FATG*E and CL (lane 1 of Fig. S1). Mass spectral analysis of total phos- þ − þ 4B1 pholipid extracts from PE and PE PC cells revealed that CT PE and PC of E. coli exhibit a near identical spectrum of species with respect to fatty acid composition (Fig. S2). PE-lacking cells P1 P3 P5 C10 C8 require supplementation with tryptophan for growth in minimal medium due to a defect in uphill transport by aromatic amino acid transporters (23). This defect was corrected by introduction of GlcDAG (23) into −PE mutants and was also corrected by I II III IV V VI VIII IX X XI XII introduction of PC. However, PC did not relieve the requirement for Mg2þ in the growth medium. P9 Transport Function of LacY in −PE þ PC Cells. VII P11 We analyzed transport C2 function of wild-type LacY expressed from a plasmid in strain C4 AL95 without additional plasmids (−PE) or with either plasmid NT pssAþ þ − þ P7 pDD72 ( , PE) or plasmid pAC-PCSlp-Sp-Gm ( PE C6 PC). Choline and Mg2þ were present in all growth media. Con- − Fig. 1. Topological organization of LacY as a function of membrane lipid sistent with previous results (18), LacY assembled in PE cells composition. TMs (Roman numerals), extramembrane domains (P for peri- was unable to catalyze uphill transport of the nonmetabolizable plasmic and C for cytoplasmic as in þPE cells), N-terminus (NT) and C-terminus substrate methyl-β-D-galactopyranoside (TMG) (Fig. 2A). Sur- (CT) domains are indicated. The approximate positions and names of amino prisingly −PE þ PC cells showed the same rate and level of uphill acids substituted by cysteine and used for topological analysis are indicated transport as þPE cells (Fig. 2A), which were confirmed by inhibi- near the closed and open symbols in a cysteineless derivative of LacY used in tion of accumulation of TMG by a protonophore (Fig.
Recommended publications
  • Blotting Techniques Blotting Is the Technique in Which Nucleic Acids Or
    Blotting techniques Blotting is the technique in which nucleic acids or proteins are immobilized onto a solid support generally nylon or nitrocellulose membranes. Blotting of nucleic acid is the central technique for hybridization studies. Nucleic acid labeling and hybridization on membranes have formed the basis for a range of experimental techniques involving understanding of gene expression, organization, etc. Identifying and measuring specific proteins in complex biological mixtures, such as blood, have long been important goals in scientific and diagnostic practice. More recently the identification of abnormal genes in genomic DNA has become increasingly important in clinical research and genetic counseling. Blotting techniques are used to identify unique proteins and nucleic acid sequences. They have been developed to be highly specific and sensitive and have become important tools in both molecular biology and clinical research. General principle The blotting methods are fairly simple and usually consist of four separate steps: electrophoretic separation of protein or of nucleic acid fragments in the sample; transfer to and immobilization on paper support; binding of analytical probe to target molecule on paper; and visualization of bound probe. Molecules in a sample are first separated by electrophoresis and then transferred on to an easily handled support medium or membrane. This immobilizes the protein or DNA fragments, provides a faithful replica of the original separation, and facilitates subsequent biochemical analysis. After being transferred to the support medium the immobilized protein or nucleic acid fragment is localized by the use of probes, such as antibodies or DNA, that specifically bind to the molecule of interest. Finally, the position of the probe that is bound to the immobilized target molecule is visualized usually by autoradiography.
    [Show full text]
  • Control of Molecular Motor Motility in Electrical Devices
    Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules.
    [Show full text]
  • Molecular Biologist's Guide to Proteomics
    Molecular Biologist's Guide to Proteomics Paul R. Graves and Timothy A. J. Haystead Microbiol. Mol. Biol. Rev. 2002, 66(1):39. DOI: 10.1128/MMBR.66.1.39-63.2002. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/66/1/39 These include: REFERENCES This article cites 172 articles, 34 of which can be accessed free http://mmbr.asm.org/ at: http://mmbr.asm.org/content/66/1/39#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on November 20, 2014 by UNIV OF KENTUCKY Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2002, p. 39–63 Vol. 66, No. 1 1092-2172/02/$04.00ϩ0 DOI: 10.1128/MMBR.66.1.39–63.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Molecular Biologist’s Guide to Proteomics Paul R. Graves1 and Timothy A. J. Haystead1,2* Department of Pharmacology and Cancer Biology, Duke University,1 and Serenex Inc.,2 Durham, North Carolina 27710 INTRODUCTION .........................................................................................................................................................40 Definitions..................................................................................................................................................................40 Downloaded from Proteomics Origins ...................................................................................................................................................40
    [Show full text]
  • Protein Facility
    Supporting core service facilities for biotechnology research by faculty, student, government, and industry scientists. More Office of Biotechnology at www.biotech.iastate.edu/service_facilities. Protein Facility Iowa State University’s Protein purification of proteins and of protein samples from 1D or 2D Facility provides expertise for the peptides can be accomplished. gels. Gel spots can be digested analysis, characterization, and with a variety of enzymes, and synthesis of proteins and peptides. Mass Spectrometry the resulting peptides can be After training, users can operate A matrix-assisted laser desorption/ analyzed to identify the protein. many instruments themselves. ionization time-of-flight (MALDI- TOF) mass spectrometer can be used SDS-PAGE / Electroblotting for determining the molecular weight The facility conducts sodium of proteins, peptides, glycoproteins, dodecyl sulfate polyacrylamide oligosaccharides, oligonucleotides, gel electrophoresis (SDS-PAGE) of and polymers. A quadrapole- proteins for purity and molecular TOF tandem mass spectrometer weight estimation. Gels can be is also available for obtaining electroblotted to nitrocellulose peptide sequence information. or to PVDF for immuno- detection and protein/peptide Peptide Synthesis sequencing, respectively. The facility can do both large- and small-scale peptide synthesis, 2-D Gel Electrophoresis including phosphopeptides, peptides The facility does two-dimensional with unusual amino acids, and electrophoresis by separating proteins multiple antigenic peptides (MAP). in the first dimension according to charge (isoelectric focusing), Circular Dichroism Protein and Peptide Sequencing followed by separating the focused Researchers who want to detect The Protein Facility provides proteins in the second dimension and quantitate the chirality of N-terminal protein/peptide sequence according to their molecular weight.
    [Show full text]
  • Impact Factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 REVIEW ON: ELECTROPHORESIS: METHOD for PROTEIN SEPARATION Shindedipa
    Impact factor: 3.958/ICV: 4.10 ISSN: 0978-7908 192 Pharma Science Monitor 7(2),Apr-Jun 2016 PHARMA SCIENCE MONITOR AN INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES Journal home page: http://www.pharmasm.com REVIEW ON: ELECTROPHORESIS: METHOD FOR PROTEIN SEPARATION ShindeDipa V.*, JasminaSurati Department of Quality Assurance, Shree NaranjibhaiLalbhai Patel College of Pharmacy,Umrakh -394 345,Bardoli, Gujarat, India. ABSTRACT Electrophoresis is one of the widely used techniques in molecular biochemistry, microbiology, biomedical research. It is a type of protein separation method .It is one of the highly efficient techniques of analysis and sole method for separation of proteins for western blot, RNA studies etc. It is a both qualitative and quantitative analysis technique. Separation depend upon electrophoretic mobility.Electrophoresis technique are of various type like Moving boundary electrophoresis ,Zone electrophoresis ,Affinity electrophoresis ,Pulsed field electrophoresis ,Dielectrophoresis.this technique mainly used in antibiotic analysis,vaccine analysis DNA analysis and protein analysis as well as fingerprint analysis. KEYWORDS:Electrophoresis, Electrophoretic mobility,Zone Electrophoresis, Moving boundary Electrophoresis, Dielectricphoresis. INTRODUCTION Electrophoresis is a physical method of analysis based on the migration of electrically charged proteins, colloids, molecules or other particles dissolved or dispersed in an electrolyte solution in the direction of the electrode bearing the opposite polarity when an electric current is passed through it. Separations may be conducted in systems without support phases (such as free solution separation in capillary electrophoresis) or in stabilising media such as thin-later plates, filins or gels. The electrophoretic mobility is the rate of movement in metres per second of the charged particles under the action of an electric field of I volt per metre and is expressed in square metres per volt second.
    [Show full text]
  • Bioanalytical Chemistry 8. Gel Electrophoresis and Blotting
    91 Bioanalytical chemistry 8. Gel electrophoresis and blotting Suggested reading: Sections 9.1, 9.2.3, 9.2.4, 9.5.1, 10.1 to 10.7, 11.1 to 11.5, and 15.5 of Mikkelsen and Cortón, Bioanalytical Chemistry Primary Source Material • Chapter 4 and 6 of Biochemistry: Berg, Jeremy M.; Tymoczko, John L.; and Stryer, Lubert (NCBI bookshelf). • Chapter 3 and 7 of Molecular Cell Biology 4th ed. (Ch. 9, 5th ed.): Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. (NCBI bookshelf). • Chapter 12 of Introduction to Genetic Analysis Anthony: J.F. Griffiths, Jeffrey H. Miller, David T. Suzuki, Richard C. Lewontin, William M. Gelbart (NCBI bookshelf). • Some animations are from http://www.wiley-vch.de/books/info/3-527-30300-6/. • Cancer examples from Weinberg, Robert (2007). The Biology of Cancer. Garland Science. • http://www.piercenet.com/ Electrophoresis 92 The velocity of migration (v) of a molecule in an electric field depends on the electric field strength (E), the net charge on the protein (z), and the frictional coefficient (f). Ez v = f The frictional coefficient f depends on both the mass and shape of the migrating molecule and the viscosity (η) of the medium. For a sphere of radius r, f = 6πηr € The speed of migration is therefore proportional to the charge:mass ratio. z Will the charge to mass ratio differ v ∝ between proteins? Between r different DNA molecules? € • Electrophoresis is a technique for separating, or resolving, molecules in a mixture under the influence of an applied electric field.
    [Show full text]
  • Protein Blotting Guide
    Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0019285 A1 Horecka Et Al
    US 20060019285A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0019285 A1 Horecka et al. (43) Pub. Date: Jan. 26, 2006 (54) ANALYSIS OF INTRACELLULAR Publication Classification MODIFICATIONS (51) Int. Cl. CI2O I/68 (2006.01) (76) Inventors: Joseph Horecka, Fremont, CA (US); GOIN 33/53 (2006.01) Peter Fung, Sunnyvale, CA (US); (52) U.S. Cl. .................................................. 435/6; 435/7.1 Richard M. Eglen, Los Altos, CA (US) (57) ABSTRACT Correspondence Address: Improved methods of determining the intracellular State of a PETERS VERNY JONES & SCHMITT, L.L.P. protein as well as modifications of the protein are provided 425 SHERMANAVENUE by introducing a Surrogate fusion protein comprising a SUTE 230 member of an enzyme fragment complementation complex and a target protein. After exposing cells transformed with PALO ALTO, CA 94.306 (US) the Surrogate fusion protein to a change in environment, e.g. Appl. No.: 11/170,123 a candidate drug, the cells are lysed, the lysate Separated into (21) fractions or bands, conveniently by gel electrophoresis and (22) Filed: Jun. 29, 2005 transferring the proteins by Western blot to a membrane. The bands on the membrane are developed using the other Related U.S. Application Data member of the enzyme fragment complementation complex and a Substrate providing a detectable Signal. The method is (60) Provisional application No. 60/584,709, filed on Jun. found to provide high sensitivity and the ability to observe 30, 2004. modifications of the target protein. Patent Application Publication Jan. 26, 2006 Sheet 1 of 7 US 2006/0019285 A1 FIG.
    [Show full text]
  • Wave Electroblotting, 2D, Complete Electrophoresis Systems And
    Instruction Manual WAVE Standard and Tetrad Electroblotting, 2-D and Complete Electrophoresis Systems Electroblotting VS20WAVECBS AND WAVETETRAD1CBS Includes VS20WAVESYS and WAVEBI SW20 & WAVEBI 2-D Electrophoresis WAVEC2DS Includes VS20WAVESYS and VS20WAVEDCI VS20WAVEDC Complete (Electroblotting & 2-D Electrophoresis) VS20WAVECES AND WAVETETRAD1CES Includes VS20WAVECBS and VS20WAVEDCI 1 Contents:- Page 1) Safety Instructions 3 2) Packing Lists 4 3) Care and Maintenance 6 4) Usage Guidance and restrictions: 7 5) Set Up 8 6) Gel Casting 13 7) Gel Preparation 20 8) Gel Selection 20 9) Gel Pouring 22 10) Sample Preparation and Loading 23 11) Buffer Volume 25 12) Gel Running 25 13) Solutions 26 14) Vertical Gel Electrophoresis References 28 15) Combs 29 16) Protein Blotting using the WAVE 31 17) Buffer Volumes 32 18) Passive and Active Cooling 32 19) Run Conditions 34 20) Blotting References 35 21) Buffers 36 22) Blotting Troubleshooting 37 23) 1st Dimension Electrophoresis using the WAVEDCI Tube Gel Module 41 24) Capillary Tube Gel Pouring 41 25) 1st Dimension (IEF) Phase Tube Gel Running 43 26) 2-D, Size Determination Phase 44 27) Warranty 45 2 SAFETY PRECAUTION WHEN USED CORRECTLY, THESE UNITS POSE NO HEALTH RISK. HOWEVER, THESE UNITS CAN DELIVER DANGEROUS LEVELS OF ELECTRICITY AND ARE TO BE OPERATED ONLY BY QUALIFIED PERSONNEL FOLLOWING THE GUIDELINES LAID OUT IN THIS INSTRUCTION MANUAL. ANYONE INTENDING TO USE THIS EQUIPMENT SHOULD READ THE COMPLETE MANUAL THOROUGHLY. THE UNIT MUST NEVER BE USED WITHOUT THE SAFETY LID CORRECTLY IN POSITION. THE UNIT SHOULD NOT BE USED IF THERE IS ANY SIGN OF DAMAGE TO THE EXTERNAL TANK OR LID.
    [Show full text]
  • Blotting Techniques M.W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector RESEARCH TECHNIQUES MADE SIMPLE North, South, or East? Blotting Techniques M.W. Nicholas1 and Kelly Nelson2 Journal of Investigative Dermatology (2013) 133, e10; doi:10.1038/jid.2013.216 One of the cornerstones of modern molecular biology, blotting is a powerful and sensitive technique for identifying WHAT BLOTTING DOES the presence of specific biomolecules within a sample. • Blotting allows specific and sensitive detection of a Subtypes of blotting are differentiated by the target protein (western) or specific DNA or RNA sequence molecule that is being sought. The first of these tech­ (Southern, northern) within a large sample isolate. niques developed was the Southern blot, named for Dr. • Targets are first separated by size/charge via gel Edwin Southern, who developed it to detect specific DNA electrophoresis and then identified using a very sequences (Southern, 1975). Subsequently, the method was sensitive probe. modified to detect other targets. The nomenclature of these • Variations of these techniques can detect post­ techniques was built around Dr. Southern’s name, resulting translational modifications and DNA­bound proteins. in the terms northern blot (for detection of RNA), western blot (for detection of protein), eastern blot (for detection • Western blotting may also be used to detect a of posttranslationally modified proteins), and south­ circulating antibody in a patient sample or confirm western blot (for detection of DNA binding proteins). Most an antibody’s specificity. researchers consider the eastern blot and the southwestern blot variations of western blots rather than distinct entities.
    [Show full text]
  • Power and Limitations of Electrophoretic Separations in Proteomics Strategies
    Power and limitations of electrophoretic separations in proteomics strategies Thierry. Rabilloud 1,2, Ali R.Vaezzadeh 3 , Noelle Potier 4, Cécile Lelong1,5, Emmanuelle Leize-Wagner 4, Mireille Chevallet 1,2 1: CEA, IRTSV, LBBSI, 38054 GRENOBLE, France. 2: CNRS, UMR 5092, Biochimie et Biophysique des Systèmes Intégrés, Grenoble France 3: Biomedical Proteomics Research Group, Central Clinical Chemistry Laboratory, Geneva University Hospitals, Geneva, Switzerland 4: CNRS, UMR 7177. Institut de Chime de Strasbourg, Strasbourg, France 5: Université Joseph Fourier, Grenoble France Correspondence : Thierry Rabilloud, iRTSV/LBBSI, UMR CNRS 5092, CEA-Grenoble, 17 rue des martyrs, F-38054 GRENOBLE CEDEX 9 Tel (33)-4-38-78-32-12 Fax (33)-4-38-78-44-99 e-mail: Thierry.Rabilloud@ cea.fr Abstract: Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry( i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed. Keywords: electrophoresis, two-dimensional electrophoresis, isoelectric focusing, immobilized pH gradients, peptides, proteins, proteomics. Table of contents I. Introduction II. The principles at play III. How to use electrophoresis in a proteomics strategy III.A.
    [Show full text]
  • Electroblot Proteins by Wet Or Semi-Dry Transfer
    TECH TIP #73 Electroblot proteins by wet or semi -dry transfer TR0073.1 Introduction Typical Western blotting experiments involve polyacrylamide gel electrophoresis (PAGE) of protein samples followed by transfer of the size-separated proteins from gel to nitrocellulose or PVDF membrane. Bands or spots of specific proteins are then visualized on the membrane surface when probed with antibodies and detected with enzyme-substrate reporter systems. Three different methods can be used for protein transfer: passive-diffusion blotting, vacuum blotting, and electroblotting. Among these methods, electroblotting is the most popular because it is both faster and more efficient than the others. Electrophoretic transfer also is more quantitative. Proteins are transferred by an electric current passed through the gel. Wet (tank) transfer and semi-dry transfer have been developed to electrophoretically blot proteins and nucleic acids from gels to membranes. Transfer efficiency in these two variants of electroblotting is dependant upon gel type, membrane type, transfer buffer composition, equilibration time, size of protein(s), transfer temperature, number of gels, and volume of buffer. The purpose of this Tech Tip is to provide very simple, generalized protocols for wet and semi-dry transfer of proteins from standard mini gels (approx. 10cm × 10cm) using typical commercial transfer devices and power supplies. When possible consult and follow the instructions for the specific equipment you own. Relevant Thermo Scientific™ Pierce™ products are mentioned in each protocol, and a fuller list of these products occurs at the end this document. Protein blotting using a wet (tank) transfer apparatus 1. Separate the proteins in the sample by gel electrophoresis (e.g., reducing, denaturing SDS-PAGE).
    [Show full text]