Bankia Setacea Phylum: Mollusca Class: Bivalvia; Heterodonta the Northwest Or Feathery Shipworm Order: Myoida Family: Teredinidae

Total Page:16

File Type:pdf, Size:1020Kb

Bankia Setacea Phylum: Mollusca Class: Bivalvia; Heterodonta the Northwest Or Feathery Shipworm Order: Myoida Family: Teredinidae Bankia setacea Phylum: Mollusca Class: Bivalvia; Heterodonta The northwest or feathery shipworm Order: Myoida Family: Teredinidae Taxonomy: The original binomen for Bankia they are not worms at all!) and bore into many setacea was Xylotrya setacea, described by wooden structures. The common name Tryon in 1863 (Turner 1966). William Leach shipworm is based on their vermiform described several molluscan genera, morphology and a shell that only covers the including Xylotrya, but how his descriptions anterior body (Ricketts and Calvin 1952; see were interpreted varied. Although Menke images in Turner 1966). believed Xylotrya to be a member of the Body: Bizarrely modified bivalve with Pholadidae, Gray understood it as a member reduced, sub-globular body. For internal of the Terdinidae and synonyimized it with the anatomy, see Fig. 1, Canadian…; Fig. 1 genus Bankia, a genus designated by the Betcher et al. 2012. latter author in 1842. Most authors refer to Color: Bankia setacea (e.g. Kozloff 1993; Sipe et al. Interior: The auricle (chamber of the 2000; Coan and Valentich-Scott 2007; heart) is medium sized and rounded. A Betcher et al. 2012; Borges et al. 2012; complex digestion system allows for digestion Davidson and de Rivera 2012), although one of wood, which passes from a short recent paper sites Xylotrya setacea (Siddall et esophagus to an alimentary tract to a al. 2009). Two additional known synonyms stomach and finally a caecum where wood is exist currently, including Bankia osumiensis, broken down by enzymes (for metabolic B. sibirica. compounds see Liu and Townsley 1968, 1970). The caecum is long, blind and has Description thin walls (Fig. 1, Liu and Townsley 1968). Size: The largest of the shipworms, with Exterior: burrows that in one study were found to be up Byssus: to 15mm in diameter and 1m in length Ctenidia (Gills): Eulamellibranchiate (Haderlie and Mellor 1973). Body size can or filamentous and consisting of two layers on vary greatly. The illustrated specimen (Fig. 1) each side of the body. Ctenidia house is small and has shell diameter of 5 mm. symbiotic bacteria that synthesize essential Color: White with brownish tinges. A long nutrients (e.g., amino acids) for the host soft whitish tube connects the calcareous individual (see Associates, Trylek and Allen shell and pallets (Fig. 1) (Haderlie and Abbott 1980). 1980). Shell: The two valves gape widely in front of General Morphology: Bivalve mollusks are the foot and behind the body (Hill and Kofold bilaterally symmetrical with two lateral valves 1927; Haderlie and Abbott 1980). Each small or shells that are hinged dorsally and valve with three lobes including anterior, surround a mantle, head, foot and viscera median (composed of three separate areas), (see Plate 393B, Coan and Valentich-Scott and posterior, or auricle (Figs. 4a, b, c). In B. 2007). Among the bivalves, the Heterodonta setacea, the anterior lobe is fairly small, and are characterized by ctenidia that are has many numerous, close-set ridges. eulamellibranchiate, fused mantle margins Interior: An internal shell projection and the presence of long siphons. Members for foot attachment or apophysis is present of the family Teredinidae are modified for and (Fig. 4b) as well as articulating condyles distiguished by a wood-boring mode of life (pivots) on ventral margins (Haderlie and (Sipe et al. 2000), pallets at the siphon tips Abbott 1980). (see Plate 394C, Coan and Valentich-Scott Exterior: Both valves have a file-like 2007) and distinct anterior shell indentation. exterior surface for rasping wood (Liu and They are commonly called shipworms (though Townsley 1968). Hiebert, T.C. 2015. Bankia setacea. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12743 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hinge: Possible Misidentifications Eyes: Bivalve classification largely is based on ten Foot: Rounded and “sucker-like” (Fig. 1) and characters (Myoida, Coan and Valentich-Scott allows clam to hold onto wood (Haderlie and 2007): morphology of ctenidia, shell interior Abbott 1980). and exterior, foot, byssus, adductor muscles Siphons: Elongate (Heterodonta, Myoida, and stomach; mode of life (e.g., burrowing); Coan and Valentich-Scott 2007) and used for degree of mantle edge fusion; shell feeding and respiration (Haderlie and Abbott mineralogy; molecular phylogenetics. Within 1980). Males differ from females in having the Heterodonta, species have ctenidia that four rows of papillae (each up to 180 µm in are eulamellibranchiate, mantle margins that length, see Fig. 14, Quayle 1992) on the are fused and elongated siphons. This group exhalant siphon, which is sometimes inserted consists of the orders Veneroida, into female siphon at spawning (Haderlie and Pholadomyoida and the Myoida. Veneroids Abbott 1980; Kabat and O’Foighil 1987). The have well-developed hinge teeth, the tip of the inhalant siphon is surrounded by a Pholadomyoida are burrowers with thin shells crown of six short tentacles (no tentacles are and reduced or absent hinge teeth. The present on the exhalant siphon) (Quayle Myoida, to which B. setacea belongs, are 1992). burrowers and borers, with few hinge teeth. Burrow: Sinuous and revealing pattern of There are four local families including Myidae, shell's external grinding surface. Calcareous Corbulidae, Pholadidae and Teredinidae. tube that is produced when individuals stop The Teredinidae can be distinguished boring is sometimes apparent (see Fig. 53, from other myoid families as wood borers with Kozloff 1993). Individuals burrow deep into distinct pallets (Fig. 2) at siphon tips and wooden structures, not just along surface anterior shell indentations. There are only (Haderlie and Mellor 1973) and prefer three local species and B. setacea is easily horizontal surfaces along the mudline recognized as the only species with pallets (Walden et al. 1967). Burrowing is that have an elongate, Y-shaped blade and accomplished by alternating contractions of cone-shaped segments. The remaining two adductor muscles, rocking the clam and species have pallets that are not segmented toothed valves back and forth. The burrow (Kozloff 1993; Coan and Valentich-Scott itself becomes cylindrical as the body of the 2007). clam slowly rotates as it burrows (Fig. 3) Teredo navalis, the common and (Haderlie and Abbott 1980). Burrows can be cosmopolitan shipworm, was introduced to up to a meter long, with burrowing rate from San Francisco around 1910 (Hill and Kofold 43–74 mm per month (Haderlie and Abbott 1927). Teredo navalis has simple, spade- 1980). shaped pallets, without the separate conical elements of B. setacea. Teredo navalis also Teredinidae-specific character causes more damage to wooden structures Pallets: Two calcareous, feather-like than B. setacea, being much more adaptable structures, attached to the posterior end to extremes of temperature and salinity. It is under a fleshy collar (Figs. 1, 2). These usually much smaller than B. setacea and its pallets are used to close the burrow when burrows are nearer the surface. Another animal is disturbed. They are symmetrical, introduced species, Lyrodus pedicellatus, compound, elongated, blade-like structures occurs locally and differs from T. navalis by and consist of cone-shaped segments (Fig. having more periostracum covering the distal 2). They are paired, Y-shaped and stacked half of the pallet, rather than a pallet that is such that the smallest and oldest pallet is almost entirely calcareous (Coan and most distal from the individual’s body (Fig. 10, Valentich-Scott 2007). Lyrodus pedicellatus Quayle 1992). Pallets may be extracted from also has narrower pallets than T. navalis and visualized in dead animals (Hill and (Quayle 1992). Other Bankia species are Kofold 1927). warm water animals, and do not range north of San Diego (Hill and Kofold 1927). Hiebert, T.C. 2015. Bankia setacea. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. Ecological Information individuals in shallower water (Hill and Kofold Range: Type locality is San Francisco Bay, 1927). California (Turner 1966). Known range from Bering Sea, Alaska to southern Baja Life-History Information California (Haderlie and Abbott 1980). Reproduction: Oviparous (Coe 1941). Local Distribution: Oregon distribution Bankia setacea exhibits protandric along open coasts and in estuaries including consecutive hermaphroditism, where all Yaquina (Betcher et al. 2012) and Coos Bays young begin as males and about half develop and the Charleston boat basin. into females later in life (Coe 1941; Haderlie Habitat: Wood that is floating or in piles, but and Abbott 1980; Kabat and O’Foighil 1987). individuals do not burrow in buried wood Oocytes are 47–50 µm in diameter and sperm (Haderlie and Abbott 1980). Great efforts heads are 5 µm in length. Fertilization occurs have been made to discourage settlement outside burrows during coldest temperatures and destruction of coastal man-made wooden and in full strength salinity. Self-fertilization is structures. Some repellents slow, but do not possible (Coe 1941; Kabat and O’Foighil completely deter the shipworm. (see also 1987). Spawning occurs year-round with Behavior). peaks in Feb–May (Washington, Kabat and Salinity: Prefers full strength sea water O’Foighil 1987) and fall and spring (southern (particularly for spawning, Kabat and California, Coe 1941) and can be triggered by O’Foighil 1987) of open oceans and doesn't a rapid change in water temperature or tolerate reduced salinity (Ricketts and Calvin salinity (Quayle 1992). The complete 1971). Can survive in salinities up to 50 development of B.
Recommended publications
  • A Short Historical Investigation Into Cross-Cultural Australian Ideas
    Coolabah, No.11, 2013, ISSN 1988-5946, Observatori: Centre d’Estudis Australians, Australian Studies Centre, Universitat de Barcelona A short historical investigation into cross-cultural Australian ideas about the marine animal group Teredinidae, their socioecological consequences and some options 1 Mary Gardner Copyright©2013 Mary Gardner. This text may be archived and redistributed both in electronic form and in hard copy, provided that the author and journal are properly cited and no fee is charged. Abstract: How are contemporary multicultural coastal Australians, Aboriginals and settlers alike, to develop wiser ideas and practices towards marine animals as well as each other? To illustrate the importance and complexity of this question, I offer a short historical investigation of some contrasting ideas and practices held by Australian Aboriginal and settler cultures about marine animals of the group Teredinidae. I present two “screenshots”: one from the period 1798-1826 and another from 1970-2012. The first period examines a negative but influential interpretation by Thomas Malthus of a cross cultural encounter featuring Australian Aboriginal consumption of local Teredinidae known as “cobra”. While this cultural tone remains largely unchanged in the second period, the biological understanding of the marine animals has developed greatly. So has awareness of the socioecology of Teredinidae: their estuarine habitats and cultural significance. Their potential role as subjects of community based monitoring is undeveloped but could serve overlapping concerns of environmental justice as well as the restoration and “future proofing” of habitats. Such a new composite of ideas and practices will rely on better integration of biology with community based social innovations.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • UNIVERSITY of KERALA Zoology Core Course
    1 UNIVERSITY OF KERALA First Degree Programme in Zoology Choice Based Credit and Semester System Zoology Core Course Syllabus-2015 Admission Onwards 2 FIRST DEGREE PROGRAMME IN ZOOLOGY Scheme of Instruction and Evaluation Course Study Components Instructional Credit Duration Evaluation Total Code Hrs/week of Univ. Credit T P Exam CE ESE Semster EN1111 English I 5 4 3 Hrs 20% 80% 1111 Additional language I 4 3 3 Hrs 20% 80% EN 1121 Foundation course I 4 2 3 Hrs 20% 80% CH1131.4 Complementary course I 2 2 3 Hrs 20% 80% Complementary course I 2 16 I Practical of CH1131.4 BO1131 Complementary course II 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1131 ZO1141 Core Course I 3 3 3 Hrs 20% 80% Core Course Practical of ZO1141 1 EN1211 English II 4 3 3 Hrs 20% 80% EN1212 English III 5 4 3 Hrs 20% 80% 1211 Additional language II 4 3 3 Hrs 20% 80% CH1231.4 Complementary course III 2 2 3 Hrs 20% 80% II Complementary course III 2 Practical of CH1231.4 17 BO1231 Complementary course IV 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1231 ZO1241 Core Course II 3 3 3 Hrs 20% 80% Core Course Practical of ZO1241 1 III EN1311 English IV 5 4 3 Hrs 20% 80% EN1312 Additional language III 5 4 3 Hrs 20% 80% CH1331 Complementary course V 3 3 3 Hrs 20% 80% CH1331.4 Complementary course V 2 Practical of CH1331.4 BO1331 Complementary course VI 3 3 3 Hrs 20% 80% 17 BO1332 Complementary course VI 2 Practical of BO1331 ZO1341 Core Course III 3 3 3 Hrs 20% 80% ZO1341 Core Course Practical of ZO1341 2 IV EN1411 English V 5 4 3 Hrs 20% 80% EN1411 Additional language II 5 4 3 Hrs 20% 80% CH1431.4 Complementary course VII 3 3 3 Hrs 20% 80% CH1432.4 Complementary course 2 4 3 Hrs 20% 80% Practical of CH1131.4, CH1231.4, CH1331.4, CH1431.4.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
    ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks.
    [Show full text]
  • Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    Check List 10(3): 609–614, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Interesting shipworm (Mollusca: Bivalvia: Teredinidae) records from India ISTRIBUTIO * D Rao M. V. , Pachu A. V. and Balaji M. RAPHIC Wood Biodegradation Centre (Marine), Institute of Wood Science and Technology via Yoga Village, Beach Road, A. U. Post, Visakhapatnam-530 G 003, A.P., India. EO * Corresponding author. E-mail: [email protected] G N O Abstract: In a survey on the occurrence of marine wood boring organisms at Chippada-Rambilli, Visakhapatnam- OTES Bhimunipatnam and Soralgondi-Nachugunta coastal stretches along Bay of Bengal on the east coast of India, a good N Uperotus panamensis (Bartsch), U. lieberkindi (Roch), Teredora malleolus (Turton), Teredo poculifer Iredale and Nototeredo norvagicaassemblage (Spengler) of wood borers, are new especially records teredinidsto India; three were species, collected. namely, Among Teredo these mindanensis samples, five Bartsch, species T.of portoricensisteredinids, namely, Clapp and T. somersi Clapp new to the mainland and one species, namely, Teredothyra matocotana (Bartsch) new to the east coast. Systematic details of these nine teredinid taxa are presented in this communication. DOI: 10.15560/10.3.609 Information on the occurrence and distribution of Clapp, T. clappi Bartsch, T. somersi Clapp, T. indomalaiica marine wood borers in Indian waters relative to the Roch, Nototeredo norvagica (Spengler), N. edax (Hedley), country’s vast coastal stretch is far from satisfactory (Rao Nausitora fusticula (Jeffreys), N. dunlopei Wright, Bankia et al. 2008). Hence, efforts have been renewed to generate carinata (Gray), B.
    [Show full text]
  • Distel Et Al
    Discovery of chemoautotrophic symbiosis in the giant PNAS PLUS shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory Daniel L. Distela,1, Marvin A. Altamiab, Zhenjian Linc, J. Reuben Shipwaya, Andrew Hand, Imelda Fortezab, Rowena Antemanob, Ma. Gwen J. Peñaflor Limbacob, Alison G. Teboe, Rande Dechavezf, Julie Albanof, Gary Rosenbergg, Gisela P. Concepcionb,h, Eric W. Schmidtc, and Margo G. Haygoodc,1 aOcean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA 01908; bMarine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines; cDepartment of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112; dSecond Genome, South San Francisco, CA 94080; ePasteur, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, Pierre and Marie Curie University Paris 06, CNRS, 75005 Paris, France; fSultan Kudarat State University, Tacurong City 9800, Sultan Kudarat, Philippines; gAcademy of Natural Sciences of Drexel University, Philadelphia, PA 19103; and hPhilippine Genome Center, University of the Philippines System, Diliman, Quezon City 1101, Philippines Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 21, 2017 (received for review December 15, 2016) The “wooden-steps” hypothesis [Distel DL, et al. (2000) Nature Although few other marine invertebrates are known to consume 403:725–726] proposed that large chemosynthetic mussels found at wood as food, an increasing number are believed to use waste deep-sea hydrothermal vents descend from much smaller species as- products associated with microbial degradation of wood on the sociated with sunken wood and other organic deposits, and that the seafloor.
    [Show full text]
  • REPORT on the INVASIVE SPECIES COMPONENT of the MEDA’S, TDA & SAP for the ASCLME PROJECT
    REPORT ON THE INVASIVE SPECIES COMPONENT OF THE MEDA’s, TDA & SAP FOR THE ASCLME PROJECT Adnan Awad Consultant Cape Town, South Africa 1 Table of Contents PART I: INTRODUCTION TO THE PROJECT ..................................................................................... 3 1. PROJECT BACKGROUND ........................................................................................................... 3 1.1 Introduction .................................................................................................................. 3 1.2 Scope of Project ............................................................................................................ 4 1.3 Project Objectives ......................................................................................................... 4 2. REVISIONS & ADDITIONS TO THE PROJECT .................................................................................... 5 3. METHODS ............................................................................................................................ 5 3.1 Desktop Review ............................................................................................................ 5 3.2 Recommendations & Guidelines .................................................................................... 6 3.3 Training......................................................................................................................... 6 PART II: DESK TOP STUDY OF RELEVANT ACTIVITIES & INFORMATION FOR MEDA/TDA/SAP ......... 7 4. BASELINE
    [Show full text]
  • The Evolution of Extreme Longevity in Modern and Fossil Bivalves
    Syracuse University SURFACE Dissertations - ALL SURFACE August 2016 The evolution of extreme longevity in modern and fossil bivalves David Kelton Moss Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Moss, David Kelton, "The evolution of extreme longevity in modern and fossil bivalves" (2016). Dissertations - ALL. 662. https://surface.syr.edu/etd/662 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract: The factors involved in promoting long life are extremely intriguing from a human perspective. In part by confronting our own mortality, we have a desire to understand why some organisms live for centuries and others only a matter of days or weeks. What are the factors involved in promoting long life? Not only are questions of lifespan significant from a human perspective, but they are also important from a paleontological one. Most studies of evolution in the fossil record examine changes in the size and the shape of organisms through time. Size and shape are in part a function of life history parameters like lifespan and growth rate, but so far little work has been done on either in the fossil record. The shells of bivavled mollusks may provide an avenue to do just that. Bivalves, much like trees, record their size at each year of life in their shells. In other words, bivalve shells record not only lifespan, but also growth rate.
    [Show full text]
  • Shipwrecks and Global 'Worming'
    Shipwrecks and Global ‘Worming’ P. Palma L.N. Santhakumaran Archaeopress Archaeopress Gordon House 276 Banbury Road Oxford OX2 7ED www.archaeopress.com ISBN 978 1 78491 (e-Pdf) © Archaeopress, P Palma and L N Santhakumaran 2014 All rights reserved. No part of this book may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the copy- right owners. Recent Findings i Contents Abstract ......................................................................................................... 1 Chapter 1. Introduction ................................................................................. 3 Chapter 2. Historical Evidence ....................................................................... 5 Chapter 3. Marine Wood-boring Organisms and their taxonomy.................. 13 Molluscan wood-borers: ������������������������������������������������������������������������������ 14 Shipworms (Teredinidae) ����������������������������������������������������������������������������� 15 Piddocks (Pholadidae: Martesiinae) ������������������������������������������������������������� 22 Piddocks(Pholadidae: Xylophagainae) ���������������������������������������������������������� 24 Crustacean attack ����������������������������������������������������������������������������������������� 26 Pill-bugs (Sphaeromatidae: Sphaeromatinae) ��������������������������������������������� 26 Sphaeromatids ...................................................................................................26
    [Show full text]
  • Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
    1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale).
    [Show full text]
  • Bsc-Zoology-Syllabus
    CMS COLLEGE KOTTAYAM (AUTONOMOUS) Affiliated to the Mahatma Gandhi University, Kottayam, Kerala CURRICULUM FOR UNDER GRADUATE PROGRAMME BACHELOR OF SCIENCE IN ZOOLOGY UNDER CHOICE BASED CREDIT SYSTEM 2018 (With effect from 2018) Approved by the Board of Studies on 26-03-2018 CONTENTS 1. Acknowledgement 2. Preface 3. Curriculum a. Graduate Programme Outcome b. Programme Specific Outcome 4. Programme Design 5. Programme Structure Semester wise 6. Programme structure category wise a. Core Courses b. Complementary Courses c. Open Courses d. Extra Credit Courses e. Add on Courses 7. Detailed Syllabus of the Courses Offered by the Department 2 BOARD OF STUDIES IN ZOOLOGY CMS College (Autonomous), Kottayam Dr. Johnson Baby (Chairman) Associate Professor and Head Department of Zoology Christian College, Chengannur Dr. A.P Thomas (Subject Expert) Director, ACESSD M G University, Kottayam Dr. C.A Jayaprakash (Industry Representative) Principal Scientist and Head Division of crop protection, CTCRI Thiruvananthapuram Dr. Reethamma O.V (Member) Associate professor Dept. of Zoology, Assumption College, Changanasserry Dr. Maya B Nair (Alumni Representative) Assistant professor Dept. of Zoology SD College, Alleppey Dr. Abraham Samuel. K (Member) Head, Division of survey TIES. Kottayam Dr. Sosamma Oommen (Member) HOD, Dept. of Zoology CMS College, Kottayam Dr. Jobin Mathew (Member) Assistant Professor Dept. of Zoology CMS College, Kottayam Dr. Nisha P Aravind (Member Secretary) Assistant Professor Dept. of Zoology CMS College, Kottayam Dr. Pushpa Geetha S (Member) Assistant Professor Dept. of Zoology CMS College, Kottayam 3 ACKNOWLEDGEMENT The Board of Studies in Zoology (Under Graduate), CMS College takes this opportunity to express our deep appreciation to all academicians and representatives from the industry who participated in the various meetings that were arranged during the year, held at CMS College.
    [Show full text]