On Bivalve Phylogeny: a High-Level Analysis of the Bivalvia (Mollusca) Based on Combined Morphology and DNA Sequence Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lioconcha Castrensis Species Group (Bivalvia : Veneridae), with the Description of Two New Species
Molluscan Research 30(3): 117–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press The Lioconcha castrensis species group (Bivalvia : Veneridae), with the description of two new species SANCIA E.T. VAN DER MEIJ1, ROBERT G. MOOLENBEEK2 & HENK DEKKER2 1 Netherlands Centre for Biodiversity Naturalis (department of Marine Zoology), P.O. Box 9517, 2300 RA Leiden, The Nether- lands. Email: [email protected] (corresponding author) 2 Netherlands Centre for Biodiversity Naturalis (section Zoological Museum of Amsterdam), Mauritskade 57, 1092 AD Amsterdam, The Netherlands. Email: [email protected] Abstract Part of the genus Lioconcha Mörch, 1853 is reviewed. Species strongly resembling Lioconcha castrensis (Linnaeus, 1758) are discussed and two new species are described: Lioconcha arabaya n. sp. from the Northwest Indian Ocean and Lioconcha rumphii n. sp. from Thailand and Sumatra. These three species, together with Lioconcha macaulayi Lamprell & Healy, 2002, share many morphological similarities and we suspect them to be closely related. They are referred to as the Lioconcha cast- rensis species group. Furthermore, lectotypes of Venus castrensis Linnaeus, 1758, and Venus fulminea Röding, 1798, are desig- nated. The latter is considered a junior synonym of V. castrensis. Key words: Indo-Pacific, Mollusca, Persian Gulf, Red Sea, taxonomy Introduction between the anterior and posterior extremities, height is measured vertically from the umbo to the ventral margin and The delimitation within the tropical venerid genus Lioconcha total width (or inflation) is the greatest distance between the Mörch, 1853, is problematic, due to high levels of external surfaces of the paired valves. For an extensive list of intraspecific morphological variability and relatively few synonyms of figured specimens of Lioconcha castrensis we useful morphological characters (Lamprell and Healy 2002). -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H. -
Marine Bivalve Molluscs
Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. -
Journal of Threatened Taxa
PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online OPEN ACCESS every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication The windowpane oyster family Placunidae Rafinesque, 1815 with additional description of Placuna quadrangula (Philipsson, 1788) from India Rocktm Ramen Das, Vijay Kumar Deepak Samuel, Goutham Sambath, Pandian Krishnan, Purvaja Ramachandran & Ramesh Ramachandran 26 December 2019 | Vol. 11 | No. 15 | Pages: 15061–15067 DOI: 10.11609/jot.5049.11.15.15061-15067 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors. -
Growth and Seasonal Energetics of the Antarctic Bivalve Laternula Elliptica from King George Island, Antarctica
MARINE ECOLOGY PROGRESS SERIES Vol. 257: 99–110, 2003 Published August 7 Mar Ecol Prog Ser Growth and seasonal energetics of the Antarctic bivalve Laternula elliptica from King George Island, Antarctica In-Young Ahn1,*, Jeonghee Surh2, You-Gyoung Park2, Hoonjeong Kwon2, Kwang-Sik Choi3, Sung-Ho Kang1, Heeseon J. Choi1, Ko-Woon Kim1, Hosung Chung1 1Polar Sciences Laboratory, Korea Ocean Research & Development Institute (KORDI), Ansan, PO Box 29, Seoul 425-600, Republic of Korea 2Department of Food and Nutrition, Seoul National University, Sillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea 3Department of Aquaculture, Cheju National University, Ara-1-dong, Cheju 690-756, Republic of Korea ABSTRACT: The Antarctic marine environment is characterized by extreme seasonality in primary production, and herbivores must cope with a prolonged winter period of food shortage. In this study, tissue mass and biochemical composition were determined for various tissues of the bivalve Later- nula elliptica (King & Broderip) over a 2 yr period, and its storage and use of energy reserves were investigated with respect to seasonal changes in food level and water temperature. Total ash-free dry mass (AFDM) accumulated rapidly following phytoplankton blooms (with peak values immediately before and after spawning) and was depleted considerably during the spawning and winter periods. Most of the variation was in the muscle, gonads and digestive gland. Spawning peaked in January and February and caused considerable protein and lipid losses in the muscle, gonads and digestive gland. In winter (March to August), the muscle and digestive gland lost considerable mass, while gonad mass increased; this suggests that the muscle tissue and digestive gland serve as major energy depots for both maintenance metabolism and gonad development in winter. -
Morphometric and Systematic Study on Three Acanthocardia Species from the Mediterranean Pleistocene (Mollusca, Bivalvia, Cardiidae)
Morphometric and systematic study on three Acanthocardia species from the Mediterranean Pleistocene (Mollusca, Bivalvia, Cardiidae) Rafael LA PERNA Mauro D’ABRAMO Università di Bari, Dipartimento di Geologia e Geofi sica, via Orabona 4, I-70125 Bari (Italy) [email protected] La Perna R. & D’Abramo M. 2009. — Morphometric and systematic study on three Acan- thocardia species from the Mediterranean Pleistocene (Mollusca, Bivalvia, Cardiidae). Geo- diversitas 31 (3) : 669-682. ABSTRACT Th e cardiids Acanthocardia echinata (Linnaeus, 1758), A. deshayesii (Payrau- deau, 1826) and A. lunulata (Seguenza, 1879) co-occur in the Mediterranean Pleistocene and are closely similar to each other, even partially overlapping in shell morphology. Of these, only A. echinata is fairly well known. Acanthocardia deshayesii has been considered a subspecies or even a synonym of A. echinata, KEY WORDS Mollusca, whereas A. lunulata, only known from the original description, has been confused Bivalvia, with A. deshayesii. Th e univariate and multivariate morphometric analysis on six Cardiidae, Acanthocardia, shell characters substantiates the distinct taxonomic status of the three species. morphometry, Acanthocardia mucronata (Poli, 1791), Cardium duregnei Monterosato, 1891 systematics, and C. bullatum Locard, 1892 are considered synonyms of A. echinata. Cardium Mediterranean, Recent, propexum Monterosato, 1891 is proved to be a synonym of A. lunulata, an extinct Pleistocene. species probably endemic to the Mediterranean, like A. deshayesii. RÉSUMÉ Étude morphométrique et systématique de trois espèces du genre Acanthocardia du Pléistocène méditerranéen (Mollusca, Bivalvia, Cardiidae). Acanthocardia echinata (Linnaeus, 1758), A. deshayesii (Payraudeau, 1826) et A. lunulata (Seguenza, 1879) apparaissent dans le Pleistocène méditerranéen et sont très similaires, la morphologie des coquilles se recouvrant parfois. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B. -
Thyasira Succisa, Lyonsia Norwegica and Poromya Granulata in The
Marine Biodiversity Records, page 1 of 4. # Marine Biological Association of the United Kingdom, 2015 doi:10.1017/S1755267215000287; Vol. 8; e47; 2015 Published online First record of three Bivalvia species: Thyasira succisa, Lyonsia norwegica and Poromya granulata in the Adriatic Sea (Central Mediterranean) pierluigi strafella, luca montagnini, elisa punzo, angela santelli, clara cuicchi, vera salvalaggio and gianna fabi Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Largo Fiera della Pesca, 2, 60125 Ancona, Italy Three species of bivalves, Thyasira succisa, Lyonsia norwegica and Poromya granulate, were recorded for the first time in the Adriatic Sea during surveys conducted from 2010 to 2012 on offshore relict sand bottoms at a depth range of 45–80 m. Keywords: Thyasira succisa, Lyonsia norwegica, Poromia granulata, Adriatic Sea, bivalvia Submitted 12 December 2014; accepted 8 March 2015 INTRODUCTION yet been formerly reported in the official checklist for the Italian marine faunal species for the Adriatic Sea Although species distribution changes over time, sudden (Schiaparelli, 2008). range extensions are often prompted by anthropic and The family Thyasiridea (Dall, 1900) includes 14 genera. natural causes. This may be direct, by the introduction of a The species belonging to this family have a small, mostly new species for a defined purpose (e.g. aquaculture) or indir- thin, light shell, with more or less marked plicae on the pos- ect (e.g. ballast water). Natural changes (e.g. global warming) terior end. The anterior margin is often flattened and the could also provide opportunities for species to colonize areas hinge is almost without teeth (Jeffreys, 1876; Pope & Goto, where, until recently, they were not able to survive (Kolar & 1991). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
List of Bivalve Molluscs from British Columbia, Canada
List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.