Classical Electrodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Classical Electrodynamics 1 4 Radiation by Moving Charge s It is well known that accelerated charges emit electromagnetic radiation. In Chapter 9 we discussed examples of radiation by macroscopic time-varying charge and current densities, which are fundamentally charges in motion . We will return to such problems in Chapter 16 where multipole radiation is treated in a systematic way . But there is a class of radiation phenomena where the source is a moving point charge or a small number of such charges. In these problems it is useful to develop the formalism in such a way that the radiation intensity and polarization are related directly to properties of the charge's trajectory and motion . Of particular interest are the total radiation emitted, the angular distribution of radiation, and its frequency spectrum. For nonrelativistic motion the radiation is described by the well-known Larmor result (see Section 14.2) . But for relativistic particles a number of unusual and interesting effects appear . It is these relativistic aspects which we wish to emphasize . In the present chapter a number of general results are derived and applied to examples of charges undergoing prescribed motions, especially in external force fields . Chapter 15 deals with radiation emitted in atomic or nuclear collisions. 14.1 Lienard-Wiechert Potentials and Fields for a Point Charg e In Chapter 6 it was shown that for localized charge and current distri- butions without boundary surfaces the scalar and vector potentials can be written as f 1JM(x', 1) 6 (t' + R A``(X' t) - R - t) d3x' dt' (14. 1) C where R = (x - x'), and the delta function provides the retarded behavior 464 [Sect. 14.1 ] Radiation by Moving Charges 465 demanded by causality . For a point charge e with velocity c p(t) at the point r(t) the charge-current density i s Jµ(x, t) = ec#u S[x -- r(t)] (14.2) where ~,_ (P, i) . With this source density the spatial integration in (14 .1) can be done immediate ly, yielding t' Au(x, t) = e~ ~u~ ) b t' + Rat ~ - t dt' (14.3) R(t' ) I where now R(t') = Ix - r(t')I . Although (14 .3) is a convenient form to utilize in calculating the fields, the integral over dt' can be performed, provided we recall from Section 1 .2 that when the argument of the delta function is a function of the variable of integration the standard results are modified as follows : fg(x) 6U(x) - cx] dx = (14 .4) dfJdx f(x) = a The function f (t') = t' + [R(t')Ic] has a derivative = 1 - n•~3 (14 .5) dt' K +dRc where cp is the instantaneous velocity of the particle, and n =RJR is a unit vector directed from the position of the charge to the observation point. With (14.5) in (14.4) and (14.3) the potentials of the point charge, called the Lienard-Wiechert potentials, are r 1 (D(x, t) = e 1 L KR rot (14.6) A(x,t) =e [!Rl rPt The square bracket with subscript ret means that the quantity in brackets is to be evaluated at the retarded time, t' = t - [R(t') f c]. We note that, for nonrelativistic motion, ►c -1 1 . Then the potentials (14 .6) reduce to the well-known nonrelativistic results _ To determine the fields E and B from the potentials A . it is possible to perform the specified differential operations directly on (14.6). But this is a more tedious procedure than working with the form (14.3) . We note that in (14 .3) the only dependence on the spatial coordinates x of the observa- tion point is through R . Hence the gradient operation is equivalent to O D OR a =n a (14.7) 7R 7R 466 Classical Electrodynamics Consequently the electric and magnetic fields can be written a s KR c / cR ~ c R (14 .8) 6 ( +~ - t ~ 1 B (X, t) = e (n x ) + -61 t' +- _ R t d t` f ~ R2 cR C The primes on the delta functions mean differentiation with respect to their arguments. If the variable of integration is changed to f (t') = t' -1- jR(t')Ic], we can integrate by parts on the derivative of the delta function . Then we find readily n 1 In ~31 E(x, t) -= e C KR2 + cK dt d ' ~ KR ~ ret (14 .9) [' xn + 1 d B(x, t) = e ('KXR ret ►cR2 Ca Cat' I It is convenient to perform first the differentiation of the unit vector n. It is evident from Fig. 14.1 that the rate of change of n with time is the negative of the ratio of the perpendicular component of v to R . Thus do n x (n x (14.10) cd t' R When we perform the differentiation of n wherever it appears explicitly, we obtain n n d 1 ~i 1 d P E(x, t) = e [rc'R' + c rc d t ~ rcR~ x2R 2 crc dt' `rcR~ ret [ (_~ + B(x, t) = e 1 d (A)) x n (14.11) rc2R 2 Crt Cat' ►cR I ret We observe at this point that the magnetic induction is related simply to _.,.,, P U Fig. 14.1 [Sect. 14.1 ] Radiation by Moving Charles 467 the electric field by the relation , B = n x E (14,12) where the equation is understood to be in terms of the retarded quantities in square brackets. The remaining derivatives needed in (14 .1 1) are d,P = 0 (14 .13) Then the electric field can be written (n P ( 1 - #2) + e n E(x, t) = e - ) x {(n - (3) x 01(14.14) K3R2 ret e OR re t while the magnetic induction is given by (14 .12). Fields (14.12) and (14 .14) divide themselves naturally into "velocity fields," which are independent of acceleration, and "acceleration fields," which depend linearly on 0 . The velocity fields are essentially static fields falling off as Rf2, whereas the acceleration fields are typical radiation fields, both E and B being transverse to the radius vector and varying as R-1 . For a particle in uniform motion the velocity fields must be the same as those obtained in Section 11 .10 by means of a Lorentz transformation on the static Coulomb field. For example, the transverse electric field E1 at a point a perpendicular distance b from the straight line path of the charge was found to be El(t) = eYb (14.15) (b 2 + Y2U2 t2)% The origin of the time t is chosen so that the charge is closest to the observation point at t = 0. The electric field El(t} given by (14.15) bears little resemblance to the velocity field in (14.14). The reason for this apparent difference is that field (14 .15) is expressed in terms of the present position of the charge rather than its retarded position . To show the equivalence of the two expressions we consider the geometrical configura- tion shown in Fig. 14.2. Here 0 is the observation point, and the points P and P are the present and apparent or retarded positions of the charge at time t. The distance PQ is ~R cos 0 = (n • P)R. Therefore the distance OQ is KR. But from triangles OPQ and PP'Q we find 0)2 (KR)2 = r2 - (PQ)2 = r2 -#2(R sin Then from triangle OMP' we have R sin 0 = b, so that (KR)2 2 + Y200) = b 2 + v2t2 T N 2b2 = ~ (I? (14.16) Y 468 Classical Electrodynamics Fig. 14.2 Present and retarded positions of a charge in uniform motion . The transverse component of the velocity field in (14 .14) i s El(t) = e ~ b (14.17) Y~(KR)3 ret With substitution (14.16) for KR in terms of the charge's present position, we find that (14.17) is equal to (14 .15) . The other components of E and B come out similarly . 14.2 Total Power Radiated by an Accelerated Charge-Larmor's Formula and Its Relativistic Generalization If a charge is accelerated but is observed in a reference frame where its velocity is small compared to that of light, then in that coordinate frame the acceleration field in (14 .14) reduces to Ea e ~n x (n x ~3) = (14 .18) c R ret The instantaneous energy flux is given by the Poynting's vector , S 4~ E X B = 4~ jEaj2n (14 .19) This means that the power radiated per unit solid angle is * 2 IREQ12 = 4~~ I n x (n x ~3)~2 (14.20) M 47 T * In writing angular distributions of radiation we will always exhibit the polariza- tion explicitly by writing the absolute square of a vector which is proportional to the electric field. [Sect. 14.2] Radiation by Moving Charges 469 If 0 is the angle between the acceleration v and n, as shown in Fig. 14.3, then the power radiated can be writte n dP e2 3 v2 sin2 0 ( 14.2 1 ) d Q 47rc This exhibits the characteristic sin 2 0 angular dependence which is a well- known result . We note from (14.18) that the radiation is polarized in the plane containing v and n. The total instantaneous power radiated is obtained by integrating (14.21) over all solid angle . Thus 2 e2v2 P3 = ~3 (14.22) This is the familiar Larmor result for a nonrelativistic, accelerated charge . Larmor's formula (14 .22) can be generalized by arguments abou t covariance under Lorentz transformations to yield a result which is valid for arbitrary velocities of the charge.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,729,062 B2 Thomas Et Al
    USOO6729062B2 (12) United States Patent (10) Patent No.: US 6,729,062 B2 Thomas et al. (45) Date of Patent: May 4, 2004 (54) MIL.DOT RETICLE AND METHOD FOR 6,357,158 B1 * 3/2002 Smith, III .................... 42/122 PRODUCING THE SAME 6,429,970 B2 8/2002 Ruh ........................... 359/428 6,453,595 B1 9/2002 Sammut ...................... 42/130 (76) Inventors: Richard L. Thomas, 920 Breckenridge 2.E. R : 3: SA fetal..."8it: La., Winchester, VA (US) 22601; Chris 2- -Y/2 ammut et al. - - - - Thomas, 136 Blossom Dr., Winchester, 6,591,537 B2 * 7/2003 Smith .......................... 42/122 VA (US) 22602 OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this “Ballistic Resources LLC Introduces The Klein ReticleC)” patent is extended or adjusted under 35 by Ballistic Resources LLC. U.S.C. 154(b) by 0 days. Mildot Enterprises, Welcome to Mildot Enterprises About the Mildot Master(R) http://www.mildot.com/about.htm, 2 (21)21) Appl. NoNo.: 10/347,372/347, pp.“Illuminated Mil-Dot Reticle,” http://www.scopeuSout. 22) Filled: Jan. 21, 2003 com/oldscopes/mil-dot.html,p Mar. 25, 2002, 2 pppp. O O Leupold, “Reticle Changes & Target-Style Adjustments.” (65) Prior Publication Data http://www.leupold.com/tiret.html, Feb. 28, 2002, 8 pp. US 2004/0016168 A1 Jan. 29, 2004 Premier Reticles, Ltd., “Range Estimating Reticles,” http:// premierreticles.com/index.php?uid=5465&page= Related U.S. Application Data 1791&main=1&PHPSESSID=cf5, Oct. 13, 2003, 4 pp. (60) Provisional application No. 60/352.595, filed on Jan.
    [Show full text]
  • Compton Scattering from the Deuteron at Low Energies
    SE0200264 LUNFD6-NFFR-1018 Compton Scattering from the Deuteron at Low Energies Magnus Lundin Department of Physics Lund University 2002 W' •sii" Compton spridning från deuteronen vid låga energier (populärvetenskaplig sammanfattning på svenska) Vid Compton spridning sprids fotonen elastiskt, dvs. utan att förlora energi, mot en annan partikel eller kärna. Kärnorna som användes i detta försök består av en proton och en neutron (sk. deuterium, eller tungt väte). Kärnorna bestrålades med fotoner av kända energier och de spridda fo- tonerna detekterades mha. stora Nal-detektorer som var placerade i olika vinklar runt strålmålet. Försöket utfördes under 8 veckor och genom att räkna antalet fotoner som kärnorna bestålades med och antalet spridda fo- toner i de olika detektorerna, kan sannolikheten för att en foton skall spridas bestämmas. Denna sannolikhet jämfördes med en teoretisk modell som beskriver sannolikheten för att en foton skall spridas elastiskt mot en deuterium- kärna. Eftersom protonen och neutronen består av kvarkar, vilka har en elektrisk laddning, kommer dessa att sträckas ut då de utsätts för ett elek- triskt fält (fotonen), dvs. de polariseras. Värdet (sannolikheten) som den teoretiska modellen ger, beror på polariserbarheten hos protonen och neu- tronen i deuterium. Genom att beräkna sannolikheten för fotonspridning för olika värden av polariserbarheterna, kan man se vilket värde som ger bäst överensstämmelse mellan modellen och experimentella data. Det är speciellt neutronens polariserbarhet som är av intresse, och denna kunde bestämmas i detta arbete. Organization Document name LUND UNIVERSITY DOCTORAL DISSERTATION Department of Physics Date of issue 2002.04.29 Division of Nuclear Physics Box 118 Sponsoring organization SE-22100 Lund Sweden Author (s) Magnus Lundin Title and subtitle Compton Scattering from the Deuteron at Low Energies Abstract A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden.
    [Show full text]
  • TARS™ 3-15X50 (Tactical Advanced Riflescope) 2 TABLE of CONTENTS
    Instruction Manual TARS™ 3-15x50 (Tactical Advanced RifleScope) 2 TABLE OF CONTENTS 4 Warnings & Cautions 32 Operation 5 Introduction 40 Cleaning & General Care 6 Characteristics 42 Troubleshooting 8 Controls & Indicators 44 Models & Accessories 10 Identification & Markings 45 Patents & Trademarks 1 1 Preparation for Use 46 Limited Lifetime Warranty 14 Reticle Usage 47 Appendix 26 Adjustment Procedures 3 WARNINGS & CAUTIONS INTRODUCTION WARNING The Trijicon TARS™ variable power riflescope is made with the precision and repeatability that long- Before installing the optic on a weapon, ensure the weapon is UNLOADED. range shooting demands. The TARS doesn’t stop there – it is rugged enough to withstand the rigors of modern combat. Industry-leading transmission is made possible via fully multi-layer coated glass, CAUTION sporting a water repellent hydrophobic coating on the exposed lens surfaces. It features a first focal DO NOT allow harsh organic chemicals such as Acetone, Trichloroethane, plane reticle that is LED illuminated with cutting edge diffraction grating technology. Ten illumination or other cleaning solvents to come in contact with the Trijicon Tactical settings (including three for night vision) create the advantage to aim fast in any light. Constant eye Advanced RifleScope. They will affect the appearance but they will not relief optimized at 3.3 inches, partnered with eye alignment correcting illumination gets you on-axis affect its performance. and on-target fast. This long-range riflescope is also equipped with patent-pending locking external adjusters and an elevation zero stop that guarantee a rock-solid return to zero every time. With 150 MOA / 44 mil total elevation adjustment and 30 MOA / 10 mil adjustments per revolution, the Trijicon TARS™ allows you to rapidly zero in on your target no matter the distance.
    [Show full text]
  • The Equation of Radiative Transfer How Does the Intensity of Radiation Change in the Presence of Emission and / Or Absorption?
    The equation of radiative transfer How does the intensity of radiation change in the presence of emission and / or absorption? Definition of solid angle and steradian Sphere radius r - area of a patch dS on the surface is: dS = rdq ¥ rsinqdf ≡ r2dW q dS dW is the solid angle subtended by the area dS at the center of the † sphere. Unit of solid angle is the steradian. 4p steradians cover whole sphere. ASTR 3730: Fall 2003 Definition of the specific intensity Construct an area dA normal to a light ray, and consider all the rays that pass through dA whose directions lie within a small solid angle dW. Solid angle dW dA The amount of energy passing through dA and into dW in time dt in frequency range dn is: dE = In dAdtdndW Specific intensity of the radiation. † ASTR 3730: Fall 2003 Compare with definition of the flux: specific intensity is very similar except it depends upon direction and frequency as well as location. Units of specific intensity are: erg s-1 cm-2 Hz-1 steradian-1 Same as Fn Another, more intuitive name for the specific intensity is brightness. ASTR 3730: Fall 2003 Simple relation between the flux and the specific intensity: Consider a small area dA, with light rays passing through it at all angles to the normal to the surface n: n o In If q = 90 , then light rays in that direction contribute zero net flux through area dA. q For rays at angle q, foreshortening reduces the effective area by a factor of cos(q).
    [Show full text]
  • Slides for Statistics, Precision, and Solid Angle
    Slides for Statistics, Precision, and Solid Angle 22.01 – Intro to Radiation October 14, 2015 22.01 – Intro to Ionizing Radiation Precision etc., Slide 1 Solid Angles, Dose vs. Distance • Dose decreases with the inverse square of distance from the source: 1 퐷표푠푒 ∝ 푟2 • This is due to the decrease in solid angle subtended by the detector, shielding, person, etc. absorbing the radiation 22.01 – Intro to Ionizing Radiation Precision etc., Slide 2 Solid Angles, Dose vs. Distance • The solid angle is defined in steradians, and given the symbol Ω. • For a rectangle with width w and length l, at a distance r from a point source: 푤푙 Ω = 4푎푟푐푡푎푛 2푟 4푟2 + w2 + 푙2 • A full sphere has 4π steradians (Sr) 22.01 – Intro to Ionizing Radiation Precision etc., Slide 3 Solid Angles, Dose vs. Distance http://www.powerfromthesun.net/Book/chapter02/chapter02.html • Total luminance (activity) of a source is constant, but the flux through a surface decreases with distance Courtesy of William B. Stine. Used with permission. 22.01 – Intro to Ionizing Radiation Precision etc., Slide 4 Exponential Gamma Attenuation • Gamma sources are attenuated exponentially according to this formula: Initial intensity Mass attenuation coefficient 흁 Distance through − 흆 흆풙 푰 = 푰ퟎ풆 material Transmitted intensity Material density • Attenuation means removal from a narrowly collimated beam by any means 22.01 – Intro to Ionizing Radiation Precision etc., Slide 5 Exponential Gamma Attenuation Look up values in NIST x-ray attenuation tables: http://www.nist.gov/pml/data/xraycoef/ Initial
    [Show full text]
  • COORDINATES, TIME, and the SKY John Thorstensen
    COORDINATES, TIME, AND THE SKY John Thorstensen Department of Physics and Astronomy Dartmouth College, Hanover, NH 03755 This subject is fundamental to anyone who looks at the heavens; it is aesthetically and mathematically beautiful, and rich in history. Yet I'm not aware of any text which treats time and the sky at a level appropriate for the audience I meet in the more technical introductory astronomy course. The treatments I've seen either tend to be very lengthy and quite technical, as in the classic texts on `spherical astronomy', or overly simplified. The aim of this brief monograph is to explain these topics in a manner which takes advantage of the mathematics accessible to a college freshman with a good background in science and math. This math, with a few well-chosen extensions, makes it possible to discuss these topics with a good degree of precision and rigor. Students at this level who study this text carefully, work examples, and think about the issues involved can expect to master the subject at a useful level. While the mathematics used here are not particularly advanced, I caution that the geometry is not always trivial to visualize, and the definitions do require some careful thought even for more advanced students. Coordinate Systems for Direction Think for the moment of the problem of describing the direction of a star in the sky. Any star is so far away that, no matter where on earth you view it from, it appears to be in almost exactly the same direction. This is not necessarily the case for an object in the solar system; the moon, for instance, is only 60 earth radii away, so its direction can vary by more than a degree as seen from different points on earth.
    [Show full text]
  • General Method of Solid Angle Calculation Using Attitude Kinematics
    1 1 General method of solid angle calculation using attitude kinematics 2 3 Russell P. Patera1 4 351 Meredith Way, Titusville, FL 32780, United States 5 6 Abstract 7 A general method to compute solid angle is developed that is based on Ishlinskii’s theorem, which specifies the 8 relationship between the attitude transformation of an axis that completely slews about a conical region and the 9 solid angle of the enclosed region. After an axis slews about a conical region and returns to its initial orientation, it 10 will have rotated by an angle precisely equal to the enclosed solid angle. The rotation is the magnitude of the 11 Euler rotation vector of the attitude transformation produced by the slewing motion. Therefore, the solid angle 12 can be computed by first computing the attitude transformation of an axis that slews about the solid angle region 13 and then computing the solid angle from the attitude transformation. This general method to compute the solid 14 angle involves approximating the solid angle region’s perimeter as seen from the source, with a discrete set of 15 points on the unit sphere, which join a set of great circle arcs that approximate the perimeter of the region. Pivot 16 Parameter methodology uses the defining set of points to compute the attitude transformation of the axis due to 17 its slewing motion about the enclosed solid angle region. The solid angle is the magnitude of the resulting Euler 18 rotation vector representing the transformation. The method was demonstrated by comparing results to 19 published results involving the solid angles of a circular disk radiation detector with respect to point, line and disk 20 shaped radiation sources.
    [Show full text]
  • An Arcgis Tutorial Concerning Transformations of Geographic Coordinate Systems, with a Concentration on the Systems Used in Lao PDR
    An ArcGIS Tutorial Concerning Transformations of Geographic Coordinate Systems, with a Concentration on the Systems Used in Lao PDR. Written by: Emelie Nilsson & Anna-Karin Svensson An ArcGIS Tutorial Concerning Transformations of Geographic Written by: Emelie Nilsson & Coordinate Systems, with a Concentration on the Systems Used in LaoPDR Anna-Karin Svensson Lund University, The Department of Physical Geography and Ecosystem Analysis Summer 2004 Introduction................................................................................................................3 PART 1, A Theoretical Background about Coordinate Systems...................................3 1.1 Geographic Coordinate Systems..........................................................................3 1.2 Projected Coordinate Systems .............................................................................6 1.2.1 Azimuthal or Planar Map Projections...........................................................6 1.2.2 Conical Map Projections...............................................................................7 1.2.3 Cylindrical Map Projections .........................................................................7 1.2.4 Conformal Projections ..................................................................................8 1.2.5 Equal-Area Projections .................................................................................8 1.2.6 Equidistant Projections .................................................................................8 1.2.7 True-Direction
    [Show full text]
  • From the Geometry of Foucault Pendulum to the Topology of Planetary Waves
    From the geometry of Foucault pendulum to the topology of planetary waves Pierre Delplace and Antoine Venaille Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France Abstract The physics of topological insulators makes it possible to understand and predict the existence of unidirectional waves trapped along an edge or an interface. In this review, we describe how these ideas can be adapted to geophysical and astrophysical waves. We deal in particular with the case of planetary equatorial waves, which highlights the key interplay between rotation and sphericity of the planet, to explain the emergence of waves which propagate their energy only towards the East. These minimal in- gredients are precisely those put forward in the geometric interpretation of the Foucault pendulum. We discuss this classic example of mechanics to introduce the concepts of holonomy and vector bundle which we then use to calculate the topological properties of equatorial shallow water waves. Résumé La physique des isolants topologiques permet de comprendre et prédire l’existence d’ondes unidirectionnelles piégées le long d’un bord ou d’une interface. Nous décrivons dans cette revue comment ces idées peuvent être adaptées aux ondes géophysiques et astrophysiques. Nous traitons en parti- culier le cas des ondes équatoriales planétaires, qui met en lumière les rôles clés combinés de la rotation et de la sphéricité de la planète pour expliquer l’émergence d’ondes qui ne propagent leur énergie que vers l’est. Ces ingré- dients minimaux sont précisément ceux mis en avant dans l’interprétation géométrique du pendule de Foucault.
    [Show full text]
  • Budding Mathematical Science: an Example from the Old Norse
    Budding mathematical science: An example from the Old Norse Thorsteinn Vilhjálmsson Science Institute, University of Iceland, Reykjavik, Iceland Abstract In the Viking Era of ca. 700-1100 the Old Norse, then illiterate, expanded their sphere of exploration, communication and settlement to the East through Russia and to the west to the various coasts of the North Atlantic. For the latter they needed, among other things, specialized skills such as shipbuilding, navigation and general seamanship. These skills were handed down from one generation to another by informal, practical education. Their navigational skills seem to have included methods related to mathematical astronomy. In the example treated here, the mathematics involved is adapted to the knowledge level of a society without literacy, thus replacing written symbols and formulas by a procedure which has been easy to remember and thus suitable for passing through oral channels to new generations. The method could be applied to other cases although examples of such application are unknown to the present author. Introduction We want to take a trip with the time machine, going to the North Atlantic area in the Old Norse period, stretching from AD 700-1300 or so, the term Viking Age covering the first 4 centuries of this period. Although the society we want to visit was illiterate most of the time we know a lot about it from various sources: • Late written sources, sagas and other genres, from ca. 1120-1400. • Archaeology from land and sea, showing houses, ships and all kinds of artefacts with good dating from C14, tephra layers etc, coordinated through the annual layers in the Greenland glacier.
    [Show full text]
  • Radiometry and Photometry
    Radiometry and Photometry Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University W. Wang Materials Covered • Radiometry - Radiant Flux - Radiant Intensity - Irradiance - Radiance • Photometry - luminous Flux - luminous Intensity - Illuminance - luminance Conversion from radiometric and photometric W. Wang Radiometry Radiometry is the detection and measurement of light waves in the optical portion of the electromagnetic spectrum which is further divided into ultraviolet, visible, and infrared light. Example of a typical radiometer 3 W. Wang Photometry All light measurement is considered radiometry with photometry being a special subset of radiometry weighted for a typical human eye response. Example of a typical photometer 4 W. Wang Human Eyes Figure shows a schematic illustration of the human eye (Encyclopedia Britannica, 1994). The inside of the eyeball is clad by the retina, which is the light-sensitive part of the eye. The illustration also shows the fovea, a cone-rich central region of the retina which affords the high acuteness of central vision. Figure also shows the cell structure of the retina including the light-sensitive rod cells and cone cells. Also shown are the ganglion cells and nerve fibers that transmit the visual information to the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods are 5 sensitive over the entire visible spectrum. W. Wang There are three types of cone cells, namely cone cells sensitive in the red, green, and blue spectral range. The approximate spectral sensitivity functions of the rods and three types or cones are shown in the figure above 6 W. Wang Eye sensitivity function The conversion between radiometric and photometric units is provided by the luminous efficiency function or eye sensitivity function, V(λ).
    [Show full text]
  • Invariance Properties of the Dirac Monopole
    fcs.- 0; /A }Ю-ц-^. KFKI-75-82 A. FRENKEL P. HRASKÓ INVARIANCE PROPERTIES OF THE DIRAC MONOPOLE Hungarian academy of Sciences CENTRAL RESEARCH INSTITUTE FOR PHYSICS BUDAPEST L KFKI-75-S2 INVARIÄHCE PROPERTIES OF THE DIRAC MONOPOLE A. Frenkel and P. Hraskó High Energy Physics Department Central Research Institute for Physics, Budapest, Hungary ISBN 963 371 094 4 ABSTRACT The quantum mechanical motion of a spinless electron in the external field of a magnetic monopolé of magnetic charge v is investigated. Xt is shown that Dirac's quantum condition 2 ue(hc)'1 • n for the string being unobservable ensures rotation invarlance and correct space reflection proper­ ties for any integer value of n. /he rotation and space reflection operators are found and their group theoretical properties are discussed, A method for constructing conserved quantities In the case when the potential ie not explicitly invariant under the symmetry operation is also presented and applied to the discussion of the angular momentum of the electron-monopole system. АННОТАЦИЯ Рассматривается кваитоаомеханическое движение бесспинового элект­ рона во внешнем поле монополя с Магнитки« зарядом и. Доказывается» что кван­ товое условие Дирака 2ув(пс)-1 •> п обеспечивает не только немаолтваемость стру­ ны »но и инвариантность при вращении и правильные свойства при пространственных отражениях для любого целого п. Даются операторы времени* я отражения, и об­ суждаются их групповые свойства. Указан также метод построения интегралов движения в случае, когда потенциал не является язно инвариантным по отношению операции симметрии, и этот метод применяется при изучении углового момента сис­ темы электрон-монопопь. KIVONAT A spin nélküli elektron kvantummechanikai viselkedését vizsgáljuk u mágneses töltésű monopolus kttlsö terében.
    [Show full text]