Types of Coordinate Systems What Are Map Projections?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 6,729,062 B2 Thomas Et Al
USOO6729062B2 (12) United States Patent (10) Patent No.: US 6,729,062 B2 Thomas et al. (45) Date of Patent: May 4, 2004 (54) MIL.DOT RETICLE AND METHOD FOR 6,357,158 B1 * 3/2002 Smith, III .................... 42/122 PRODUCING THE SAME 6,429,970 B2 8/2002 Ruh ........................... 359/428 6,453,595 B1 9/2002 Sammut ...................... 42/130 (76) Inventors: Richard L. Thomas, 920 Breckenridge 2.E. R : 3: SA fetal..."8it: La., Winchester, VA (US) 22601; Chris 2- -Y/2 ammut et al. - - - - Thomas, 136 Blossom Dr., Winchester, 6,591,537 B2 * 7/2003 Smith .......................... 42/122 VA (US) 22602 OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this “Ballistic Resources LLC Introduces The Klein ReticleC)” patent is extended or adjusted under 35 by Ballistic Resources LLC. U.S.C. 154(b) by 0 days. Mildot Enterprises, Welcome to Mildot Enterprises About the Mildot Master(R) http://www.mildot.com/about.htm, 2 (21)21) Appl. NoNo.: 10/347,372/347, pp.“Illuminated Mil-Dot Reticle,” http://www.scopeuSout. 22) Filled: Jan. 21, 2003 com/oldscopes/mil-dot.html,p Mar. 25, 2002, 2 pppp. O O Leupold, “Reticle Changes & Target-Style Adjustments.” (65) Prior Publication Data http://www.leupold.com/tiret.html, Feb. 28, 2002, 8 pp. US 2004/0016168 A1 Jan. 29, 2004 Premier Reticles, Ltd., “Range Estimating Reticles,” http:// premierreticles.com/index.php?uid=5465&page= Related U.S. Application Data 1791&main=1&PHPSESSID=cf5, Oct. 13, 2003, 4 pp. (60) Provisional application No. 60/352.595, filed on Jan. -
Shaded Elevation Map of Ohio
STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL SURVEY Ted Strickland, Governor Sean D. Logan, Director Lawrence H. Wickstrom, Chief SHADED ELEVATION MAP OF OHIO 0 10 20 30 40 miles 0 10 20 30 40 kilometers SCALE 1:2,000,000 427-500500-600600-700700-800800-900900-10001000-11001100-12001200-13001300-14001400-1500>1500 Land elevation in feet Lake Erie water depth in feet 0-6 7-12 13-18 19-24 25-30 31-36 37-42 43-48 49-54 55-60 61-66 67-84 SHADED ELEVATION MAP This map depicts the topographic relief of Ohio’s landscape using color lier impeded the southward-advancing glaciers, causing them to split into to represent elevation intervals. The colorized topography has been digi- two lobes, the Miami Lobe on the west and the Scioto Lobe on the east. tally shaded from the northwest slightly above the horizon to give the ap- Ridges of thick accumulations of glacial material, called moraines, drape pearance of a three-dimensional surface. The map is based on elevation around the outlier and are distinct features on the map. Some moraines in data from the U.S. Geological Survey’s National Elevation Dataset; the Ohio are more than 200 miles long. Two other glacial lobes, the Killbuck grid spacing for the data is 30 meters. Lake Erie water depths are derived and the Grand River Lobes, are present in the northern and northeastern from National Oceanic and Atmospheric Administration data. This digi- portions of the state. tally derived map shows details of Ohio’s topography unlike any map of 4 Eastern Continental Divide—A continental drainage divide extends the past. -
TYPHOONS and DEPRESSIONS OVER the FAR EAST Morning Observation, Sep Teinber 6, from Rasa Jima Island by BERNARDF
SEPTEMBER1940 MONTHLY WEATHER REVIEW 257 days west of the 180th meridian. In American coastal appear to be independent of the typhoon of August 28- waters fog was noted on 10 days each off Washington and September 5, are the following: The S. S. Steel Exporter California; on 4 days off Oregon; and on 3 days off Lower reported 0700 G. C. T. September 6, from latitude 20'18' California. N., longitude 129'30'E.) a pressure of 744.8 mm. (993.0 nib.) with west-northwest winds of force 9. Also, the TYPHOONS AND DEPRESSIONS OVER THE FAR EAST morning observation, Sep teinber 6, from Rasa Jima Island By BERNARDF. DOUCETTE, J. (one of the Nansei Island group) was 747.8 mm. (997.0 5. mb.) for pressure and east-northeast, force 4, for winds. [Weather Bureau, Manila, P. I.] Typhoon, September 11-19) 1940.-A depression, moving Typhoon, August %!-September 6,1940.-A low-pressure westerly, passed about 200 miles south of Guam and area far to the southeast of Guam moved west-northwest, quickly inclined to the north, intensifying to typhoon rapidly developing to typhoon intensity as it proceeded. strength, September 11 to 13. It was stationary, Sep- When the center reached the regions about 250 miles tember 13 and 14, about 150 miles west-northwest of west of Guam, the direction changed to the northwest, Guam, and then began a northwesterly and northerly and the storm continued along this course until it reached course to the ocean regions about 300 miles west of the the latitude of southern Formosa. -
Meyers Height 1
University of Connecticut DigitalCommons@UConn Peer-reviewed Articles 12-1-2004 What Does Height Really Mean? Part I: Introduction Thomas H. Meyer University of Connecticut, [email protected] Daniel R. Roman National Geodetic Survey David B. Zilkoski National Geodetic Survey Follow this and additional works at: http://digitalcommons.uconn.edu/thmeyer_articles Recommended Citation Meyer, Thomas H.; Roman, Daniel R.; and Zilkoski, David B., "What Does Height Really Mean? Part I: Introduction" (2004). Peer- reviewed Articles. Paper 2. http://digitalcommons.uconn.edu/thmeyer_articles/2 This Article is brought to you for free and open access by DigitalCommons@UConn. It has been accepted for inclusion in Peer-reviewed Articles by an authorized administrator of DigitalCommons@UConn. For more information, please contact [email protected]. Land Information Science What does height really mean? Part I: Introduction Thomas H. Meyer, Daniel R. Roman, David B. Zilkoski ABSTRACT: This is the first paper in a four-part series considering the fundamental question, “what does the word height really mean?” National Geodetic Survey (NGS) is embarking on a height mod- ernization program in which, in the future, it will not be necessary for NGS to create new or maintain old orthometric height benchmarks. In their stead, NGS will publish measured ellipsoid heights and computed Helmert orthometric heights for survey markers. Consequently, practicing surveyors will soon be confronted with coping with these changes and the differences between these types of height. Indeed, although “height’” is a commonly used word, an exact definition of it can be difficult to find. These articles will explore the various meanings of height as used in surveying and geodesy and pres- ent a precise definition that is based on the physics of gravitational potential, along with current best practices for using survey-grade GPS equipment for height measurement. -
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles. -
AIM: Latitude and Longitude
AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address. -
Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0. -
Core Concepts Study Guide Absolute Location – Exact Position on Earth In
Geography – Core Concepts Study Guide absolute location – exact position on Earth in terms of longitude and latitude aerial photograph - photographic image of Earth's surface taken from the air cardinal direction – north, east, south, and west compass rose - diagram of a compass showing direction degree – unit that measures angles distortion – loss of accuracy elevation - height above sea level Geographic information system (GIS) - computer-based system that stores and uses information linked to geographic locations geography – study of the human and nonhuman features of Earth hemisphere – one half of Earth human-environment interaction - how people affect their environment and how their environment affects them key - section of a map that explains the map's symbols and shading latitude – distance north or south of the Equator measured in degrees locator map - section of a map that shows a larger area than the main map longitude – distance east or west of the Prime Meridian measured in degrees movement - how people, goods, and ideas get from one place to another physical map - map that shows physical, or natural, features place – mix of human and nonhuman features at a given location political map - map that shows political units, such as countries or states projection - way to map Earth on a flat surface region - area with at least one unifying physical or human feature such as climate, landforms, population, or history relative location – location of a place relative to another place satellite image - picture of Earth's surface taken from a satellite in orbit scale – relative size scale bar – section of a map that shows how much space on the map represents a given distance on the land special-purpose map - map that shows the location or distribution of human or physical features sphere – round-shaped body What do geographers study? Geographers study human and nonhuman features of Earth. -
State Plane Coordinate System
Wisconsin Coordinate Reference Systems Second Edition Published 2009 by the State Cartographer’s Office Wisconsin Coordinate Reference Systems Second Edition Wisconsin State Cartographer’s Offi ce — Madison, WI Copyright © 2015 Board of Regents of the University of Wisconsin System About the State Cartographer’s Offi ce Operating from the University of Wisconsin-Madison campus since 1974, the State Cartographer’s Offi ce (SCO) provides direct assistance to the state’s professional mapping, surveying, and GIS/ LIS communities through print and Web publications, presentations, and educational workshops. Our staff work closely with regional and national professional organizations on a wide range of initia- tives that promote and support geospatial information technologies and standards. Additionally, we serve as liaisons between the many private and public organizations that produce geospatial data in Wisconsin. State Cartographer’s Offi ce 384 Science Hall 550 North Park St. Madison, WI 53706 E-mail: [email protected] Phone: (608) 262-3065 Web: www.sco.wisc.edu Disclaimer The contents of the Wisconsin Coordinate Reference Systems (2nd edition) handbook are made available by the Wisconsin State Cartographer’s offi ce at the University of Wisconsin-Madison (Uni- versity) for the convenience of the reader. This handbook is provided on an “as is” basis without any warranties of any kind. While every possible effort has been made to ensure the accuracy of information contained in this handbook, the University assumes no responsibilities for any damages or other liability whatsoever (including any consequential damages) resulting from your selection or use of the contents provided in this handbook. Revisions Wisconsin Coordinate Reference Systems (2nd edition) is a digital publication, and as such, we occasionally make minor revisions to this document. -
Latitude/Longitude Data Standard
LATITUDE/LONGITUDE DATA STANDARD Standard No.: EX000017.2 January 6, 2006 Approved on January 6, 2006 by the Exchange Network Leadership Council for use on the Environmental Information Exchange Network Approved on January 6, 2006 by the Chief Information Officer of the U. S. Environmental Protection Agency for use within U.S. EPA This consensus standard was developed in collaboration by State, Tribal, and U. S. EPA representatives under the guidance of the Exchange Network Leadership Council and its predecessor organization, the Environmental Data Standards Council. Latitude/Longitude Data Standard Std No.:EX000017.2 Foreword The Environmental Data Standards Council (EDSC) identifies, prioritizes, and pursues the creation of data standards for those areas where information exchange standards will provide the most value in achieving environmental results. The Council involves Tribes and Tribal Nations, state and federal agencies in the development of the standards and then provides the draft materials for general review. Business groups, non- governmental organizations, and other interested parties may then provide input and comment for Council consideration and standard finalization. Standards are available at http://www.epa.gov/datastandards. 1.0 INTRODUCTION The Latitude/Longitude Data Standard is a set of data elements that can be used for recording horizontal and vertical coordinates and associated metadata that define a point on the earth. The latitude/longitude data standard establishes the requirements for documenting latitude and longitude coordinates and related method, accuracy, and description data for all places used in data exchange transaction. Places include facilities, sites, monitoring stations, observation points, and other regulated or tracked features. 1.1 Scope The purpose of the standard is to provide a common set of data elements to specify a point by latitude/longitude. -
TARS™ 3-15X50 (Tactical Advanced Riflescope) 2 TABLE of CONTENTS
Instruction Manual TARS™ 3-15x50 (Tactical Advanced RifleScope) 2 TABLE OF CONTENTS 4 Warnings & Cautions 32 Operation 5 Introduction 40 Cleaning & General Care 6 Characteristics 42 Troubleshooting 8 Controls & Indicators 44 Models & Accessories 10 Identification & Markings 45 Patents & Trademarks 1 1 Preparation for Use 46 Limited Lifetime Warranty 14 Reticle Usage 47 Appendix 26 Adjustment Procedures 3 WARNINGS & CAUTIONS INTRODUCTION WARNING The Trijicon TARS™ variable power riflescope is made with the precision and repeatability that long- Before installing the optic on a weapon, ensure the weapon is UNLOADED. range shooting demands. The TARS doesn’t stop there – it is rugged enough to withstand the rigors of modern combat. Industry-leading transmission is made possible via fully multi-layer coated glass, CAUTION sporting a water repellent hydrophobic coating on the exposed lens surfaces. It features a first focal DO NOT allow harsh organic chemicals such as Acetone, Trichloroethane, plane reticle that is LED illuminated with cutting edge diffraction grating technology. Ten illumination or other cleaning solvents to come in contact with the Trijicon Tactical settings (including three for night vision) create the advantage to aim fast in any light. Constant eye Advanced RifleScope. They will affect the appearance but they will not relief optimized at 3.3 inches, partnered with eye alignment correcting illumination gets you on-axis affect its performance. and on-target fast. This long-range riflescope is also equipped with patent-pending locking external adjusters and an elevation zero stop that guarantee a rock-solid return to zero every time. With 150 MOA / 44 mil total elevation adjustment and 30 MOA / 10 mil adjustments per revolution, the Trijicon TARS™ allows you to rapidly zero in on your target no matter the distance. -
Geographical Influences on Climate Teacher Guide
Geographical Influences on Climate Teacher Guide Lesson Overview: Students will compare the climatograms for different locations around the United States to observe patterns in temperature and precipitation. They will describe geographical features near those locations, and compare graphs to find patterns in the effect of mountains, oceans, elevation, latitude, etc. on temperature and precipitation. Then, students will research temperature and precipitation patterns at various locations around the world using the MY NASA DATA Live Access Server and other sources, and use the information to create their own climatogram. Expected time to complete lesson: One 45 minute period to compare given climatograms, one to two 45 minute periods to research another location and create their own climatogram. To lessen the time needed, you can provide students data rather than having them find it themselves (to focus on graphing and analysis), or give them the template to create a climatogram (to focus on the analysis and description), or give them the assignment for homework. See GPM Geographical Influences on Climate – Climatogram Template and Data for these options. Learning Objectives: - Students will brainstorm geographic features, consider how they might affect temperature and precipitation, and discuss the difference between weather and climate. - Students will examine data about a location and calculate averages to compare with other locations to determine the effect of geographic features on temperature and precipitation. - Students will research the climate patterns of a location and create a climatogram and description of what factors affect the climate at that location. National Standards: ESS2.D: Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things.