Marine Middle Eocene Fish Otoliths from India and Java
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr. -
Offshore Marine Actinopterygian Assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece Thodoris Argyriou, Donald Davesne
Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece Thodoris Argyriou, Donald Davesne To cite this version: Thodoris Argyriou, Donald Davesne. Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece. PeerJ, PeerJ, 2021, 9, pp.e10676. 10.7717/peerj.10676. hal-03121049 HAL Id: hal-03121049 https://hal.sorbonne-universite.fr/hal-03121049 Submitted on 26 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece Thodoris Argyriou1 and Donald Davesne2,3 1 UMR 7207 (MNHN—Sorbonne Université—CNRS) Centre de Recherche en Paléontologie, Museum National d’Histoire naturelle, Paris, France 2 Department of Earth Sciences, University of Oxford, Oxford, UK 3 UMR 7205 (MNHN—Sorbonne Université—CNRS—EPHE), Institut de Systématique, Évolution, Biodiversité, Museum National d’Histoire naturelle, Paris, France ABSTRACT The fossil record of marine ray-finned fishes (Actinopterygii) from the time interval surrounding the Cretaceous–Paleogene (K–Pg) extinction is scarce at a global scale, hampering our understanding of the impact, patterns and processes of extinction and recovery in the marine realm, and its role in the evolution of modern marine ichthyofaunas. -
Cusk Eels, Brotulas [=Cherublemma Trotter [E
FAMILY Ophidiidae Rafinesque, 1810 - cusk eels SUBFAMILY Ophidiinae Rafinesque, 1810 - cusk eels [=Ofidini, Otophidioidei, Lepophidiinae, Genypterinae] Notes: Ofidini Rafinesque, 1810b:38 [ref. 3595] (ordine) Ophidion [as Ophidium; latinized to Ophididae by Bonaparte 1831:162, 184 [ref. 4978] (family); stem corrected to Ophidi- by Lowe 1843:92 [ref. 2832], confirmed by Günther 1862a:317, 370 [ref. 1969], by Gill 1872:3 [ref. 26254] and by Carus 1893:578 [ref. 17975]; considered valid with this authorship by Gill 1893b:136 [ref. 26255], by Goode & Bean 1896:345 [ref. 1848], by Nolf 1985:64 [ref. 32698], by Patterson 1993:636 [ref. 32940] and by Sheiko 2013:63 [ref. 32944] Article 11.7.2; family name sometimes seen as Ophidionidae] Otophidioidei Garman, 1899:390 [ref. 1540] (no family-group name) Lepophidiinae Robins, 1961:218 [ref. 3785] (subfamily) Lepophidium Genypterinae Lea, 1980 (subfamily) Genypterus [in unpublished dissertation: Systematics and zoogeography of cusk-eels of the family Ophidiidae, subfamily Ophidiinae, from the eastern Pacific Ocean, University of Miami, not available] GENUS Cherublemma Trotter, 1926 - cusk eels, brotulas [=Cherublemma Trotter [E. S.], 1926:119, Brotuloides Robins [C. R.], 1961:214] Notes: [ref. 4466]. Neut. Cherublemma lelepris Trotter, 1926. Type by monotypy. •Valid as Cherublemma Trotter, 1926 -- (Pequeño 1989:48 [ref. 14125], Robins in Nielsen et al. 1999:27, 28 [ref. 24448], Castellanos-Galindo et al. 2006:205 [ref. 28944]). Current status: Valid as Cherublemma Trotter, 1926. Ophidiidae: Ophidiinae. (Brotuloides) [ref. 3785]. Masc. Leptophidium emmelas Gilbert, 1890. Type by original designation (also monotypic). •Synonym of Cherublemma Trotter, 1926 -- (Castro-Aguirre et al. 1993:80 [ref. 21807] based on placement of type species, Robins in Nielsen et al. -
5. the Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and Other Vertebrates
Rendiconti della Società Paleontologica Italiana, 4, 2014, pp. 37-63 Excursion guidebook CBEP 2014-EPPC 2014-EAVP 2014-Taphos 2014 Conferences The Bolca Fossil-Lagerstätten: A window into the Eocene World (editors C.A. Papazzoni, L. Giusberti, G. Carnevale, G. Roghi, D. Bassi & R. Zorzin) 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates [ CARNEVALE, } F. BANNIKOV, [ MARRAMÀ, ^ C. TYLER & ? ZORZIN G. Carnevale, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; [email protected] A.F. Bannikov, Borisyak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117997, Russia; [email protected] G. Marramà, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 I-10125 Torino, Italy; [email protected] J.C. Tyler, National Museum of Natural History, Smithsonian Institution (MRC-159), Washington, D.C. 20560 USA; [email protected] R. Zorzin, Sezione di Geologia e Paleontologia, Museo Civico di Storia Naturale di Verona, Lungadige Porta Vittoria 9, I-37129 Verona, Italy; [email protected] INTRODUCTION ][` ~[~ `[ =5} =!+~ [=5~5 Ceratoichthys pinnatiformis5 #] ~}==5[ ~== }}=OP[~` [ "O**""P "}[~* "+5$!+? 5`=5` ~]!5`5 =5=[~5_ O"!P#! [=~=55~5 `#~! ![[[~= O"]!#P5`` `5} 37 G. Carnevale, A.F. Bannikov, G. Marramà, J.C. Tyler & R. Zorzin FIG. 1_Ceratoichthys pinnatiformis~=5"!Q5=` 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates `== `]5"`5`" O*!P[~ `= =5<=[ ~#_5` [#5!="[ [~OQ5=5""="P5 ` [~`}= =5^^+55 ]"5++"5"5* *5 [=5` _5 [==5 *5]5[=[[5* [5=~[` +~++5~5=!5 ["5#+?5?5[=~[+" `[+=\`` 5`55`_= [~===5[=[5 ```_`5 [~5+~++5 [}5` `=5} 5= [~5O# "~++[=[+ P5`5 ~[O#P #"5[+~` [=Q5 5" QRQ5$5 ][5**~= [`OQ= RP`=5[` `+5=+5`=` +5 _O# P5+5 O? ]P _ #`[5[=~ [+#+?5` !5+`}==~ `5``= "!=Q5 "`O? ]P+5 _5`~[ =`5= G. -
MATT FRIEDMAN [email protected]
MATT FRIEDMAN [email protected] Lecturer in Palaeobiology, Deparment of Earth Sciences Tutor in Earth Sciences, St. Hugh’s College University of Oxford and Research Associate Department of Vertebrate Paleontology American Museum of Natural History EDUCATION 2003-2009 Committee on Evolutionary Ph.D., Evolutionary Biology Biology University of Chicago Chicago, Illinois 2003-2005 Committee on Evolutionary S.M., Evolutionary Biology Biology University of Chicago Chicago, Illinois 2002-2003 Department of Zoology and M.Phil., Zoology University Museum of Zoology University of Cambridge Thesis Title: “New elements of the Late Cambridge, UK Devonian lungfish Soederberghia groenlandica (Sarcopterygii: Dipnoi) 1998-2002 Department of Earth and B.S., Geological Sciences (Bio-geology) Environmental Sciences University of Rochester Rochester, NY EMPLOYMENT/INSTITUTIONAL AFFILIATIONS 2010-present Department of Paleontology Research Associate American Museum of Natural History New York, NY 2009-present Department of Earth Sciences Lecturer in Palaeobiology University of Oxford Oxford, UK 2009-present St. Hugh’s College Tutor in Earth Sciences Oxford, UK M. Friedman: curriculum vitae EMPLOYMENT/TEACHING EXPERIENCE 2012-present Department of Earth Sciences Course developer and instructor: Vertebrate University of Oxford Palaeobiology Oxford, UK 2011-present Department of Earth Sciences Course developer and instructor: Evolution University of Oxford Oxford, UK Course co-developer and instructor: Fossil Records 2010 Department of Ecology and Guest lecturer: -
Zootaxa, Neobythitoides Serratus (Teleostei, Ophidiidae)
Zootaxa 1227: 63–68 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1227 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Neobythitoides serratus, a new bathyal genus and species from the East China Sea (Teleostei, Ophidiidae) JØRGEN G. NIELSEN1 & YOSHIHIKO MACHIDA2 1Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark 2Faculty of Science, Kochi University, Akebono, Kochi 780-8520, Japan Abstract A new genus and species of Ophidiidae is described on the basis of two specimens from the East China Sea. It is characterized by the following combination of characters: body slender, opercular spine strong, eye small (twice in snout), hind margin of preopercle serrated, two median basibranchial tooth patches with or without a pair of small circular tooth patches, sagitta large with undivided sulcus and 10–11 long rakers on anterior gill arch. It seems most similar to Neobythites, from which it can be separated by the small horizontal diameter of eye window 2.5–2.7 % SL vs. 3.7–6.0 % SL, the serrated hind margin of preopercle vs. preopercle with 0–3 spines and no serration, and a sagitta with undivided sulcus vs. divided sulcus. Key words: Ophidiiformes, Ophidiidae, Neobythitoides serratus gen. et sp. nov., bathyal, East China Sea Introduction During a revision of the Indo-Pacific species of the genus Neobythites (Nielsen 2002) two specimens from the East China Sea, catalogued in the Department of Biology, Kochi University, as Neobythites sp., could not be assigned to Neobythites or any other ophidiid genus. The revision was based on about 1000 specimens and revealed the existence of 42 species. -
Integrative Taxonomy Reveals a Rare and New Cusk-Eel Species of Luciobrotula (Teleostei, Ophidiidae) from the Solomon Sea, West Pacifi C
European Journal of Taxonomy 750: 52–69 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.750.1361 www.europeanjournaloftaxonomy.eu 2021 · Wong M.-K. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:560648AD-81B8-464C-B408-6BA92BA086C8 Integrative taxonomy reveals a rare and new cusk-eel species of Luciobrotula (Teleostei, Ophidiidae) from the Solomon Sea, West Pacifi c Man-Kwan WONG 1, Mao-Ying LEE 2 & Wei-Jen CHEN 3,* 1,3 Institute of Oceanography, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan. 2 Marine Fisheries Division, Fisheries Research Institute, Council of Agriculture, No. 199, Heyi Road, Keelung 202008, Taiwan. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:8369C501-1639-4467-BA9D-D274AE7CF15F 2 urn:lsid:zoobank.org:author:761CF9F8-ABD7-4DA5-9326-D4160526731C 3 urn:lsid:zoobank.org:author:4D399FDB-F893-422E-A8A2-ACC18F40FCFD Abstract . With six valid species, Luciobrotula is a small genus of the family Ophidiidae, commonly known as cusk-eels. They are benthopelagic fi shes occurring at depths ranging from 115–2300 m in the Atlantic, Indian, and Pacifi c Oceans. Among them, Luciobrotula bartschi is the only known species in the West Pacifi c. Three specimens of Luciobrotula were collected from the Philippine Sea, Bismarck Sea, and Solomon Sea in the West Pacifi c during the AURORA, PAPUA NIUGINI, and MADEEP expeditions under the Tropical Deep-Sea Benthos program, and all of them were initially identifi ed as L. -
1. Leg 198 Synthesis: a Remarkable 120-M.Y
Bralower, T.J., Premoli Silva, I., and Malone, M.J. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 198 1. LEG 198 SYNTHESIS: A REMARKABLE 120-M.Y. RECORD OF CLIMATE AND OCEANOGRAPHY FROM SHATSKY RISE, NORTHWEST PACIFIC OCEAN1 Timothy J. Bralower,2 Isabella Premoli Silva,3 and Mitchell J. Malone4 1Bralower, T.J., Premoli Silva, I., and ABSTRACT Malone, M.J., 2006. Leg 198 synthesis: A remarkable 120-m.y. record of climate and oceanography from Samples collected from a depth transect of eight sites during Ocean Shatsky Rise, northwest Pacific Ocean. Drilling Program Leg 198 to Shatsky Rise contain a remarkable sedimen- In Bralower, T.J., Premoli Silva, I., and tary record of surface and deepwater circulation in the tropical Pacific Malone, M.J. (Eds.), Proc. ODP, Sci. over the past 120 m.y. In addition, basement sills recovered provide Results, 198, 1–47 [Online]. Available valuable constraints on the age and origin of the volcanic foundations from World Wide Web: <http:// www-odp.tamu.edu/publications/ of the rise. 198_SR/VOLUME/SYNTH/ The sediments recovered contain evidence of the long-term transi- SYNTH.PDF>. [Cited YYYY-MM-DD] tion from greenhouse to icehouse climate state and of several abrupt 2Department of Geosciences, climate change events. Shatsky Rise cores contain an exceptional record Pennsylvania State University, of an Oceanic Anoxic Event (OAE1a) in the early Aptian (120 Ma), with University Park PA 16802, USA. [email protected] some of the highest organic carbon contents measured in pelagic sedi- 3Dipartimento di Scienze della Terra, ments. These strata contain exceptionally preserved organic com- Università degli Studi di Milano, Via pounds including the oldest known alkenones. -
The Bolca Lagerstätten: Shallow Marine Life in the Eocene
Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 Review focus Journal of the Geological Society Published online May 8, 2018 https://doi.org/10.1144/jgs2017-164 | Vol. 175 | 2018 | pp. 569–579 The Bolca Lagerstätten: shallow marine life in the Eocene Matt Friedman1* & Giorgio Carnevale2 1 Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA 2 Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy M.F., 0000-0002-0114-7384 * Correspondence: [email protected] Abstract: The Eocene limestones around the Italian village of Bolca occur in a series of distinct localities providing a unique snapshot of marine life in the early Cenozoic. Famous for its fishes, the localities of Bolca also yield diverse invertebrate faunas and a rich, but relatively understudied flora. Most fossils from Bolca derive from the Pesciara and Monte Postale sites, which bear similar fossils but are characterized by slightly different taphonomic and environmental profiles. Although not precisely contemporaneous, the age of these principal localities is well constrained to a narrow interval within the Ypresian Stage, c. 50– 49 Ma. This places Bolca at a critical time in the evolutionary assembly of modern marine fish diversity and of reef communities more generally. Received 22 December 2017; revised 7 March 2018; accepted 8 March 2018 The rich fossil sites near Bolca, Italy provide a picture of life in a contains remains of crocodiles, turtles, snakes and plants. The warm, shallow marine setting during the early Eocene, roughly lignites of Vegroni yield a variety of plants. -
Integration Drives Rapid Phenotypic Evolution in Flatfishes
Integration drives rapid phenotypic evolution in flatfishes Kory M. Evansa,1, Olivier Larouchea, Sara-Jane Watsonb, Stacy Farinac, María Laura Habeggerd, and Matt Friedmane,f aDepartment of Biosciences, Rice University, Houston, TX 77005; bDepartment of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801; cDepartment of Biology, Howard University, Washington, DC 20059; dDepartment of Biology, University of North Florida, Jacksonville, FL 32224; eDepartment of Paleontology, University of Michigan, Ann Arbor, MI 48109; and fDepartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved March 19, 2021 (received for review January 21, 2021) Evolutionary innovations are scattered throughout the tree of life, organisms and is thought to facilitate morphological diversifica- and have allowed the organisms that possess them to occupy tion as different traits are able to fine-tune responses to different novel adaptive zones. While the impacts of these innovations are selective pressures (27–29). Conversely, integration refers to a well documented, much less is known about how these innova- pattern whereby different traits exhibit a high degree of covaria- tions arise in the first place. Patterns of covariation among traits tion (21, 30). Patterns of integration may be the result of pleiot- across macroevolutionary time can offer insights into the gener- ropy or functional coupling (28, 30–33). There is less of a ation of innovation. However, to date, there is no consensus on consensus on the macroevolutionary implications of phenotypic the role that trait covariation plays in this process. The evolution integration. -
Offshore Marine Actinopterygian Assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece
Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece Thodoris Argyriou1 and Donald Davesne2,3 1 UMR 7207 (MNHN—Sorbonne Université—CNRS) Centre de Recherche en Paléontologie, Museum National d’Histoire naturelle, Paris, France 2 Department of Earth Sciences, University of Oxford, Oxford, UK 3 UMR 7205 (MNHN—Sorbonne Université—CNRS—EPHE), Institut de Systématique, Évolution, Biodiversité, Museum National d’Histoire naturelle, Paris, France ABSTRACT The fossil record of marine ray-finned fishes (Actinopterygii) from the time interval surrounding the Cretaceous–Paleogene (K–Pg) extinction is scarce at a global scale, hampering our understanding of the impact, patterns and processes of extinction and recovery in the marine realm, and its role in the evolution of modern marine ichthyofaunas. Recent fieldwork in the K–Pg interval of the Pindos Unit in Eurytania, continental Greece, shed new light on forgotten fossil assemblages and allowed for the collection of a diverse, but fragmentary sample of actinopterygians from both late Maastrichtian and Paleocene rocks. Late Maastrichtian assemblages are dominated by Aulopiformes (†Ichthyotringidae, †Enchodontidae), while †Dercetidae (also Aulopiformes), elopomorphs and additional, unidentified teleosts form minor components. Paleocene fossils include a clupeid, a stomiiform and some unidentified teleost remains. This study expands the poor record of body fossils from this critical time interval, especially for smaller sized taxa, while providing a rare, paleogeographically constrained, qualitative glimpse of open-water Tethyan ecosystems from both before and after the extinction event. Faunal similarities Submitted 21 September 2020 Accepted 9 December 2020 between the Maastrichtian of Eurytania and older Late Cretaceous faunas reveal a Published 20 January 2021 higher taxonomic continuum in offshore actinopterygian faunas and ecosystems Corresponding author spanning the entire Late Cretaceous of the Tethys. -
Stylophoran Supertrees Revisited
Stylophoran supertrees revisited BERTRAND LEFEBVRE Lefebvre, B. 2005. Stylophoran supertrees revisited. Acta Palaeontologica Polonica 50 (3): 477–486. Supertree analysis is a recent exploratory method that involves the simultaneous combination of two or more charac− ter−based source trees into a single consensus supertree. This method was recently applied by Ruta to a fossil group of enigmatic Palaeozoic forms, the stylophoran echinoderms. Ruta’s supertree suggested that mitrates are polyphyletic and originated from paraphyletic cornutes. Re−examination of Ruta’s data matrix strongly suggests that most source trees were based on dubious homologies resulting from theory−laden assumptions (calcichordate model) or superficial similar− ities (ankyroid scenario). A new supertree analysis was performed using a slightly corrected version of Ruta’s original combined matrix; the 70% majority−rule consensus of 24,168 most parsimonious supertrees suggests that mitrates are monophyletic and derived from paraphyletic cornutes. A second new supertree analysis was generated to test the influ− ence of the pruning of three taxa in some calcichordate source trees; the 70% majority−rule consensus of 3,720 shortest supertrees indicates that both cornutes and mitrates are monophyletic and derived from a Ceratocystis−like ancestor. The two new supertree analyses demonstrate the dramatic influence of the relative contributions of each initial assumption of plate homologies (and underlying anatomical interpretations), in original source trees, on the final topology of supertrees. Key words: Echinodermata, Stylophora, Cornuta, Mitrata, Ankyroida, Calcichordata, supertree, Palaeozoic. Bertrand Lefebvre [bertrand.lefebvre@u−bourgogne.fr], Biogéosciences, Université de Bourgogne, 6 boulevard Ga− briel, F−21000 Dijon, France. Introduction disparate, character−derived trees (Purvis 1995; Bininda− Emonds et al.