Chemical Protective Clothing; a Study Into the Ability of Stav to Perform Lifesaving Procedures

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Protective Clothing; a Study Into the Ability of Stav to Perform Lifesaving Procedures J Accid Emerg Med 2000;17:115–118 115 J Accid Emerg Med: first published as 10.1136/emj.17.2.115 on 1 March 2000. Downloaded from Chemical protective clothing; a study into the ability of staV to perform lifesaving procedures Mark J Coates, Ayman S Jundi, Mark R James Abstract In 1997, a total of 931 “chemical incidents” Objective—To investigate the ability of were reported from hospitals, public health medical and nursing staV to perform cer- organisations, or other medical professional tain tasks while wearing a chemical pro- organisations, to the Chemical Incident Re- tection suit with a respirator. Tasks chosen sponse Service (CIRS)1 at the Medical Toxi- were those that would be required before cology Unit, Guy’s and St Thomas’ Hospital decontamination. Trust. The majority of these figures (584) rep- Methods—Ten experienced accident and resents incidents identified by CIRS from hos- emergency doctors (middle grade and pital inquiries. A large number of these consultants) and 10 nurses were asked to incidents aVected multiple casualties, and perform certain tasks that were judged to some involved dealing with highly toxic chemi- be life saving, relevant to triage, or neces- cals. sary to confirm death, on an advanced life The Ambulance Service Association has support manikin, while wearing a TST- produced Interim Guidance on Chemical Sweden chemical protection suit. The Incidents.23Three triage categories were identi- operators were objectively assessed by one fied: of the authors for achieving each task, x P1: require resuscitation during, or before, then asked to make a subjective assess- decontamination. ment of the diYculty experienced. x P2: treatment may be delayed until after Results—Medical staV were asked to ven- decontamination on a stretcher. tilate the manikin using a bag-valve- x P3: may be decontaminated in ambulant mask, intubate within 30 seconds, apply facilities. monitor electrodes and cables and check It is suggested that, for P1 category patients, cardiac rhythm, apply gel pads and defi- only immediately lifesaving procedures should 4 brillate safely, and finally, fold the cruci- be performed before decontamination. form triage card to show “RED”, and The accident and emergency (A&E) depart- attach it to the manikin. All the doctors ment at the Royal Preston Hospital is a desig- completed these tasks, except for one, who nated receiving facility for casualties from a could only intubate the manikin after sev- chemical incident. It has purchased a number http://emj.bmj.com/ eral attempts. Nursing staV were asked to of TST-Sweden chemical protection suits open and apply an oxygen mask, adjust (Textil Skyddsteknik AB, Kinna, Sweden; oxygen flow, size and insert an oropharyn- distributed in the UK by Airshelta, Hudders- geal airway, ventilate the manikin using a field; fig 1); each consists of a polyurethane bag-valve-mask, apply a pressure bandage coated polyamide overall (EN 465), and a to a limb, and fold the cruciform triage butyl coated polyester hood (EN 146). Ventila- tion is provided by a battery operated blower card to show “YELLOW”, and attach it to the on September 25, 2021 by guest. Protected copyright. manikin. All the nurses completed these unit and a filter that meets CEN class A2 tasks. Operators reported varying degrees (organic gases and vapours), B1 (inorganic of diYculty, the most diYcult tasks were gases and vapours), E2 (acidic gases and those requiring fine movements or deli- sulphur dioxide), K1 (ammonia and its organic cate control. Generally, operators found derivatives), and P3 (toxic particles, bacteria, the butyl rubber gloves cumbersome. viruses). It comes with separate butyl rubber Communication diYculties were fre- boots, and butyl rubber gloves. The suits are quently reported. Although only intuba- designed for dealing with contaminated casual- tion was formally timed, tasks were ties in a clean environment. They meet or Accident and exceed the recommendations of the Ambu- Emergency perceived to take longer. Some operators 23 found the suits too warm and uncomfort- lance Service Association, and would provide Department, Royal protection against most agents encountered Preston Hospital, able. Sharoe Green Lane Conclusion—Should the need arise, the during decontamination of patients in a clean North, Fulwood, TST-Sweden chemical protection suits environment, including victims of nerve gas Preston PR2 4HT attack.56 They are not, however, designed for would enable experienced doctors and M J Coates use within the high risk contaminated exclu- nurses to perform lifesaving measures A S Jundi sion zone, where only firefighters wearing M R James eVectively, without significant impair- chemical protection suits equipped with self ment to their skills. Tasks would be easier contained breathing apparatus can operate. Correspondence to: to accomplish with better fitting gloves. Mr Jundi, Specialist In the course of staV training on chemical (J Accid Emerg Med 2000;17:115–118) Registrar (e-mail: incident management in the A&E department [email protected]) Keywords: chemical incidents; protection suits; con- at the Royal Preston Hospital, concern was Accepted 23 October 1999 taminated casualties expressed as to whether lifesaving procedures 116 Coates, Jundi, James J Accid Emerg Med: first published as 10.1136/emj.17.2.115 on 1 March 2000. Downloaded from x Ventilate the manikin using a bag-valve- mask apparatus. x Apply a pressure bandage to a forearm, using a 5 inch roll of wool, and a 5 inch roll of crepe bandage, then secure it using adhesive tape. x Fold the cruciform triage card to show “YELLOW”, starting from a standard preset position, reinsert it into its pouch, and attach it to the manikin. All participants were also asked to feel for the carotid and radial pulses of the authors while wearing the butyl rubber gloves. The operators were objectively assessed by one of the authors for achieving each task. StaV were then asked to make a subjective assess- ment of the diYculty experienced in perform- ing these tasks, on a scale of 1 to 5, with 1 being as easy as performing the task without the suit, and 5 being so hard as to make the task unach- ievable. StaV were also given the opportunity to make general comments about the suits Figure 1 TST-Sweden chemical protection suit. afterwards. could be carried out safely and eVectively while StaV were familiar with all the equipment wearing the chemical protection suits that are used, with the exception of the chemical available in the department. protection suit, and were not given the oppor- The aim of the study was to establish tunity to practice any tasks in the suit. whether medical and nursing staV would be capable of performing lifesaving procedures, or Results confirming death, while wearing the TST- Ten doctors and 10 nurses participated in the Sweden chemical protection suits. We also study, each performing the required tasks in tried to convey staV perceptions of the sequence, after putting on the chemical protec- diYculty of achieving these tasks while wearing tion suit. the suits. The first task given to the doctors was to ventilate an advanced life support (ALS) mani- Methods kin using a bag-valve-mask apparatus. This was Twenty medical and nursing staV were invited achieved by all 10 participants the mean to perform a number of tasks that were deemed diYculty rating being 1.8 (range 1–3). The immediately life saving, relevant to triage, or main diYculty was in sensing the eVectiveness necessary to confirm death, while wearing the of the mask seal around the face of the http://emj.bmj.com/ chemical protection suits. These tasks were manikin. selected to represent interventions that might All but one middle grade doctor managed to be required before decontamination of P1 intubate the manikin in the allocated time; a patients. second middle grade doctor failed the first This was carried out as part of the A&E attempt, but managed the task on the second. department’s ongoing training on chemical This was scored as “achieved”, as it would be incident management. considered a “pass” under ALS test condi- on September 25, 2021 by guest. Protected copyright. Medical staV were asked to perform the fol- tions. The diYculty rating ranged from 2–5, 5 lowing tasks: being given by the person who failed to achieve x Ventilate the manikin using a bag-valve- the task. The mean rating for this task was 2.8. mask apparatus. Tying the endotracheal tube in place was x Intubate the manikin within 30 seconds. reported as the most diYcult part of this task. x Apply electrocardiographic monitor elec- Applying the electrodes to the chest, while trodes, connect the cables, and check cardiac achieved by all doctors, was found to be the rhythm. most “fiddly” task, particularly peeling the x Fold the cruciform triage card to show back oV the self adhesive electrodes. The mean “RED”, starting from a standard preset position, diYculty rating was 3.7 (range 3–4). Folding reinsert it into its pouch, and attach it to the the cruciform triage card and applying it to the manikin. manikin was successfully achieved by all x Open the gel pad packet, apply gel pads to participants, with a mean diYculty rating of the manikin, and defibrillate safely, using a Zoll 2.4 (range 2–3). PD 1400 defibrillator. The final task, applying the gel pads and Nursing staV were asked to perform the fol- using the defibrillator safely, was also success- lowing tasks: fully achieved by all the doctors. It was, x Remove a non-rebreathing oxygen mask however, rated at a slightly higher rating, with a from its packet, apply the mask to the manikin, mean of 2.7 (range 2–4). Operators com- connect the tubing to an oxygen source, and mented on the diYculty in opening the gel pad adjust the oxygen flow to 10 l/min.
Recommended publications
  • ABCDE Approach
    The ABCDE and SAMPLE History Approach Basic Emergency Care Course Objectives • List the hazards that must be considered when approaching an ill or injured person • List the elements to approaching an ill or injured person safely • List the components of the systematic ABCDE approach to emergency patients • Assess an airway • Explain when to use airway devices • Explain when advanced airway management is needed • Assess breathing • Explain when to assist breathing • Assess fluid status (circulation) • Provide appropriate fluid resuscitation • Describe the critical ABCDE actions • List the elements of a SAMPLE history • Perform a relevant SAMPLE history. Essential skills • Assessing ABCDE • Needle-decompression for tension • Cervical spine immobilization pneumothorax • • Full spine immobilization Three-sided dressing for chest wound • • Head-tilt and chin-life/jaw thrust Intravenous (IV) line placement • • Airway suctioning IV fluid resuscitation • • Management of choking Direct pressure/ deep wound packing for haemorrhage control • Recovery position • Tourniquet for haemorrhage control • Nasopharyngeal (NPA) and oropharyngeal • airway (OPA) placement Pelvic binding • • Bag-valve-mask ventilation Wound management • • Skin pinch test Fracture immobilization • • AVPU (alert, voice, pain, unresponsive) Snake bite management assessment • Glucose administration Why the ABCDE approach? • Approach every patient in a systematic way • Recognize life-threatening conditions early • DO most critical interventions first - fix problems before moving on
    [Show full text]
  • Strategies to Support the COVID-19 Response in Lmics a Virtual Seminar Series Screening, Triage and Patient Flow
    Strategies to support the COVID-19 response in LMICs A virtual seminar series Screening, Triage and Patient Flow Bhakti Hansoti, MBChB, MPH, PhD - Associate Professor in Emergency Medicine, Johns Hopkins University OBJECTIVES 1. Clinical Features 2. Preparing the Department 3. Initial Management 4. Other Management Considerations 5. Summary Clinical Features Severity • Most people with COVID-19 develop mild or uncomplicated illness • Approximately 14% develop severe disease requiring hospitalization and oxygen support • 5% require admission to an intensive care unit • In severe cases, COVID-19 can be complicated by • Acute respiratory disease syndrome (ARDS) • Sepsis and septic shock • Multiorgan failure, including acute kidney injury and cardiac injury. Preparing the Department Elements to be assessed have been divided into the following areas: • Establishment of a core team and key internal and external contact points • Human, material and facility capacity • Communication and data protection • Hand hygiene, personal protective equipment (PPE), and waste management • Triage, first contact and prioritization • Patient placement, moving of the patients in the facility, and visitor access • Environmental cleaning https://www.ecdc.europa.eu/en/publications-data/checklist- hospitals-preparing-reception-and-care-coronavirus-2019-covid-19 Split flow Protecting Yourself These videos can help with PPE donning and doffing technique: • Donning and doffing PPE https://www.youtube.com/watch?v=I94l IH8xXg8 • Recommended PPE during care https://www.youtube.com/watch?v=oPL
    [Show full text]
  • High Performance CPR Update
    High Performance CPR Update Page | 1 Final Revision 8/8/2012 As part of our ongoing Quality Assurance in Cardiac Arrest incidents, Skagit County EMS under the direction of Dr. Don Slack, MPD is making changes to the way that ALS and BLS providers perform CPR. Overview: CPR quality has a dramatic impact on pt survival when done according to these guidelines. Minimal breaks in compressions, full chest recoil, adequate compression depth and adequate compression rate are all components of CPR that an increase survival from sudden cardiac arrest. Together these components go together to create High Performance CPR (HP CPR). Roles: As a rule for the unconscious, unresponsive, pulseless patient the FIRST person to the patient starts compressions. SECOND person does defibrillation (If there are only 2 responders to begin with, ventilations should begin after the rhythm analysis and shock if indicated). THIRD person should start ventilating the patient, placing a King Airway as soon as is practical. A timekeeper needs to be assigned to ensure high quality CPR, minimal interruption and help track the ALS interventions. Principles of HP CPR 1. EMT’s own CPR!! 2. Minimize interruption in CPR at all times, use a timekeeper 3. Ensure proper depth of compressions (>2 inches) 4. Ensure full chest recoil/decompression 5. Ensure proper chest compression rate (100-120/min) 6. Rotate compressors at least every 2 minutes 7. Do not interrupt compressions to ventilate patient, even if an advanced airway is not placed 8. Hands off the chest only during analysis and shock delivery, hover hands over chest during shock delivery and be ready to resume compressions 9.
    [Show full text]
  • Small Adult CPR-2 Bag with Litesaver Manometer Brochure
    ORDERING INFORMATION Your Need ... Our Innovation® O Manometer 2 Detector 2 AerosolTubing Reservoir Infant Cushion Mask Expandable Large Bore Color-Coded Mask PEEP w/Filter StatCO Manometer LiteSaverTiming Light with CPR (Synthetic Rubber) CPR-2 (PVC) Light Blue Oxygen Bag Reservoir (22mm) Adult Cushion Mask SmallAdult Cushion Mask with Flange #3 Pediatric Cushion Mask Child Cushion Mask PEEP Valve Pop-Off Dark Blue Oxygen Reservoir 0-60 cm H PART # OTHER #10-56402 X X X X X X #10-56403 X X X X #10-56404 X X X X X #10-56411 X X X X #10-56412 X X X X X #10-56423 X X X X X X #10-56424 X X X X X X CPR-2 Small Adult Bag with Manometer #10-56432 X X X X X #10-56435 X X X X X X X #10-56437 X X X X #10-56438 X X X X X #10-56440 X X X X #10-58500 X X X X #10-58501 X X X X X #10-58502 X X X X X #10-58503 X X X X X X #10-58506 X X X X X X #10-58507 X X X X X #10-58509 X X X X X #10-58512 X X X X X X X #10-55901 X X X #10-55904 X X X #10-55907 X X X #10-55909 X X X X #10-55910 X X X X #10-55912 X X X #10-55913 X X X X X X No lock clip #10-55915 X X X X X #10-55916 X X X #10-55917 X X X X X #10-55918 X X X X X X #10-55922 X X X X X X X #10-55923 X X X X #10-55924 X X X X X #10-55928 X X X #10-58400 X X X X #10-55365 LiteSaver Manometer Assy 20/Box 0-60 cm H2O, Adult Frequency 10 BPM #10-55366 LiteSaver Manometer Assy 20/Box Assembly 0-60 cm H2O In-Line Tee Right Orientation, Adult Frequency 10 BPM #10-55367 LiteSaver Manometer Assy 20/Box Assembly 0-60 cm H2O In-Line Tee Left Orientation, Adult Frequency 10 BPM = CPR-2 Small Adult Bags *References Can EMS Providers Provide Appropriate Tidal Volumes in a Simulated Adult-sized Patient with a Pediatric-sized Bag-Valve-Mask? Journal Pre-hospital Emergency Care, Volume 21, 2017, Issue 1, Jeffery Siegler, MD, EMT-P, Melissa Kroll, MD, Susan Wojcik, PhD, ATC & Hawnwan Philip May, MD Avoid Airway Catastrophes on the Extremes of Minute Ventilation, Acepnow.com, January 20, 2015, Richard M.
    [Show full text]
  • Capnography (ILS/ALS)
    Capnography (ILS/ALS) Clinical Indications: 1. Capnography shall be used as soon as possible in conjunction with any airway management adjunct, including endotracheal, Blind Insertion Airway Devices (BIAD) or Bag Valve Mask (BVM). 2. Capnography should also be used on all patients treated with CPAP or epinephrine for respiratory distress. 3. Acute respiratory distress. 4. Assisted ventilations. 5. Sustained altered mental status. Procedure: 1. Attach capnography sensor to the BIAD, endotracheal tube, or oxygen delivery device. 2. Note CO2 level and waveform changes. These will be documented on each respiratory failure, cardiac arrest, or respiratory distress patient. 3. The capnometer shall remain in place with the airway and be monitored throughout the prehospital care and transport. 4. Any loss of CO2 detection or waveform indicates an airway problem and should be documented. 5. The capnogram should be monitored as procedures are performed to verify or correct the airway problem. 6. Document the procedure and results on/with the Patient Care Report (PCR) and the Airway Evaluation Form. 7. In all patients with a pulse, an ETCO2 >20 is anticipated. In the post-resuscitation patient, no effort should be made to lower ETCO2 by modification of the ventilatory rate. Further, in post- resuscitation patients without evidence of ongoing, severe bronchospasm, ventilatory rate should never be < 6 breaths per minute. 8. In the pulseless patient, and ETCO2 waveform with an ETCO2 value >10 may be utilized to confirm the adequacy of an airway to include BVM and advanced devices when Sp02 will not register. Critical Comment: • When CO2 is NOT detected, three factors must be quickly assessed : 1.
    [Show full text]
  • Information on Defibrillation and Ventilation with the LUCAS® Chest Compression System
    ® LUCAS CHEST COMPRESSION SYSTEM Information on Defibrillation and Ventilation with the LUCAS® Chest Compression System The goal when using the LUCAS device is to provide effective, After Defibrillation consistent, and uninterrupted chest compressions. When an After the shock is delivered it is important to verify the position of the interruption to chest compressions occurs, the patient’s coronary suction cup to see it has not moved out of place. This is easier to do perfusion pressure (CPP) drops rapidly. CPP is the measure of the if an ink marker line was marked where the suction cup was originally pressure that drives blood flow through the coronary arteries to the positioned on the patient. Readjust as necessary. heart muscle. The heart normally maintains a CPP of 60 millimeters of mercury (mmHg) or more. During cardiac arrest, the CPP drops dramatically, threatening the heart muscle’s blood supply. As it can take Oxygenation with Ventilation some time to build up CPP again, interruptions to chest compressions should be minimized. To supply adequate concentrations of oxygen in the blood, ensure the patient is properly ventilated. Ventilations should be provided in The current American Heart Association Guidelines emphasize conjunction with mechanical chest compressions. Interruptions to 1 minimizing interruptions when delivering high quality CPR: chest compressions should be minimized to maintain the level of • Minimize pre- and post-shock pauses (class I), oxygen delivered to tissues. During the first few minutes of sudden cardiac arrest, chest compressions to improve blood flow have been • Pause compressions for less than 10 seconds when delivering two shown to be more important than ventilations because oxygen blood breaths (class IIa), levels remain high initially.4 • Maximize the time with chest compressions (class IIb).
    [Show full text]
  • The Golden Hour > How Time Shapes Airway Management > by Charlie Eisele,BS,NREMT-P
    September 2008 The A supplement to JEMS (the Journal of Emergency Medical Services) Conscience of EMS JOURNAL OF EMERGENCY MEDICAL SERVICES Sponsored by Verathon Inc. ELSEVIER PUBLIC SAFETY The Perfect View How Video Laryngoscopy Is Changing the Face of Prehospital Airway Management A supplement to September 2008 JEMS, sponsored by Verathon Inc. 4 Foreword > To See or Not to See, That Is the Question > By A.J.Heightman,MPA,EMT-P 5 5 The Golden Hour > How Time Shapes Airway Management > By Charlie Eisele,BS,NREMT-P 9 The Video Laryngoscopy Movement > Can-Do Technology at Work > By John Allen Pacey,MD,FRCSc 11 ‘Grounded’ Care > Use of Video Laryngoscopy in a Ground 11 EMS System: Better for You, Better for Your Patients > By Marvin Wayne,MD,FACEP,FAAEM 14 Up in the Air > Video Laryngoscopy Holds Promise for In-Flight Intubation > By Lars P.Bjoernsen,MD,& M.Bruce Lindsay,MD 16 16 The Military Experience > The GlideScope Ranger Improves Visualization in the Combat Setting > By Michael R.Hawkins,MS,CRNA 19 Using Is Believing > Highlights from 72 Cases Involving Video Laryngoscopy at Martin County (Fla.) Fire Rescue > By David Zarker,EMT-P 21 Teaching the Airway > Designing Educational Programs for 21 Emergency Airway Management > By Michael F.Murphy,MD; Ron M.Walls,MD; & Robert C.Luten,MD COVER PHOTO KEVIN LINK Disclosure of Author Relationships: Authors have been asked to disclose any relationships they may have with commercial supporters of this supplement or with companies that may have relevance to the content of the supplement. Such disclosure at the end of each article is intended to provide readers with sufficient information to evaluate whether any material in the supplement has been influenced by the writer’s relationship(s) or financial interests with said companies.
    [Show full text]
  • Resuscitation and Defibrillation
    AARC GUIDELINE: RESUSCITATION AND DEFIBRILLATION AARC Clinical Practice Guideline Resuscitation and Defibrillation in the Health Care Setting— 2004 Revision & Update RAD 1.0 PROCEDURE: signs, level of consciousness, and blood gas val- Recognition of signs suggesting the possibility ues—included in those conditions are or the presence of cardiopulmonary arrest, initia- 4.1 Airway obstruction—partial or complete tion of resuscitation, and therapeutic use of de- 4.2 Acute myocardial infarction with cardio- fibrillation in adults. dynamic instability 4.3 Life-threatening dysrhythmias RAD 2.0 DESCRIPTION/DEFINITION: 4.4 Hypovolemic shock Resuscitation in the health care setting for the 4.5 Severe infections purpose of this guideline encompasses all care 4.6 Spinal cord or head injury necessary to deal with sudden and often life- 4.7 Drug overdose threatening events affecting the cardiopul- 4.8 Pulmonary edema monary system, and involves the identification, 4.9 Anaphylaxis assessment, and treatment of patients in danger 4.10 Pulmonary embolus of or in frank arrest, including the high-risk de- 4.11 Smoke inhalation livery patient. This includes (1) alerting the re- 4.12 Defibrillation is indicated when cardiac suscitation team and the managing physician; (2) arrest results in or is due to ventricular fibril- using adjunctive equipment and special tech- lation.1-5 niques for establishing, maintaining, and moni- 4.13 Pulseless ventricular tachycardia toring effective ventilation and circulation; (3) monitoring the electrocardiograph and recogniz-
    [Show full text]
  • Pediatric Trauma and Critical Care Provides Six (6) Hours of Continuing Education Credit
    PEDIATRIC TRAUMA AND CRITICAL CARE PROVIDES SIX (6) HOURS OF CONTINUING EDUCATION CREDIT AGENDA 0800-0830 Registration 0830-0930 Transport Pearls for the Neonate Patty Duncan, BSN, RNC 0930-0940 Break 0940-1140 Pediatric Airway and Prehospital Golden Hour Dave Duncan, MD 1145-1215 Lunch 1215-1315 State of the Art EMS Protocols are Created, Not Born That Way Paul S. Rostykus, MD, MPH, FAEMS 1315-1325 Break 1325-1525 Pediatric Trauma Heather Summerby, RN 1525-1530 Evaluation Transport Pearls for the Neonate Patty Duncan There are not many careers where your decisions and interactions can positively impact the life of a human for up to 80 plus years. Dr. Stephen Butler PEARLS OF NEONATAL TRANSPORT FROM A 35 YEAR NICU RN PATTY DUNCAN BSN RNC PATTY DUNCAN BSN RNC • ADVANCED LIFE SUPPORT COORDINATOR • ALS NICU TRANSPORT COORDINATOR • ASSISTANT NURSE MANAGER 61 BED LEVEL 3 NICU • STABLE INSTRUCTOR • NRP INSTUCTOR NICU TRANSPORT TEAM • VIA GROUND, FIXED WING AND ROTOR • SERVE 27 COUNTIES IN NORTHERN CA • 3 OUT OF HOUSE TRANPORT ISOLETTE CONTAIN CONV VENT HFJV NITRIC OXIDE ACTIVE COOLING TECOTHERM BCPAP THE NEONATE-WHY THEY ARE SPECIAL • OF, RELATING TO ,OR AFFECTING THE NEWBORN AND ESPECIALLY THE HUMAN INFANT DURING THE FIRST MONTH AFTER BIRTH • MERRIAM-WEBSTER Large surface area compared to size keep them warm (BSA is 3X greater than adult) Correct ventilation is the key to solving most issue be smart Glucose is their energy source - keep them sweet NEONATES: MASTERS OF DISGUISE KEY = TREAT THE SYMPTOM! • Tachypnea: the most common symptom! • Respiratory Distress Syndrome • Transient tachypnea of the newborn, Hyaline Membrane Disease, pneumothorax, pneumonia • Sepsis-bacterial, virus • Cardiac-ductal dependent vs non ductal dependent • Metabolic Acidosis • Hypoglycemia, • Hypothermia TREAT THE SYMPTOMS! THE DIAGNOSIS WILL FOLLOW (MAYBE) S.T.A.B.L.E.
    [Show full text]
  • 2018 EMT-M Module 2.Pdf
    EMT-Miner RE-CERTIFICATION CLASS MODULE - 2 The Well-Being of the EMT-Miner Covers the emotional aspects of emergency medical care, stress management, introduction to Critical Incident Stress Debriefing (CISD), scene safety, body substance isolation (BSI), personal protection equipment (PPE), and safety precautions that can be taken prior to performing the role of a EMT Miner At the completion of this lesson, the EMT Miner will be able to: • List possible emotional reactions that the EMT-Miner may experience when faced with trauma, illness, death and dying. • Discuss the possible reactions that (co-workers) a family member may exhibit when confronted with death and dying. • State the steps in the EMT-Miner’s approach to the (co-worker) family confronted with death and dying. • State the possible reactions that the (co-worker) family of the EMT Miner may exhibit. • Recognize the signs and symptoms of critical incident stress. • State possible steps that the EMT-Miner may take to help reduce/alleviate stress. • Explain the need to determine scene safety. • Discuss the importance of body substance isolation (BSI) . • Describe the steps the EMT-Miner should take for personal protection from airborne and blood borne pathogens. Legal and Ethical Issues Explores the scope of practice, ethical responsibilities, advance directives, consent, refusals, abandonment, negligence, duty to act, confidentiality, medical identification symbols, and accident scenes. At the completion of this lesson, the EMT Miner will be able to: • Define the EMT Miner scope of care. • Discuss the importance of Do Not Resuscitate [DNR] (advance directives) and local or state provisions regarding EMS application.
    [Show full text]
  • Basic Trauma Overview - ABC
    Basic Trauma Overview - ABC Dale Dangleben, MD, FACS 1 2 Team 3 Extended Team 4 Team Leader Decrease chaos / optimize care. – Remains calm – Maintains control and provides direction – Stays decisive – Sees the big picture (situational awareness) – Is open to other team members input – Directs resuscitation – Makes early decision to transfer the patients that exceed the local capabilities 5 Team Members − Know your roles in the trauma team − Remain calm − Be responsive to team leader −Voice suggestions or concerns 6 Responsibilities – Perform the Primary and secondary survey – Verbalize patient care – Report completed tasks 7 Responsibilities – Monitors the patient – Manual BP – Obtains IV access – Administers medications – Dresses wounds – Performs or assists in resuscitative procedures 8 Responsibilities Records data Ensures documentation accompanies patient upon transfer Assists team members as needed 9 Responsibilities – Obtains needed supplies – Coordinates communication with local and external resources – Assists team members as needed 10 Responsibilities • Place Oxygen on patient • Manage airway • Hold C spine • Manage ventilator if • Manage rapid infuser line patient intubated where indicated • Assists team members as needed 11 Organization of trauma resuscitation area – Basic adult and pediatric equipment for: • Airway management (cart) • IV access with warm fluids • Chest tube insertion • Hemorrhage control (tourniquets, pelvic binders) • Immobilization • Medications • Pediatric length/weight based tape (Broselow Tape) – Warming
    [Show full text]
  • Emerging Uses of Capnography in Emergency Medicine in Emergency Capnography Uses of Emerging
    Emerging Uses of Capnography in Emergency Medicine WHITEPAPER INTRODUCTION The Physiologic Basis for Capnography Capnography is based on a discovery by chemist Joseph Black, who, in 1875, noted the properties of a gas released during exhalation that he called “fixed air.” That gas—carbon dioxide (CO2)—is produced as a consequence of cellular metabolism as the waste product of combining oxygen and glucose to produce energy. Carbon dioxide exits the body via the lungs. The concentration of CO2 in an exhaled breath reflects cardiac output and pulmonary blood flow as the gas is transported by the venous system to the right side of the heart and then pumped into the lungs by the right ventricle. Capnographs measure the concentration of CO2 at the end of each exhaled breath, commonly known as the end- tidal carbon dioxide (EtCO2). As long as the heart is beating and blood is flowing, CO2 is delivered continuously to the lungs for exhalation. An EtCO2 value outside the normal range in a patient with normal pulmonary blood flow indicates a problem with ventilation that may require immediate attention. Any deviation from normal ventilation quickly changes EtCO2, even when SpO2—the indirect measurement of oxygen saturation in the blood—remains normal. Thus, EtCO2 is a more sensitive and rapid indicator of ventilation problems than SpO2.1 Why EtCO2 Monitoring Is Important It is generally accepted that EtCO2 monitoring is the practice standard for determining whether endotracheal tubes are correctly placed. However, there are other important indications for its use as well. Ventilatory monitoring by EtCO2 measurement has long been a standard in the surgical and intensive care patient populations.
    [Show full text]