The Efficiency of Bag-Valve Mask Ventilations by Medical First Responders and Basic Emergency Medical Technicians

Total Page:16

File Type:pdf, Size:1020Kb

The Efficiency of Bag-Valve Mask Ventilations by Medical First Responders and Basic Emergency Medical Technicians California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2003 The efficiency of bag-valve mask ventilations by medical first responders and basic emergency medical technicians John Vincent Commander Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Vocational Education Commons Recommended Citation Commander, John Vincent, "The efficiency of bag-valve mask ventilations by medical first responders and basic emergency medical technicians" (2003). Theses Digitization Project. 2310. https://scholarworks.lib.csusb.edu/etd-project/2310 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE EFFICIENCY OF BAG-VALVE MASK VENTILATIONS BY MEDICAL FIRST RESPONDERS AND BASIC EMERGENCY MEDICAL TECHNICIANS A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Education: Career and Technical Education by John Vincent Commander September 2003 THE EFFICIENCY OF BAG-VALVE MASK VENTILATIONS BY MEDICAL FIRST RESPONDERS AND BASIC EMERGENCY MEDICAL TECHNICIANS A Project Presented to the Faculty of California State University, San Bernardino by John Vincent Commander September 2003 Approved by: © 2003 John Vincent Commander ABSTRACT• Bag-valve mask (BVM) ventilation maintains a patient's oxygenation and ventilation until a more definitive artificial airway can be established. In the prehospital setting of a traffic collision-or • medical aid scene this is performed by an Emergency Medical Technician or medical first responder. Few studies have looked at the effectiveness of Bag-valve mask (BVM) or the complication rate of ventilating an unprotected airway. The purpose and goal of this study was to educate both medical first responders and basic emergency medical technician's through positive attribution feedback loop; the important objectives of bag-valve mask (BVM) ventilation: (1) manual airway protection; and (2) adequate tidal volume. iii ACKNOWLEDGMENTS I would like to thank the following individuals who have contributed greatly to the success of this Project: Professor Joseph A. Scarcella, Ph.D. for his dedication to the students of the Career and Technical Education Department at California State University, San Bernardino. Dr. Scarella spent more numerous hours than any other person I know of reading theses, responding to questions, answering emails and phone calls, updating various Internet sites and providing valuable guidance and encouragement. As my advisor he has played an active role in both my research, the expansion of my knowledge, and my overall education but most of all helping me to get back on track and remain "focused" in my research. He has been a true mentor during my long trek to achieve the Masters Degree; for this, I am deeply grateful and appreciative. Special thanks to Professor Ronald K. Pendleton, Ph.D, from the Vocational Education Department at California State University, San Bernardino for his guidance in the early years of my formal education has proven to be invaluable to me. His many enlightening conversations and advice are appreciated far more that he will perhaps ever know. iv To Timothy Thelander, whom I owe my deepest and profound heart felt gratitude, for getting me through the paper chase, computer quagmires and keeping me on track and knowing what was best for me in order to be successful in completion of this project. v DEDICATION This project is dedicated to Daved van Stralen M.D., Pediatric Intensivist, at Loma Linda University Medical Center and Children's Hospital and Medical Director for the San Bernardino County Fire Department. He is a visionary in pre-hospital and pediatric care management in southern California, an internationally known leader in pre-hospital emergency medicine and pediatric care; a man whose academic accomplishments are surpassed only by his leadership, kindness and compassion, and most of all a good friend. Since 1995 he has been an exemplary role model providing others and me with encouragement, motivation, inspiration, and insight all for the benefit of humankind. I can only hope that this research project on the efficiency of bag-valve mask ventilation's by medical first responders and basic emergency medical technicians will complement the years and timeless hours Dr. van Stralen has dedicated to prehospital care in the Inland Empire area. To my Late loving mother, Jesusita S. Commander for without her love and continued support this mile stone in my life could never have been achieved. TABLE OF CONTENTS ABSTRACT................................................ iii ACKNOWLEDGMENTS ........................................ iv LIST OF FIGURES......................................... viii CHAPTER ONE: BACKGROUND Introduction ...................................... 1 Context of the Problem ............................ 1 Purpose of the Project........................... 4 Significance of the Project ...................... 5 Assumptions ....................................... 5 Limitations and Delimitations . ............... 6 Limitations .................................. 6 Delimitations ................................ 6 Definition of Terms ............................... 7 Organization of the Thesis....................... 15 CHAPTER TWO: REVIEW OF THE LITERATURE Introduction.............. 17 National Standard Curriculum ..................... 17 California Standard Curriculum ................... 21 Emergency Medical Service Training Manuscript Review......... 21 Contemporaneous Literature Review ............... 23 Summary........................... 39 CHAPTER THREE: METHODOLOGY ■ Introduction ...................................... 42 vi Population Served.................... 42 Existing System ............................. 43 Proposed System ............................. 45 Summary............................................ 51 CHAPTER FOUR: CONCLUSIONS AND RECOMMENDATIONS Introduction ...................................... 53 Conclusions...................... 53 Recommendations ................................... 55 Summary............................................ 56 APPENDIX A: DEPARTMENT OF TRANSPORTATION FIRST RESPONDER CURRICULUM MODULE - 2 (RESPIRATORY) ............................. 57 APPENDIX B: DEPARTMENT OF TRANSPORTATION EMERGENCY MEDICAL TECHNICIAN - BASIC MODULE - 2 (RESPIRATORY) ............................. 71 APPENDIX C: CALIFORNIA CODE OF REGULATIONS, TITLE 22. DIVISION 9 CHAPTER 1.5 STANDARDS FOR PUBLIC SAFETY PERSONNEL SECTIONS 100018 AND 100019 ......................... 86 APPENDIX D: CALIFORNIA.CODE OF REGULATIONS, TITLE 22. DIVISION 9 CHAPTER 2. EMERGENCY MEDICAL TECHNICIAN SECTIONS 100063 AND 100075 ..................................... 89 APPENDIX E: BAG VALVE MASK VENTILATION SURVEY ........ 92 APPENDIX F: BAG VALVE MASK DATA COLLECTION CARD ..... 95 APPENDIX G: BAG VALVE MASK DATA COLLECTION CARD (VENTILATION) ............................. 97 APPENDIX H: BAG VALVE MASK VENTILATION PATIENT DATA....................................... 99 REFERENCES.............................................. 101 vii LIST OF FIGURES Figure 1. Bag-Valve Mask.............................. 8 Figure 2. Esophageal Tracheal Combitube .............. 10 Figure 3 . Head Tilt Chin Lift Maneuver............... 11 Figure 4. Jaw-Thrust Maneuver ......................... 11 Figure 5. Laryngoscope ................................ 12 Figure 6. Nasopharyngeal Airways ..................... 13 Figure 7. Oropharyngeal Airways ...................... 13 viii CHAPTER ONE BACKGROUND Introduction The contents of Chapter One presents an overview of the project. The contexts of the problem are discussed followed by the purpose, significance of the project, and assumptions. Next, the limitations and delimitations that apply to the project are reviewed. Finally, definitions of terms are presented. Context of the Problem The primary goal of Emergency Medical Service (EMS) is the reduction of potentially preventable death and disability. This is achieved through early reversal of tissue hypoxia. The quickest and easiest way to disrupt oxygen-reaching tissues is through the loss of the airway. This is the basis for intervention of the familiar mnemonic called Airway, Breathing, Circulation, (ABC's). It is also the reason airway and breathing come first. The quickest and easiest way to reverse tissue hypoxia is through manual control of the airway with bag-valve-mask ventilation. Loss of airway is thus a major and preventable contribution to highway death or Medical emergency. 1 Emergency Medical Services Systems (EMSS) label manual control of the airway and bag-valve-mask ventilation as Basic Life Support (BLS). The unintended consequence of this is the consideration by Emergency Medical Service (EMS) caregivers that manual airway control and bag-mask ventilation is simple and easy. It then becomes a task for the medical first responder or Emergency Medical Technician (EMT) with the least experience. This commonly leads to inadequate airway control, which allows ventilated air to enter the stomach and displace gastric contents into the esophagus. The gastric contents, or emesis, obstructs the airway and aspire into the lungs. This is a problem has been observed
Recommended publications
  • ABCDE Approach
    The ABCDE and SAMPLE History Approach Basic Emergency Care Course Objectives • List the hazards that must be considered when approaching an ill or injured person • List the elements to approaching an ill or injured person safely • List the components of the systematic ABCDE approach to emergency patients • Assess an airway • Explain when to use airway devices • Explain when advanced airway management is needed • Assess breathing • Explain when to assist breathing • Assess fluid status (circulation) • Provide appropriate fluid resuscitation • Describe the critical ABCDE actions • List the elements of a SAMPLE history • Perform a relevant SAMPLE history. Essential skills • Assessing ABCDE • Needle-decompression for tension • Cervical spine immobilization pneumothorax • • Full spine immobilization Three-sided dressing for chest wound • • Head-tilt and chin-life/jaw thrust Intravenous (IV) line placement • • Airway suctioning IV fluid resuscitation • • Management of choking Direct pressure/ deep wound packing for haemorrhage control • Recovery position • Tourniquet for haemorrhage control • Nasopharyngeal (NPA) and oropharyngeal • airway (OPA) placement Pelvic binding • • Bag-valve-mask ventilation Wound management • • Skin pinch test Fracture immobilization • • AVPU (alert, voice, pain, unresponsive) Snake bite management assessment • Glucose administration Why the ABCDE approach? • Approach every patient in a systematic way • Recognize life-threatening conditions early • DO most critical interventions first - fix problems before moving on
    [Show full text]
  • First Responder (2013)
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/22451 SHARE The Legal Definitions of First Responder (2013) DETAILS 30 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-28369-4 | DOI 10.17226/22451 CONTRIBUTORS GET THIS BOOK Bricker, Lew R. C.; Petermann, Tanya N.; Hines, Margaret; and Sands, Jocelyn FIND RELATED TITLES SUGGESTED CITATION National Academies of Sciences, Engineering, and Medicine 2013. The Legal Definitions of First Responder . Washington, DC: The National Academies Press. https://doi.org/10.17226/22451. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. The Legal Definitions of “First Responder” November 2013 NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM Responsible Senior Program Officer: Stephan A. Parker Research Results Digest 385 THE LEGAL DEFINITIONS OF “FIRST RESPONDER” This digest presents the results of NCHRP Project 20-59(41), “Legal Definition of ‘First Responder’.” The research was conducted by Lew R. C. Bricker, Esquire, and Tanya N. Petermann, Esquire, of Smith Amundsen, Chicago, IL; Margaret Hines, Esquire; and Jocelyn Sands, J. D. James B. McDaniel was the Principal Investigator. INTRODUCTION Congress and in some congressional bills that were not enacted into law.
    [Show full text]
  • TCCC CLS Skill Instructions Mod 7 25 JAN 20
    MODULE 07: AIRWAY MANAGEMENT IN TFC SKILL INSTRUCTIONS 25 JAN 2020 COMBAT LIFESAVER (CLS) TACTICAL COMBAT CASUALTY CARE SKILL INSTRUCTIONS HEAD-TILT/CHIN-LIFT INSTRUCTION TASK: Open an airway using the head-tilt/chin-lift maneuver CONDITION: Given a simulated scenario where a casualty and responder are in combat gear and the casualty is unconscious without a patent airway STANDARD: EffeCtively open the airway by performing the head-tilt/chin-lift maneuver following all steps and measures correctly without Causing further harm to the Casualty EQUIPMENT: N/A PERFORMANCE MEASURES: step-by-step instructions NOTE: Do not use if a spinal or neck injury is suspected. 01 Roll the Casualty onto their back, if necessary, and place them on a hard, flat surface. 02 Kneel at the level of the Casualty’s shoulders. Position yourself at the side of the Casualty. 03 Open the mouth and looK for visible airway obstruCtions (e.g., laCerations, obstructions, broken teeth, burns, or swelling or other debris, such as vomit). NOTE: If foreign material or vomit is in the mouth, remove it as quiCKly as possible. NOTE: Do not perform a blind finger sweep. 04 PlaCe one hand on the Casualty's forehead and apply firm, backward pressure with the palm to tilt the head back. 05 PlaCe the fingertips of the other hand under the bony part of the lower jaw and lift, bringing the Chin forward. NOTE: Do not use the thumb to lift the chin. 06 While maintaining the open airway position, place an ear over the casualty's mouth and nose, looking toward the chest and stomaCh.
    [Show full text]
  • Airway – Oropharyngeal: Insertion; Maintenance; Suction; Removal
    Policies & Procedures Title: AIRWAY – OROPHARYNGEAL: INSERTION; MAINTENANCE; SUCTION; REMOVAL I.D. Number: 1159 Authorization Source: Nursing Date Revised: September 2014 [X] SHR Nursing Practice Committee Date Effective: October 2002 Date Reaffirmed: January 2016 Scope: SHR Acute, Parkridge Centre Any PRINTED version of this document is only accurate up to the date of printing 30-May-16. Saskatoon Health Region (SHR) cannot guarantee the currency or accuracy of any printed policy. Always refer to the Policies and Procedures site for the most current versions of documents in effect. SHR accepts no responsibility for use of this material by any person or organization not associated with SHR. No part of this document may be reproduced in any form for publication without permission of SHR. 1. PURPOSE 1.1 To safely and effectively use Oropharyngeal Airway (OPA). 2. POLICY 2.1 The Registered Nurse (RN), Registered Psychiatric Nurse (RPN), Licensed Practical Nurse (LPN), Graduate Nurse (GN), Graduate Psychiatric Nurse (GPN), Graduate Licensed Practical Nurse (GLPN) will insert, maintain, suction and remove an oropharyngeal airway (OPA). 2.2 The OPA may be inserted to establish and assist in maintaining a patent airway. 2.3 An OPA should only be used in patients with decreased level of consciousness or decreased gag reflex. 2.4 Patients with OPAs that have been inserted for airway protection should not be left unattended due to risk of aspiration if gag reflex returns unexpectedly. Page 1 of 4 Policies and Procedures: Airway – Oropharyngeal: Insertion; Maintenance; I.D. # 1159 Suction; Removal 3. PROCEDURE 3.1 Equipment: • Oropharyngeal airway of appropriate size • Tongue blade (optional) • Clean gloves • Optional: suction equipment, bag-valve-mask device 3.2 Estimate the appropriate size of airway by aligning the tube on the side of the patient’s face parallel to the teeth and choosing an airway that extends from the ear lobe to the corner of the mouth.
    [Show full text]
  • Scope of Practice Statements
    Scope of Practice Statements Emergency Medical Services Authority California Health and Human Services Agency EMSA # 300 November 2017 HOWARD BACKER, MD, MPH, FACEP DIRECTOR DANIEL R. SMILEY CHIEF DEPUTY DIRECTOR SEAN TRASK DIVISION CHIEF EMSA # 300 Released November 2017 EMSA #300 • Page 1 Table of Contents Introduction ........................................................................................................................................... 4 The EMS Authority ................................................................................................................................ 4 Local EMS Agencies ............................................................................................................................. 4 California EMS Personnel Levels .......................................................................................................... 4 Reading the Scope of Practice Pages .................................................................................................. 5 Airway and Breathing ............................................................................................................................ 6 Airway Suctioning .............................................................................................................................. 7 Automatic Transport Ventilator .......................................................................................................... 8 Bag Valve Mask – BVM ....................................................................................................................
    [Show full text]
  • Cricoid Pressure: Ritual Or Effective Measure?
    R eview A rticle Singapore Med J 2012; 53(9) 620 Cricoid pressure: ritual or effective measure? Nivan Loganathan1, MB BCh BAO, Eugene Hern Choon Liu1, MD, FRCA ABSTRACT Cricoid pressure has been long used by clinicians to reduce the risk of aspiration during tracheal intubation. Historically, it is defined by Sellick as temporary occlusion of the upper end of the oesophagus by backward pressure of the cricoid cartilage against the bodies of the cervical vertebrae. The clinical relevance of cricoid pressure has been questioned despite its regular use in clinical practice. In this review, we address some of the controversies related to the use of cricoid pressure. Keywords: cricoid pressure, regurgitation Singapore Med J 2012; 53(9): 620–622 INTRODUCTION imaging showed that in 49% of patients in whom cricoid Cricoid pressure is a technique used worldwide to reduce pressure was applied, the oesophageal position was lateral to the risk of aspiration during tracheal intubation in sedated or the cricoid ring.(5) As oesophageal occlusion was thought to be anaesthetised patients. Cricoid pressure can be traced back to crucial, this study challenged the efficacy of cricoid pressure. the late 18th century when it was used to prevent gas inflation More recently, in magnetic resonance imaging studies, Rice et of the stomach during resuscitation from drowning.(1) Sellick al showed that cricoid pressure causes compression of the post- noted that cricoid pressure could both prevent regurgitation cricoid hypopharynx rather than the oesophagus itself.
    [Show full text]
  • Strategies to Support the COVID-19 Response in Lmics a Virtual Seminar Series Screening, Triage and Patient Flow
    Strategies to support the COVID-19 response in LMICs A virtual seminar series Screening, Triage and Patient Flow Bhakti Hansoti, MBChB, MPH, PhD - Associate Professor in Emergency Medicine, Johns Hopkins University OBJECTIVES 1. Clinical Features 2. Preparing the Department 3. Initial Management 4. Other Management Considerations 5. Summary Clinical Features Severity • Most people with COVID-19 develop mild or uncomplicated illness • Approximately 14% develop severe disease requiring hospitalization and oxygen support • 5% require admission to an intensive care unit • In severe cases, COVID-19 can be complicated by • Acute respiratory disease syndrome (ARDS) • Sepsis and septic shock • Multiorgan failure, including acute kidney injury and cardiac injury. Preparing the Department Elements to be assessed have been divided into the following areas: • Establishment of a core team and key internal and external contact points • Human, material and facility capacity • Communication and data protection • Hand hygiene, personal protective equipment (PPE), and waste management • Triage, first contact and prioritization • Patient placement, moving of the patients in the facility, and visitor access • Environmental cleaning https://www.ecdc.europa.eu/en/publications-data/checklist- hospitals-preparing-reception-and-care-coronavirus-2019-covid-19 Split flow Protecting Yourself These videos can help with PPE donning and doffing technique: • Donning and doffing PPE https://www.youtube.com/watch?v=I94l IH8xXg8 • Recommended PPE during care https://www.youtube.com/watch?v=oPL
    [Show full text]
  • Emergency Medical Services Program Policies – Procedures – Protocols
    Emergency Medical Services Program Policies – Procedures – Protocols Protocols Table of Contents GENERAL PROVISIONS ................................................................................................ 3 DESTINATION DECISION SUMMARY-METRO BAKERSFIELD AREA ........................ 5 DETERMINATION OF DEATH ..................................................................................... 12 101 AIRWAY OBSTRUCTION ...................................................................................... 16 102 ALTERED LEVEL OF CONSCIOUSNESS ............................................................ 18 103 ALLERGIC REACTION/ANAPHYLAXIS ................................................................ 20 104 ASYSTOLE/ PULSELESS ELECTRICAL ACTIVITY ............................................. 22 105 BITES STINGS ENVENOMATION ......................................................................... 24 106 BRADYCARDIA ..................................................................................................... 26 107 BRIEF RESOLVED UNEXPLAINED EVENT ......................................................... 29 108 BURNS ................................................................................................................... 32 109 CHEMPACK ........................................................................................................... 35 110 CHEST PAIN OR ACUTE CORONARY SYNDROME ........................................... 37 111 CHEST TRAUMA ..................................................................................................
    [Show full text]
  • Title: Cricoid Pressure During Intubation: Review of Research and Survey of Nurse Anesthetists
    Title: Cricoid Pressure During Intubation: Review of Research and Survey of Nurse Anesthetists Tania A. Lalli, BSN School of Nursing, University of North Carolina at Greensboro, Greensboro, NC, USA Michael Rieker, DNP School of Medicine, Nurse Anesthesia Program - Wake Forest School of Medicine, Winston Salem, NC, USA Donald D. Kautz, PhD Adult Health, School of Nursing, University of North Carolina Greensboro, Greensboro, NC, USA Session Title: Scientific Posters Session 2 Keywords: Aspiration, Cricoid pressure and Effectiveness References: Baskett, P.J.F., & Baskett, T.F. (2004). Brian sellick, cricoid pressure and the sellick manouevre. Resuscitation, 61(1). doi:10.1016/j.resuscitation.2004.03.001 Beavers, R.A., Moos, D.D., & Cuddeford, J.D. (2009). Analysis of the application of cricoid pressure: Implications for the clinician. The Journal of PeriAnesthesia Nursing, 24(2), 92-102. Black, S.J., Carson, E.M., & Doughty, A. (2012). How much and where: Assessment of Knowledge level of the application of cricoid pressure. The Journal of Emergency Nursing, 28(4), 370-374. Brimacombe, J.R., & Berry, A.M. (1997). Cricoid pressure. The Canadian Journal of Anesthesia, 44(4), 414-425. Engelhardt, T., & Webster, N.R. (1999). Pulmonary aspiration of gastric contents. The British Journal of Anesthesia, 83, 453-460. Ewart, L. (2007). The efficacy of cricoid pressure in preventing gastro-oesophageal reflux in rapid sequence induction of anaesthesia. The Journal of Preoperative Practice, 17(9), 432-436. Garrard, A., Campbell, A., Turley, A., & Hall J. (2004). The effect of mechanically-induced cricoid force on lower oesophageal sphincter pressure in anaesthetised patients. Anaesthesia, 59(5), 435-439.
    [Show full text]
  • Rapid Sequence Induction Will Ross and Louise Ellard
    Update in Anaesthesia Rapid sequence induction Will Ross and Louise Ellard Correspondence: [email protected] Originally published as Anaesthesia Tutorial of the Week 331, 24 May 2016, edited by Dr Luke Baitch Table 1. Common modifications of RSI technique in INTRODUCTION current practice Rapid sequence induction (RSI) is a method of achiev- Omitting the placement of an oesophageal tube articlesClinical overview ing rapid control of the airway whilst minimising Supine or ramped positioning the risk of regurgitation and aspiration of gastric Titrating the dose of induction agent to loss of contents. Intravenous induction of anaesthesia, with consciousness the application of cricoid pressure, is swiftly followed Summary by the placement of an endotracheal tube (ETT). Use of propofol, ketamine, midazolam or etomidate to Rapid sequence induction induce anaesthesia (RSI) is intended to reduce Performance of an RSI is a high priority in many the risk of aspiration by emergency situations when the airway is at risk, and Use of high-dose rocuronium as a neuromuscular blocking agent minimising the duration is usually an essential component of anaesthesia for of an unprotected airway. Omitting cricoid pressure emergency surgical interventions. RSI is required only Preparation and planning in patients with preserved airway reflexes. In arrested – including technique, or completely obtunded patients, an endotracheal tube medications, team member can usually be placed without the use of medications. CRICOID PRESSURE roles and contingencies
    [Show full text]
  • High Performance CPR Update
    High Performance CPR Update Page | 1 Final Revision 8/8/2012 As part of our ongoing Quality Assurance in Cardiac Arrest incidents, Skagit County EMS under the direction of Dr. Don Slack, MPD is making changes to the way that ALS and BLS providers perform CPR. Overview: CPR quality has a dramatic impact on pt survival when done according to these guidelines. Minimal breaks in compressions, full chest recoil, adequate compression depth and adequate compression rate are all components of CPR that an increase survival from sudden cardiac arrest. Together these components go together to create High Performance CPR (HP CPR). Roles: As a rule for the unconscious, unresponsive, pulseless patient the FIRST person to the patient starts compressions. SECOND person does defibrillation (If there are only 2 responders to begin with, ventilations should begin after the rhythm analysis and shock if indicated). THIRD person should start ventilating the patient, placing a King Airway as soon as is practical. A timekeeper needs to be assigned to ensure high quality CPR, minimal interruption and help track the ALS interventions. Principles of HP CPR 1. EMT’s own CPR!! 2. Minimize interruption in CPR at all times, use a timekeeper 3. Ensure proper depth of compressions (>2 inches) 4. Ensure full chest recoil/decompression 5. Ensure proper chest compression rate (100-120/min) 6. Rotate compressors at least every 2 minutes 7. Do not interrupt compressions to ventilate patient, even if an advanced airway is not placed 8. Hands off the chest only during analysis and shock delivery, hover hands over chest during shock delivery and be ready to resume compressions 9.
    [Show full text]
  • Emergency Medical System 2021 Patient Treatment Protocols
    2021 Patient Treatment Protocols Effective January 1, 2021 CONTENTS Table of Contents Preface Section ...........................................................................................................00.000 EMS Provider Scope of Practice and Nomenclature .....................................................00.010 Death in the Field ........................................................................................................00.020 Dying and Death, POLST, Do Not Attempt Resuscitation Orders ..............................00.030 Medical Control for Drugs and Procedures ..................................................................00.040 Treatment ......................................................................................................... Section 10.000 Abdominal Pain ...........................................................................................................10.010 Altered Mental Status and Coma ..................................................................................10.020 Anaphylaxis and Allergic Reaction ................................................................................10.030 Burns ...........................................................................................................................10.040 Cardiac Arrest ..............................................................................................................10.050 Emergency Medical Responder/EMT Paramedic/EMT-Intermediate Quick Reference to Pediatric Drugs Cardiac Dysrhythmias ..................................................................................................10.060
    [Show full text]