Emerging Uses of Capnography in Emergency Medicine in Emergency Capnography Uses of Emerging
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patient-Monitoring Systems
17 Patient-Monitoring Systems REED M. GARDNER AND M. MICHAEL SHABOT After reading this chapter,1 you should know the answers to these questions: ● What is patient monitoring, and why is it done? ● What are the primary applications of computerized patient-monitoring systems in the intensive-care unit? ● How do computer-based patient monitors aid health professionals in collecting, analyzing, and displaying data? ● What are the advantages of using microprocessors in bedside monitors? ● What are the important issues for collecting high-quality data either automatically or manually in the intensive-care unit? ● Why is integration of data from many sources in the hospital necessary if a computer is to assist in critical-care-management decisions? 17.1 What Is Patient Monitoring? Continuous measurement of patient parameters such as heart rate and rhythm, respira- tory rate, blood pressure, blood-oxygen saturation, and many other parameters have become a common feature of the care of critically ill patients. When accurate and imme- diate decision-making is crucial for effective patient care, electronic monitors frequently are used to collect and display physiological data. Increasingly, such data are collected using non-invasive sensors from less seriously ill patients in a hospital’s medical-surgical units, labor and delivery suites, nursing homes, or patients’ own homes to detect unex- pected life-threatening conditions or to record routine but required data efficiently. We usually think of a patient monitor as something that watches for—and warns against—serious or life-threatening events in patients, critically ill or otherwise. Patient monitoring can be rigorously defined as “repeated or continuous observations or meas- urements of the patient, his or her physiological function, and the function of life sup- port equipment, for the purpose of guiding management decisions, including when to make therapeutic interventions, and assessment of those interventions” (Hudson, 1985, p. -
ABCDE Approach
The ABCDE and SAMPLE History Approach Basic Emergency Care Course Objectives • List the hazards that must be considered when approaching an ill or injured person • List the elements to approaching an ill or injured person safely • List the components of the systematic ABCDE approach to emergency patients • Assess an airway • Explain when to use airway devices • Explain when advanced airway management is needed • Assess breathing • Explain when to assist breathing • Assess fluid status (circulation) • Provide appropriate fluid resuscitation • Describe the critical ABCDE actions • List the elements of a SAMPLE history • Perform a relevant SAMPLE history. Essential skills • Assessing ABCDE • Needle-decompression for tension • Cervical spine immobilization pneumothorax • • Full spine immobilization Three-sided dressing for chest wound • • Head-tilt and chin-life/jaw thrust Intravenous (IV) line placement • • Airway suctioning IV fluid resuscitation • • Management of choking Direct pressure/ deep wound packing for haemorrhage control • Recovery position • Tourniquet for haemorrhage control • Nasopharyngeal (NPA) and oropharyngeal • airway (OPA) placement Pelvic binding • • Bag-valve-mask ventilation Wound management • • Skin pinch test Fracture immobilization • • AVPU (alert, voice, pain, unresponsive) Snake bite management assessment • Glucose administration Why the ABCDE approach? • Approach every patient in a systematic way • Recognize life-threatening conditions early • DO most critical interventions first - fix problems before moving on -
Solutions for COVID-19 Surge Capacity Monitoring
Solutions for COVID-19 Surge Capacity Monitoring Secure Cloud-based Patient Monitoring with Tetherless Hospital-grade Technology and the Masimo SafetyNet™ Data Capture and Surveillance Platform The COVID-19 pandemic has created increased demand across the globe for home-based monitoring and patient engagement solutions. The Masimo SafetyNet solution provides continuous tetherless oxygen saturation, respiration rate, and temperature measurements coupled with a patient surveillance platform. Seamlessly Extend Care from the Hospital to the Home Tetherless Pulse Oximetry with Respiration Rate and Temperature Measurements Masimo SafetyNet Powered by Masimo SET® measure-through-motion technology, the tetherless single-patient-use sensor provides Masimo SafetyNet is a secure cloud-based platform that allows providers to remotely manage patients using continuous respiration rate and oxygen saturation measurements, with a second tetherless sensor, Radius T°*, customized interactive digital CarePrograms. for continuous temperature measurements. Patient data is sent securely via Bluetooth to the Masimo SafetyNet mobile application. CarePrograms CarePrograms offer a digital replacement for traditional home-care plans and are delivered to patients’ smartphones via an app. The CareProgram actively reminds patients to follow their care plan, automatically captures measurement data Remote Home Monitoring Kit from the tetherless sensors, and securely pushes the data to clinicians at the hospital for evaluation. Masimo has created Patients receive a multi-day -
Capnography 101 Oxygenation and Ventilation
It’s Time to Start Using it! Capnography 101 Oxygenation and Ventilation What is the difference? Oxygenation and Ventilation Ventilation O Oxygenation (capnography) 2 (oximetry) CO Cellular 2 Metabolism Capnographic Waveform • Capnograph detects only CO2 from ventilation • No CO2 present during inspiration – Baseline is normally zero CD AB E Baseline Capnogram Phase I Dead Space Ventilation • Beginning of exhalation • No CO2 present • Air from trachea, posterior pharynx, mouth and nose – No gas exchange occurs there – Called “dead space” Capnogram Phase I Baseline A B I Baseline Beginning of exhalation Capnogram Phase II Ascending Phase • CO2 from the alveoli begins to reach the upper airway and mix with the dead space air – Causes a rapid rise in the amount of CO2 • CO2 now present and detected in exhaled air Alveoli Capnogram Phase II Ascending Phase C Ascending II Phase Early A B Exhalation CO2 present and increasing in exhaled air Capnogram Phase III Alveolar Plateau • CO2 rich alveolar gas now constitutes the majority of the exhaled air • Uniform concentration of CO2 from alveoli to nose/mouth Capnogram Phase III Alveolar Plateau Alveolar Plateau CD III AB CO2 exhalation wave plateaus Capnogram Phase III End-Tidal • End of exhalation contains the highest concentration of CO2 – The “end-tidal CO2” – The number seen on your monitor • Normal EtCO2 is 35-45mmHg Capnogram Phase III End-Tidal End-tidal C D AB End of the the wave of exhalation Capnogram Phase IV Descending Phase • Inhalation begins • Oxygen fills airway • CO2 level quickly -
Clinical Update
Summer 2016 Clinical Update We are pleased to offer this archive of our award-winning newsletter Clinical Update. There are 75 issues in this document. Each issue has a feature article, summaries of articles in the nursing literature, and Web sites of interest. By downloading and using this archive, you agree that older medical articles may no longer describe appropriate practice. The issues are organized in date order from most recent to oldest. The following pages offer tips on how to navigate the issues and search the archive in Adobe Acrobat Reader. In 2006, we were honored to receive the Will Solimine Award of Excellence in Medical Writing from the American Medical Writers Association, New England Chapter. Issues that received the most positive response over the years include: • Nurses Removing Chest Tubes, a discussion of state boards of nursing’s approaches to this extended practice for registered nurses • Medical Adhesive Safety, a review of guidelines published by the Wound, Ostomy and Continence Nurses Society, complete with original tables identifying characteristics of each type of medical tape and how tape components contribute to medical adhesive- related skin injury (MARSI) • Autotransfusion for Jehovah’s Witness Patients, an explanation of the Biblical origins of the reasons for refusing blood transfusion and how continuous autotransfusion may offer an option that is acceptable to members of the faith • Air Transport for Patients with Chest Tubes and Pneumothorax and Chest Drainage and Hyperbaric Medicine, in which each issue provides a thorough analysis of how pressure changes with altitude and with increased atmospheric pressure affect chest drainage and untreated pneumothorax • Age Appropriate Competencies: Caring for Children that describes developmental stages and strategies to deal with a child’s fears at each stage Creative Commons License This work is licensed under a Creative Author: Patricia Carroll RN-BC, RRT, MS Commons Attribution-NonCommercial- ShareAlike 4.0 International License. -
Tracheal Intubation Following Traumatic Injury)
CLINICAL MANAGEMENT UPDATE The Journal of TRAUMA Injury, Infection, and Critical Care Guidelines for Emergency Tracheal Intubation Immediately after Traumatic Injury C. Michael Dunham, MD, Robert D. Barraco, MD, David E. Clark, MD, Brian J. Daley, MD, Frank E. Davis III, MD, Michael A. Gibbs, MD, Thomas Knuth, MD, Peter B. Letarte, MD, Fred A. Luchette, MD, Laurel Omert, MD, Leonard J. Weireter, MD, and Charles E. Wiles III, MD for the EAST Practice Management Guidelines Work Group J Trauma. 2003;55:162–179. REFERRALS TO THE EAST WEB SITE and impaired laryngeal reflexes are nonhypercarbic hypox- Because of the large size of the guidelines, specific emia and aspiration, respectively. Airway obstruction can sections have been deleted from this article, but are available occur with cervical spine injury, severe cognitive impairment on the Eastern Association for the Surgery of Trauma (EAST) (Glasgow Coma Scale [GCS] score Յ 8), severe neck injury, Web site (www.east.org/trauma practice guidelines/Emergency severe maxillofacial injury, or smoke inhalation. Hypoventi- Tracheal Intubation Following Traumatic Injury). lation can be found with airway obstruction, cardiac arrest, severe cognitive impairment, or cervical spinal cord injury. I. STATEMENT OF THE PROBLEM Aspiration is likely to occur with cardiac arrest, severe cog- ypoxia and obstruction of the airway are linked to nitive impairment, or severe maxillofacial injury. A major preventable and potentially preventable acute trauma clinical concern with thoracic injury is the development of Hdeaths.1–4 There is substantial documentation that hyp- nonhypercarbic hypoxemia. Lung injury and nonhypercarbic oxia is common in severe brain injury and worsens neuro- hypoxemia are also potential sequelae of aspiration. -
The Gastrointestinal Tract and Ventilator-Associated Pneumonia
The Gastrointestinal Tract and Ventilator-Associated Pneumonia Richard H Kallet MSc RRT FAARC and Thomas E Quinn MD Introduction The Role of Gastric pH on the Incidence of VAP Enteral Feeding and Nosocomial Pneumonia Gastric Residual Volumes Gastric Versus Post-Pyloric Feeding Acidification of Enteral Feedings Selective Decontamination of the Digestive Tract Microbiologic Ecology of the GI Tract Rationale for SDD Technique Clinical Evidence: Efficacy of SDD SDD and the Incidence of VAP SDD and Mortality SDD in Specific Sub-Groups SDD and ICU Length of Stay, Hospital Costs, and Antibiotic Usage/Costs Unresolved Aspects of SDD Therapy Uncertainties Regarding the Gastropulmonary Hypothesis Uncertainties Regarding Colonization Resistance SDD and Selection for Drug-Resistant Microorganisms Summary and Recommendations The gastrointestinal tract is believed to play an important role in ventilator-associated pneumonia (VAP), because during critical illness the stomach often is colonized with enteric Gram-negative bacteria. These are the same bacteria that frequently are isolated from the sputum of patients with VAP. Interventions such as selective decontamination of the digestive tract (SDD), use of sucralfate for stress ulcer prophylaxis, and enteral feeding strategies that preserve gastric pH, or lessen the likelihood of pulmonary aspiration, are used to decrease the incidence of VAP. A review of both meta-analyses and large randomized controlled trials providing Level I evidence on these topics has led to the following conclusions. First, SDD substantially decreases the incidence of VAP and may have a modest positive effect on mortality. However, there is strong contravening evidence that SDD promotes infections by Gram-positive bacteria. In the context of an emerging public health crisis from the steady rise in drug-resistant Gram-positive bacteria, we cannot endorse the general use of SDD to prevent VAP. -
From Mechanical Ventilation to Intensive Care Medicine: a Challenge &For Bosnia and Herzegovina
FROM MECHANICAL VENTILATION TO INTENSIVE CARE MEDICINE: A CHALLENGE &FOR BOSNIA AND HERZEGOVINA Guillaume Thiéry1,2,3*, Pedja Kovačević2,4, Slavenka Štraus5, Jadranka Vidović2, Amer Iglica1, Emir Festić6, Ognjen Gajić7 ¹ Medical Intensive Care Unit, Clinical Centre University of Sarajevo, Bolnička , Sarajevo, Bosnia and Herzegovina ² Medical Intensive Care Unit, Clinical Center Banja Luka, Banja Luka, Bosnia and Hercegovina ³ Medical Intensive Care Unit, St Louis Hospital, University Denis Diderot, avenue Claude Vellefaux, Paris, France ⁴ Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Hercegovina 5 Heart Center, Clinical Centre University of Sarajevo, Bolnička , Sarajevo, Bosnia and Herzegovina 6 Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA 7 Division of Pulmonary and Critical Care, Multidisciplinary Epidemiology and Translational Research in Intensive Care (METRIC) Mayo Clinic, Rochester, MN, United States * Corresponding author Abstract Intensive care medicine is a relatively new specialty, which was created in the ’s, after invent of mechanical ventilation, which allowed caring for critically ill patients who otherwise would have died. First created for treating mechanically ventilated patients, ICUs extended their scope and care to all patients with life threatening conditions. Over the years, intensive care medicine developed further and became a truly multidisciplinary speciality, encompassing patients from various fi elds of medicine and involving special- ists from a range of base specialties, with additional (subspecialty) training in intensive care medicine. In Bosnia and Herzegovina, the founding of the society of intensive care medicine in , the introduction of non invasive ventilation in , and opening of a multidisciplinary ICUs in Banja Luka and Sarajevo heralded a new age of intensive care medicine. -
Strategies to Support the COVID-19 Response in Lmics a Virtual Seminar Series Screening, Triage and Patient Flow
Strategies to support the COVID-19 response in LMICs A virtual seminar series Screening, Triage and Patient Flow Bhakti Hansoti, MBChB, MPH, PhD - Associate Professor in Emergency Medicine, Johns Hopkins University OBJECTIVES 1. Clinical Features 2. Preparing the Department 3. Initial Management 4. Other Management Considerations 5. Summary Clinical Features Severity • Most people with COVID-19 develop mild or uncomplicated illness • Approximately 14% develop severe disease requiring hospitalization and oxygen support • 5% require admission to an intensive care unit • In severe cases, COVID-19 can be complicated by • Acute respiratory disease syndrome (ARDS) • Sepsis and septic shock • Multiorgan failure, including acute kidney injury and cardiac injury. Preparing the Department Elements to be assessed have been divided into the following areas: • Establishment of a core team and key internal and external contact points • Human, material and facility capacity • Communication and data protection • Hand hygiene, personal protective equipment (PPE), and waste management • Triage, first contact and prioritization • Patient placement, moving of the patients in the facility, and visitor access • Environmental cleaning https://www.ecdc.europa.eu/en/publications-data/checklist- hospitals-preparing-reception-and-care-coronavirus-2019-covid-19 Split flow Protecting Yourself These videos can help with PPE donning and doffing technique: • Donning and doffing PPE https://www.youtube.com/watch?v=I94l IH8xXg8 • Recommended PPE during care https://www.youtube.com/watch?v=oPL -
Masimo SET Bibliography Brochure
Select Bibliography of Published Articles and Abstracts Pulse Oximetry Pulse CO-Oximetry rainbow Acoustic Monitoring® Brain Monitoring For a listing of over 500 available citations, go to the clinical evidence section of www.masimo.com Table of Contents by Technology and Measurement 01: Pulse Oximetry Oxygenation (SpO2), Pulse Rate (PR) ................................. 1-17 Perfusion Index (Pi) ................................................ 18-21 Pleth Variability Index (PVi®) ........................................ 22-34 Patient SafetyNet™ ................................................ 35-37 02: Pulse CO-Oximetry Total Hemoglobin (SpHb®) ......................................... 38-48 03: rainbow Acoustic Monitoring Acoustic Respiration Rate (RRa®) .................................... 49-56 04: Brain Monitoring SedLine® ......................................................... 57-60 O3® ............................................................. 61-62 Table of Contents Oxygenation (SpO2), Pulse Rate (PR) 17 Differences in Pulse Oximetry Technology Can Affect Detection of Sleep-Disordered Breathing in Children Brouillette RT, Lavergne J, Leimanis A, Nixon GM, Ladan S, McGregor CD. Anesth Analg. 2002;94(1 Suppl):S47-53. 01 Temporal Quantification of Oxygen Saturation Ranges: An Effort to Reduce Hyperoxia in the Neonatal Intensive Care Unit Bizzarro MJ, Li FY, Katz K, Shabanova V, Ehrenkranz RA, Bhandari V. J Perinatol. 2014 Jan;34(1):33-8. Perfusion Index (Pi) 18 Noninvasive Peripheral Perfusion Index as a Possible Tool for Screening for Critical Left Heart Obstruction 02 Pulse Oximetry with Clinical Assessment to Screen for Congenital Heart Disease in Neonates in China: Granelli AW, Ostman-Smith I. Acta Paediatr. 2007;96(10):1455-9. A Prospective Study Zhao QM, Ma XJ, Ge XL, Liu F, Yan WL, Wu L, Ye M, Liang XC, Zhang J, Gao Y, Jia B, Huang GY. Neonatal Congenital Heart Disease Screening Group. 19 The Perfusion Index Derived from a Pulse Oximeter for Predicting Low Superior Vena Cava Flow in The Lancet. -
Weaning and Discontinuing Ventilatory Support (2002)
Special Articles Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support A Collective Task Force Facilitated by the American College of Chest Physicians, the American Association for Respiratory Care, and the American College of Critical Care Medicine Introduction Pathophysiology of Ventilator Dependence Criteria to Assess Ventilator Dependence Managing the Patient Who Has Failed a Spontaneous Breathing Test Role of Tracheotomy in Ventilator-Dependent Patients The Role of Long-Term Facilities [Respir Care 2002;47(1):69–90] Introduction quickly as possible. Although this process often is termed “ventilator weaning” (implying a gradual process), we pre- The discontinuation or withdrawal process from me- fer the more encompassing term “discontinuation.” chanical ventilation is an important clinical issue.1,2 Pa- tients are generally intubated and placed on mechanical SEE THE RELATED EDITORIAL ON PAGE 29 ventilators when their own ventilatory and/or gas exchange capabilities are outstripped by the demands placed on them Unnecessary delays in this discontinuation process in- from a variety of diseases. Mechanical ventilation also is crease the complication rate from mechanical ventilation required when the respiratory drive is incapable of initi- (eg, pneumonia, airway trauma) as well as the cost. Ag- ating ventilatory activity, either because of disease pro- gressiveness in removing the ventilator, however, must be cesses or drugs. As the conditions that warranted placing balanced against the possibility that premature discontin- the patient on the ventilator stabilize and begin to resolve, uation may occur. Premature discontinuation carries its attention should be placed on removing the ventilator as own set of problems, including difficulty in reestablishing artificial airways and compromised gas exchange. -
Airway Management for COVID 19
Airway Management in Critically Ill COVID-19 Patients KATHERINE HELLER, MD ASSISTANT PROFESSOR UNIVERSITY OF WASHINGTON SCHOOL OF MEDICINE DEPARTMENT OF ANESTHESIOLOGY MEDICAL DIRECTOR: UWMC SICU Disclosures (none) Outline Staff safety PPE Patient factors/ timing Adjuncts for oxygenation Intubation procedure Preparation Equipment/technique Unusual situations Difficult airways Tracheostomy Emergencies Opening Questions Please navigate to pollev.com/katherinehel603 Priorities Priority #1: Staff Safety Considerations for Staff Procedural planning Appropriate PPE takes time Avoid emergencies when able Consider rounding (remotely?) on known COVID patients PPE Any airway management is an Aerosol Generating Procedure (AGP) Need respirator level protections airborne + contact/droplet N95 vs PAPR N95 PAPR Pro Pro Easy to don Comfortable Fast Protect face, neck, head Allow use of stethoscope Reusable More readily available Con Con Allows contamination of Require power source face and neck Need assistance to don Less comfortable and doff May not fit everyone Noisy Fit can change Infection Control Choose what work for you and your institution More important to have clear protocols and expectations Minimize in room staff Have equipment easily available Filter in line on circuit Infection control Barrier Devices Not recommended Additional encumbrance to intubation without proven benefit Not a replacement for PPE May actually increase risk [11] Failed airway Breach of PPE FDA revoked EUA for barrier devices in