Determining the Fraction of Organic Carbon RISC Nondefault Option
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Total Organic Carbon (TOC) Guidance Manual
September 2002 RG-379 (Revised) Total Organic Carbon (TOC) Guidance Manual Water Supply Division printed on recycled paper TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Total Organic Carbon (TOC) Guidance Manual Prepared by Water Supply Division RG-379 (Revised) September 2002 Robert J. Huston, Chairman R. B. “Ralph” Marquez, Commissioner Kathleen Hartnett White, Commissioner Jeffrey A. Saitas, Executive Director Authorization to use or reproduce any original material contained in this publication—that is, not obtained from other sources—is freely granted. The commission would appreciate acknowledgment. Copies of this publication are available for public use through the Texas State Library, other state depository libraries, and the TCEQ Library, in compli- ance with state depository law. For more information on TCEQ publications call 512/239-0028 or visit our Web site at: www.tceq.state.tx.us/publications Published and distributed by the Texas Commission on Environmental Quality PO Box 13087 Austin TX 78711-3087 The Texas Commission on Environmental Quality was formerly called the Texas Natural Resource Conservation Commission. The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans with Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at 512/239-0028, Fax 239-4488, or 1-800-RELAY-TX (TDD), or by writing -
Estimation of Atmospheric Total Organic Carbon (TOC) – Paving The
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1055 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 12 October 2018 c Author(s) 2018. CC BY 4.0 License. Estimation of atmospheric total organic carbon (TOC) – paving the path towards carbon budget closure Mingxi Yang1*, Zoë L. Fleming2& 5 1 Plymouth Marine Laboratory, Plymouth, United Kingdom 2 National Centre for Atmospheric Science (NCAS), Department of Chemistry, University of Leicester, UK, United Kingdom * Correspondence to M. Yang ([email protected]) & Now at Center for Climate and Resilience Research (CR2), Departamento de Geofísica, Universidad de Chile, Santiago, Chile 10 Abstract. The atmosphere contains a rich variety of reactive organic compounds, including gaseous volatile organic carbon (VOCs), carbonaceous aerosols, and other organic compounds at varying volatility. Here we present measurements of atmospheric non-methane total organic carbon plus carbon monoxide (TOC+CO) during August-September 2016 from a coastal 15 city in the southwest United Kingdom. TOC+CO was substantially elevated during the day on weekdays (occasionally over 2 ppm C) as a result of local anthropogenic activity. On weekends and holidays, with a mean (standard error) of 102 (8) ppb C, TOC+CO was lower and showed much less diurnal variability. Excluding weekday daytime, TOC+CO was significantly lower when winds were coming off the Atlantic Ocean than when winds were coming off land. By subtracting the estimated CO from TOC+CO, we constrain the mean (uncertainty) TOC in marine air to be around 19 (±≥8) ppb C during this period. A proton- 20 transfer-reaction mass spectrometer (PTR-MS) was deployed at the same time, detecting a large range of organic compounds (oxygenated VOCs, biogenic VOCs, aromatics, dimethyl sulfide). -
The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest
Acta Silv. Lign. Hung., Vol. 7 (2011) 87–96 The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest a* b c István FEKETE – Zsolt KOTROCZÓ – Csaba VARGA – b b Zsuzsa VERES – János Attila TÓTH a Institute of Environmental Science, College of Nyíregyháza, Nyíregyháza, Hungary b Department of Ecology, University of Debrecen, Debrecen, Hungary c Department of Land and Environmental Management, College of Nyíregyháza, Nyíregyháza, Hungary Abstract – A major objective of our research was to survey soil biological activity and organic matter content reduction in a Central European oak forest during treatments of various detritus inputs within the Síkf őkút DIRT ( Detritus Input and Removal Treatments ) Project. Beside the control, three detritus removal and two detritus duplication treatments were applied. Our examinations have proven that soil organic matter content declined relatively fast in detritus removal treatments. The reduction was especially remarkable in root detritus removal treatments, where – due to the lack of transpiration – soils were moister during the whole year than in the other treatments. The higher moisture content, despite of the reduction of detritus input, produced an intense soil respiration. This can be explained by the fact that decomposing organisms have increased the use of soil organic matter. Detritus input reduction had a significantly greater effect on soil respiration and organic matter content than detritus input duplication of the same extent. The latter did not cause any significant change compared to the control. litter manipulation / soil respiration / DIRT Project / humus content / climate change Kivonat – Az avarinput hatása a talaj szerves anyag tartalmára és szén-dioxid kibocsátására egy Közép-európai lombhullató erd őben. -
E.’S Responses ~(Continued)
: I’able K-3. ,Scnping stat~nts and EIS sectimns or .~E.’s responses ~(continued) COnunent scoping nuinber :Stateilmnt topic EIS section or DOE comnt h at this tti want to reiter&e that the Enviro~ntal l~act Statement should not represent. a legalistic charade ..but a sin. cere commitment to seek and evaluate pertinent in for~t ion. Obviously, any Envirocnnental. Assemnt- which led to the Find- ing of No Significant .l~act needs to be reviewed, evaluated and expanded upon, with full regard to the in~t of a broad range of interests, incl”di”g state agenciea,. the: academic comunit y, public interest groups, and private c iti-zens. We muld like to offer some co-”ts: on the in format io” euppl=ied by 00E relative to the probable contents. of the EIS. In the category of production alternatives: : It wuld seem L Need .Section 1.1 ., important tO. re-evaluate the ,need for i~reased protict ion,~nd %e Commnt D1 make every attempt to ::scale dom those need8. It is ine8ca~ able that the quest ion. af the.,need .to prodca plutoniun ia part of the greater ongoing natic,”al.?security debate. If it is indeed. essential that plutoniun: probct ion be stepped up, the Alternatives Saction 2.1 viable? alternatives should be thoroughly explored in the EIS. In the category of socioeconamics: A broad consideration of %cioeconomic .%ction 5.2.1 the state needs to be incorporated, beyond the immdiate jobs effects :-at SiU during construction and as .an ongoing operation. South Carolina has trenmndous potential for no-nuclear economic. -
Fractionation and Characterization of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis
Fractionation and Characterization of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1817-E Fractionation and Characterzation of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis By J. A. LEENHEER and R. L. MALCOLM ORGANIC SUBSTANCES IN WATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1817-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600209 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington, D. C. 20402 - Price 35 cents (paper cov«?r) Stock No. 2401-02400 CONTENTS Page Abstract ___________________________________________ El Introduction __________________________________ __ 1 Methods and materials __________________________________ 3 Sample preparation ______ _______ _ __ 3 Sample description _________________________________ 3 Separation procedure _______ ___________ __ 4 Assay of fractions ___________________________________ 4 Results and discussion _ _______________ 5 Conclusions ________________________________________ 12 References _____________________________________ __ 14 ILLUSTRATIONS Page FIGURES 1-3. Graphs showing: 1. Organic-carbon and optical-density electrophoretic fraction- ation curves for organic materials from soil and from river water ___________________________ E6 2. Organic-carbon and polysaccharide electrophoretic -
Carbon Dynamics of Subtropical Wetland Communities in South Florida DISSERTATION Presented in Partial Fulfillment of the Require
Carbon Dynamics of Subtropical Wetland Communities in South Florida DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jorge Andres Villa Betancur Graduate Program in Environmental Science The Ohio State University 2014 Dissertation Committee: William J. Mitsch, Co-advisor Gil Bohrer, Co-advisor James Bauer Jay Martin Copyrighted by Jorge Andres Villa Betancur 2014 Abstract Emission and uptake of greenhouse gases and the production and transport of dissolved organic matter in different wetland plant communities are key wetland functions determining two important ecosystem services, climate regulation and nutrient cycling. The objective of this dissertation was to study the variation of methane emissions, carbon sequestration and exports of dissolved organic carbon in wetland plant communities of a subtropical climate in south Florida. The plant communities selected for the study of methane emissions and carbon sequestration were located in a natural wetland landscape and corresponded to a gradient of inundation duration. Going from the wettest to the driest conditions, the communities were designated as: deep slough, bald cypress, wet prairie, pond cypress and hydric pine flatwood. In the first methane emissions study, non-steady-state rigid chambers were deployed at each community sequentially at three different times of the day during a 24- month period. Methane fluxes from the different communities did not show a discernible daily pattern, in contrast to a marked increase in seasonal emissions during inundation. All communities acted at times as temporary sinks for methane, but overall were net -2 -1 sources. Median and mean + standard error fluxes in g CH4-C.m .d were higher in the deep slough (11 and 56.2 + 22.1), followed by the wet prairie (9.01 and 53.3 + 26.6), bald cypress (3.31 and 5.54 + 2.51) and pond cypress (1.49, 4.55 + 3.35) communities. -
Progress and Challenges in Using Stable Isotopes to Trace Plant Carbon and Water Relations Across Scales
Biogeosciences, 9, 3083–3111, 2012 www.biogeosciences.net/9/3083/2012/ Biogeosciences doi:10.5194/bg-9-3083-2012 © Author(s) 2012. CC Attribution 3.0 License. Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales C. Werner1,19, H. Schnyder2, M. Cuntz3, C. Keitel4, M. J. Zeeman5, T. E. Dawson6, F.-W. Badeck7, E. Brugnoli8, J. Ghashghaie9, T. E. E. Grams10, Z. E. Kayler11, M. Lakatos12, X. Lee13, C. Maguas´ 14, J. Ogee´ 15, K. G. Rascher1, R. T. W. Siegwolf16, S. Unger1, J. Welker17, L. Wingate18, and A. Gessler11 1Experimental and Systems Ecology, University Bielefeld, 33615 Bielefeld, Germany 2Lehrstuhl fur¨ Grunlandlehre,¨ Technische Universitat¨ Munchen,¨ 85350 Freising-Weihenstephan, Germany 3UFZ – Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany 4University of Sydney, Faculty of Agriculture, Food and Natural Resources, 1 Central Avenue, Eveleigh, NSW 2015, Australia 5College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin Bldg, Corvallis (OR), USA 6Center for Isotope Biogeochemistry, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA 7Potsdam Institute for Climate Impact Research (PIK) PF 60 12 03, 14412 Potsdam, Germany 8CNR – National Research Council of Italy – Institute of Agro-environmental and Forest Biology, via Marconi 2, 05010 Porano (TR), Italy 9Laboratoire d’Ecologie, Systematique´ et Evolution (ESE), CNRS AgroParisTech – UMR8079, Batimentˆ 362, Universite´ de Paris-Sud (XI), 91405 Orsay Cedex, France 10Ecophysiology of Plants, Department of Ecology and Ecosystem Management, Technische Universitat¨ Munchen,¨ Von-Carlowitz-Platz 2, 85354 Freising, Germany 11Institute for Landscape Biogeochemistry Leibniz-Zentrum fur¨ Agrarlandschaftsforschung (ZALF) e.V., Eberswalderstr. -
Is Extraterrestrial Organic Matter Relevant to the Origin of Life on Earth?
IS EXTRATERRESTRIAL ORGANIC MATTER RELEVANT TO THE ORIGIN OF LIFE ON EARTH? D. C. B. WHITTET Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. (Received 19 August 1996) Abstract. I review the relative importance of internal and external sources of prebiotic molecules on Earth at the time of life's origin 3.7 Gyr ago. The ef®ciency of synthesis in the Earth's atmosphere was critically dependent on its oxidation state. If the early atmosphere was non-reducing and CO2- dominated, external delivery might have been the dominant source. Interplanetary dust grains and micrometeorites currently deliver carbonaceous matter to the Earth's surface at a rate of 3 5 7 10 kg/yr (equivalent to a biomass in 2 Gyr), but this may have been as high as 5 10 kg/yr (a biomass in only 10 Myr) during the epoch of late bombardment. Much of the incoming material is in the form of chemically inactive kerogens and amorphous carbon; but if the Earth once had a dense (10-bar) atmosphere, small comets rich in a variety of prebiotic molecules may have been suf®ciently air-braked to land non-destructively. Lingering uncertainties regarding the impact history of the Earth and the density and composition of its early atmosphere limit our ability to draw ®rm conclusions. 1. Introduction In at least one sense, a connection between the Universe at large and life in our small corner of it is inevitable. The hydrogen, carbon, nitrogen, oxygen, and other elements that make up our bodies and other living things were created billions of years ago in the interiors of stars and, in the case of hydrogen, in the the Big Bang itself (see Trimble, 1997, in this volume for an eloquent review). -
The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Stabilization
Soil Biology & Biochemistry 98 (2016) 109e126 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review paper The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization Eldor A. Paul Natural Resource Ecology Laboratory and Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1499, USA article info abstract Article history: This review covers historical perspectives, the role of plant inputs, and the nature and dynamics of soil Received 19 November 2015 organic matter (SOM), often known as humus. Information on turnover of organic matter components, Received in revised form the role of microbial products, and modeling of SOM, and tracer research should help us to anticipate 31 March 2016 what future research may answer today's challenges. Our globe's most important natural resource is best Accepted 1 April 2016 studied relative to its chemistry, dynamics, matrix interactions, and microbial transformations. Humus has similar, worldwide characteristics, but varies with abiotic controls, soil type, vegetation inputs and composition, and the soil biota. It contains carbohydrates, proteins, lipids, phenol-aromatics, protein- Keywords: Soil organic matter derived and cyclic nitrogenous compounds, and some still unknown compounds. Protection of trans- 13C formed plant residues and microbial products occurs through spatial inaccessibility-resource availability, 14C aggregation of mineral and organic constituents, and interactions with sesquioxides, cations, silts, and Plant residue decomposition clays. Tracers that became available in the mid-20th century made the study of SOM dynamics possible. Soil carbon dynamics Carbon dating identified resistant, often mineral-associated, materials to be thousands of years old, 13 Humus especially at depth in the profile. -
Unit 2.3, Soil Biology and Ecology
2.3 Soil Biology and Ecology Introduction 85 Lecture 1: Soil Biology and Ecology 87 Demonstration 1: Organic Matter Decomposition in Litter Bags Instructor’s Demonstration Outline 101 Step-by-Step Instructions for Students 103 Demonstration 2: Soil Respiration Instructor’s Demonstration Outline 105 Step-by-Step Instructions for Students 107 Demonstration 3: Assessing Earthworm Populations as Indicators of Soil Quality Instructor’s Demonstration Outline 111 Step-by-Step Instructions for Students 113 Demonstration 4: Soil Arthropods Instructor’s Demonstration Outline 115 Assessment Questions and Key 117 Resources 119 Appendices 1. Major Organic Components of Typical Decomposer 121 Food Sources 2. Litter Bag Data Sheet 122 3. Litter Bag Data Sheet Example 123 4. Soil Respiration Data Sheet 124 5. Earthworm Data Sheet 125 6. Arthropod Data Sheet 126 Part 2 – 84 | Unit 2.3 Soil Biology & Ecology Introduction: Soil Biology & Ecology UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURE (1 LECTURE, 1.5 HOURS) biological properties and ecosystem The lecture covers the basic biology and ecosystem pro- processes of agricultural soils. cesses of soils, focusing on ways to improve soil quality for organic farming and gardening systems. The lecture reviews the constituents of soils > DEMONSTRATION 1: ORGANIC MATTER DECOMPOSITION and the physical characteristics and soil (1.5 HOURS) ecosystem processes that can be managed to In Demonstration 1, students will learn how to assess the improve soil quality. Demonstrations and capacity of different soils to decompose organic matter. exercises introduce students to techniques Discussion questions ask students to reflect on what envi- used to assess the biological properties of ronmental and management factors might have influenced soils. -
A Diurnal Carbon Engine Explains 13C-Enriched Carbonates
A diurnal carbon engine explains 13C-enriched carbonates without increasing the global production of oxygen Emily C. Geymana,1 and Adam C. Maloofa aDepartment of Geosciences, Princeton University, Princeton, NJ 08544 Edited by Donald E. Canfield, Institute of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M., Denmark, and approved October 8, 2019 (received for review May 21, 2019) In the past 3 billion years, significant volumes of carbonate processes can be constrained by visualizing the carbon evolution with high carbon-isotopic (δ13C) values accumulated on shallow of banktop seawater in a Deffeyes diagram (9) (Fig. 2B), since continental shelves. These deposits frequently are interpreted each mechanism induces a characteristic change in DIC and total as records of elevated global organic carbon burial. However, alkalinity (TA) (Table 1). Observations of TOC (5) and DIC vs. through the stoichiometry of primary production, organic carbon TA (7) from the GBB constrain the relative sizes of the net car- burial releases a proportional amount of O2, predicting unrealis- bonate, gas-exchange, and organic fluxes to be 62, 37, and <1%, tic rises in atmospheric pO2 during the 1 to 100 million year-long respectively (Fig. 2). Although the net burial of organic matter positive δ13C excursions that punctuate the geological record. is close to zero, the flux of carbon between organic matter and This carbon–oxygen paradox assumes that the δ13C of shallow the DIC pool over the course of a single diurnal (24-h) cycle water carbonates reflects the δ13C of global seawater-dissolved can exceed the gross atmospheric and carbonate fluxes by over inorganic carbon (DIC). -
Improving Garden Soils with Organic Matter, EC 1561
EC 1561 • May 2003 $2.50 Improving Garden Soils with Organic Matter N. Bell, D.M. Sullivan, L.J. Brewer, and J. Hart This publication will help you understand the • Tomatoes and peppers get blossom-end rot, importance of soil organic matter levels to good even if fertilized with calcium. plant performance. It also contains suggestions • Water tends to pool on the soil surface and to for suitable soil amendments. Any soil, no drain slowly, or it runs off the surface. matter how compacted, can be improved by the addition of organic matter. The result will be a nnnn better environment for almost any kind of plant. What makes a productive soil? nnnn A productive soil provides physical support, water, air, and nutrients to plants and soil- What gardening problems are dwelling organisms (see “What is soil?” caused by poor soil quality? page 2). Like humans, roots and soil organisms Many problems with home vegetable gar- breathe and require sufficient air and water to dens, fruit trees, shrubs, and flower gardens are live. As a result, a good soil is not “solid”; caused not by pests, diseases, or a lack of rather, between 40 and 60 percent of the soil nutrients, but by poor soil physical conditions. volume is pores. The pores may be filled with Symptoms of poor soil quality include the water or air, making both available to plants following. (see illustration on page 3). • The soil is dried and cracked in summer. The largest pores control aeration and move- • Digging holes in the soil is difficult, whether ment of water through the soil and are largely it is wet or dry.