Progress and Challenges in Using Stable Isotopes to Trace Plant Carbon and Water Relations Across Scales
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest
Acta Silv. Lign. Hung., Vol. 7 (2011) 87–96 The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest a* b c István FEKETE – Zsolt KOTROCZÓ – Csaba VARGA – b b Zsuzsa VERES – János Attila TÓTH a Institute of Environmental Science, College of Nyíregyháza, Nyíregyháza, Hungary b Department of Ecology, University of Debrecen, Debrecen, Hungary c Department of Land and Environmental Management, College of Nyíregyháza, Nyíregyháza, Hungary Abstract – A major objective of our research was to survey soil biological activity and organic matter content reduction in a Central European oak forest during treatments of various detritus inputs within the Síkf őkút DIRT ( Detritus Input and Removal Treatments ) Project. Beside the control, three detritus removal and two detritus duplication treatments were applied. Our examinations have proven that soil organic matter content declined relatively fast in detritus removal treatments. The reduction was especially remarkable in root detritus removal treatments, where – due to the lack of transpiration – soils were moister during the whole year than in the other treatments. The higher moisture content, despite of the reduction of detritus input, produced an intense soil respiration. This can be explained by the fact that decomposing organisms have increased the use of soil organic matter. Detritus input reduction had a significantly greater effect on soil respiration and organic matter content than detritus input duplication of the same extent. The latter did not cause any significant change compared to the control. litter manipulation / soil respiration / DIRT Project / humus content / climate change Kivonat – Az avarinput hatása a talaj szerves anyag tartalmára és szén-dioxid kibocsátására egy Közép-európai lombhullató erd őben. -
Fractionation and Characterization of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis
Fractionation and Characterization of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1817-E Fractionation and Characterzation of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis By J. A. LEENHEER and R. L. MALCOLM ORGANIC SUBSTANCES IN WATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1817-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600209 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington, D. C. 20402 - Price 35 cents (paper cov«?r) Stock No. 2401-02400 CONTENTS Page Abstract ___________________________________________ El Introduction __________________________________ __ 1 Methods and materials __________________________________ 3 Sample preparation ______ _______ _ __ 3 Sample description _________________________________ 3 Separation procedure _______ ___________ __ 4 Assay of fractions ___________________________________ 4 Results and discussion _ _______________ 5 Conclusions ________________________________________ 12 References _____________________________________ __ 14 ILLUSTRATIONS Page FIGURES 1-3. Graphs showing: 1. Organic-carbon and optical-density electrophoretic fraction- ation curves for organic materials from soil and from river water ___________________________ E6 2. Organic-carbon and polysaccharide electrophoretic -
Good Practice Guide for Isotope Ratio Mass Spectrometry, FIRMS (2011)
Good Practice Guide for Isotope Ratio Mass Spectrometry Good Practice Guide for Isotope Ratio Mass Spectrometry First Edition 2011 Editors Dr Jim Carter, UK Vicki Barwick, UK Contributors Dr Jim Carter, UK Dr Claire Lock, UK Acknowledgements Prof Wolfram Meier-Augenstein, UK This Guide has been produced by Dr Helen Kemp, UK members of the Steering Group of the Forensic Isotope Ratio Mass Dr Sabine Schneiders, Germany Spectrometry (FIRMS) Network. Dr Libby Stern, USA Acknowledgement of an individual does not indicate their agreement with Dr Gerard van der Peijl, Netherlands this Guide in its entirety. Production of this Guide was funded in part by the UK National Measurement System. This publication should be cited as: First edition 2011 J. F. Carter and V. J. Barwick (Eds), Good practice guide for isotope ratio mass spectrometry, FIRMS (2011). ISBN 978-0-948926-31-0 ISBN 978-0-948926-31-0 Copyright © 2011 Copyright of this document is vested in the members of the FIRMS Network. IRMS Guide 1st Ed. 2011 Preface A few decades ago, mass spectrometry (by which I mean organic MS) was considered a “black art”. Its complex and highly expensive instruments were maintained and operated by a few dedicated technicians and its output understood by only a few academics. Despite, or because, of this the data produced were amongst the “gold standard” of analytical science. In recent years a revolution occurred and MS became an affordable, easy to use and routine technique in many laboratories. Although many (rightly) applaud this popularisation, as a consequence the “black art” has been replaced by a “black box”: SAMPLES GO IN → → RESULTS COME OUT The user often has little comprehension of what goes on “under the hood” and, when “things go wrong”, the inexperienced operator can be unaware of why (or even that) the results that come out do not reflect the sample that goes in. -
Determining the Fraction of Organic Carbon RISC Nondefault Option
Indiana Department of Environmental Management Office of Land Quality 100 N. Senate Indianapolis, IN 46204-2251 GUIDANCE OLQ PH: (317) 232-8941 Indiana Department of Environmental Management Office of Land Quality Determining the Fraction of Organic Carbon RISC Nondefault Option Background Soil can be a complex mixture of mineral-derived compounds and organic matter. The ratios of each component can vary widely depending on the type of soil being investigated. Soil organic matter is a term used by agronomists for the total organic portion of the soil and is derived from decomposed plant matter, microorganisms, and animal residues. The decomposition process can create complex high molecular weight biopolymers (e.g., humic acid) as well as simpler organic compounds (decomposed lignin or cellulose). Only the simpler organic compounds contribute to the fraction of organic carbon. There is not a rigorous definition of the fraction of organic carbon (Foc). However, it can be thought of as the portion of the organic matter that is available to adsorb the organic contaminants of concern. The higher the organic carbon content, the more organic chemicals may be adsorbed to the soil and the less of those chemicals will be available to leach to the ground water. A nondefault option in the Risk Integrated System of Closure (RISC) is to use Foc in the Soil to Ground Water Partitioning Model to calculate a site specific migration to ground water closure level. In the Soil to Ground Water Partition Model, the coefficient, Kd, for organic compounds is the Foc multiplied by the chemical-specific soil organic carbon water partition coefficient, Koc. -
Stable Isotope Methods in Biological and Ecological Studies of Arthropods
eea_572.fm Page 3 Tuesday, June 12, 2007 4:17 PM DOI: 10.1111/j.1570-7458.2007.00572.x Blackwell Publishing Ltd MINI REVIEW Stable isotope methods in biological and ecological studies of arthropods CORE Rebecca Hood-Nowotny1* & Bart G. J. Knols1,2 Metadata, citation and similar papers at core.ac.uk Provided by Wageningen University & Research Publications 1International Atomic Energy Agency (IAEA), Agency’s Laboratories Seibersdorf, A-2444 Seibersdorf, Austria, 2Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands Accepted: 13 February 2007 Key words: marking, labelling, enrichment, natural abundance, resource turnover, 13-carbon, 15-nitrogen, 18-oxygen, deuterium, mass spectrometry Abstract This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can be used to understand fundamental processes in the biology and ecology of arthropods, which range from nutrition and resource allocation to dispersal, food-web structure, predation, etc. It is concluded that falling costs and reduced complexity of isotope analysis, besides the emergence of new analytical methods, are likely to improve access to isotope technology for arthropod studies still further. Stable isotopes pose no environmental threat and do not change the chemistry or biology of the target organism or system. These therefore represent ideal tracers for field and ecophysiological studies, thereby avoiding reductionist experimentation and encouraging more holistic approaches. Con- sidering (i) the ease with which insects and other arthropods can be marked, (ii) minimal impact of the label on their behaviour, physiology, and ecology, and (iii) environmental safety, we advocate more widespread application of stable isotope technology in arthropod studies and present a variety of potential uses. -
Is Extraterrestrial Organic Matter Relevant to the Origin of Life on Earth?
IS EXTRATERRESTRIAL ORGANIC MATTER RELEVANT TO THE ORIGIN OF LIFE ON EARTH? D. C. B. WHITTET Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. (Received 19 August 1996) Abstract. I review the relative importance of internal and external sources of prebiotic molecules on Earth at the time of life's origin 3.7 Gyr ago. The ef®ciency of synthesis in the Earth's atmosphere was critically dependent on its oxidation state. If the early atmosphere was non-reducing and CO2- dominated, external delivery might have been the dominant source. Interplanetary dust grains and micrometeorites currently deliver carbonaceous matter to the Earth's surface at a rate of 3 5 7 10 kg/yr (equivalent to a biomass in 2 Gyr), but this may have been as high as 5 10 kg/yr (a biomass in only 10 Myr) during the epoch of late bombardment. Much of the incoming material is in the form of chemically inactive kerogens and amorphous carbon; but if the Earth once had a dense (10-bar) atmosphere, small comets rich in a variety of prebiotic molecules may have been suf®ciently air-braked to land non-destructively. Lingering uncertainties regarding the impact history of the Earth and the density and composition of its early atmosphere limit our ability to draw ®rm conclusions. 1. Introduction In at least one sense, a connection between the Universe at large and life in our small corner of it is inevitable. The hydrogen, carbon, nitrogen, oxygen, and other elements that make up our bodies and other living things were created billions of years ago in the interiors of stars and, in the case of hydrogen, in the the Big Bang itself (see Trimble, 1997, in this volume for an eloquent review). -
The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Stabilization
Soil Biology & Biochemistry 98 (2016) 109e126 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review paper The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization Eldor A. Paul Natural Resource Ecology Laboratory and Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1499, USA article info abstract Article history: This review covers historical perspectives, the role of plant inputs, and the nature and dynamics of soil Received 19 November 2015 organic matter (SOM), often known as humus. Information on turnover of organic matter components, Received in revised form the role of microbial products, and modeling of SOM, and tracer research should help us to anticipate 31 March 2016 what future research may answer today's challenges. Our globe's most important natural resource is best Accepted 1 April 2016 studied relative to its chemistry, dynamics, matrix interactions, and microbial transformations. Humus has similar, worldwide characteristics, but varies with abiotic controls, soil type, vegetation inputs and composition, and the soil biota. It contains carbohydrates, proteins, lipids, phenol-aromatics, protein- Keywords: Soil organic matter derived and cyclic nitrogenous compounds, and some still unknown compounds. Protection of trans- 13C formed plant residues and microbial products occurs through spatial inaccessibility-resource availability, 14C aggregation of mineral and organic constituents, and interactions with sesquioxides, cations, silts, and Plant residue decomposition clays. Tracers that became available in the mid-20th century made the study of SOM dynamics possible. Soil carbon dynamics Carbon dating identified resistant, often mineral-associated, materials to be thousands of years old, 13 Humus especially at depth in the profile. -
Oxygen Isotopic Signature of CO2 from Combustion Processes
Atmos. Chem. Phys., 11, 1473–1490, 2011 www.atmos-chem-phys.net/11/1473/2011/ Atmospheric doi:10.5194/acp-11-1473-2011 Chemistry © Author(s) 2011. CC Attribution 3.0 License. and Physics Oxygen isotopic signature of CO2 from combustion processes M. Schumacher1,2,3, R. A. Werner3, H. A. J. Meijer1, H. G. Jansen1, W. A. Brand2, H. Geilmann2, and R. E. M. Neubert1 1Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands 2Max-Planck-Institute for Biogeochemistry, Hans-Knoell-Straße 10, 07745, Jena, Germany 3Institute of Plant Sciences, Swiss Federal Institute of Technology Zurich,¨ Universitatsstraße¨ 2, 8092 Zurich,¨ Switzerland Received: 21 July 2008 – Published in Atmos. Chem. Phys. Discuss.: 5 November 2008 Revised: 2 February 2011 – Accepted: 5 February 2011 – Published: 16 February 2011 Abstract. For a comprehensive understanding of the global (diffusive) transport of oxygen to the reaction zone as the carbon cycle precise knowledge of all processes is neces- cause of the isotope fractionation. The original total 18O sig- sary. Stable isotope (13C and 18O) abundances provide in- nature of the material appeared to have little influence, how- formation for the qualification and the quantification of the ever, a contribution of specific bio-chemical compounds to diverse source and sink processes. This study focuses on the individual combustion products released from the involved 18 δ O signature of CO2 from combustion processes, which material became obvious. are widely present both naturally (wild fires), and human in- duced (fossil fuel combustion, biomass burning) in the car- bon cycle. All these combustion processes use atmospheric 1 Introduction oxygen, of which the isotopic signature is assumed to be con- stant with time throughout the whole atmosphere. -
Investigations of Nuclear Forensic Signatures in Uranium Bearing Materials a Dissertation Submitted to the Graduate School of the University of Cincinnati
Investigations of Nuclear Forensic Signatures in Uranium Bearing Materials A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D) In the Department of Chemistry Of the McMicken College of Arts and Sciences By Lisa Ann Meyers B.S. Ohio Northern University 2009 August 2013 Committee Chairs: Thomas Beck, Ph.D. Apryll Stalcup, Ph.D. i Abstract Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to investigate the physical, chemical, elemental, and isotopic characteristics of nuclear and radiological material. A collection of these characteristics is called signatures that aids in determining how, where and when the material was manufactured. Radiological chronometry (i.e., age dating) is an important tool in nuclear forensics that uses several methods to determine the length of time that has elapsed since a material was last purified. For example, the “age” of a uranium-bearing material is determined by measuring the ingrowth of 230Th from its parent, 234U. A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP- MS). The mill rolled uranium rods in the 1940s and 1950s. The age of the metal bar was determined to be 61 years at the time of analysis using the 230Th/234U chronometer, which corresponds to a purification date of July 1950 ± 1.5 years. Radiochronometry was determined for three different types of uranium metal samples. -
Unit 2.3, Soil Biology and Ecology
2.3 Soil Biology and Ecology Introduction 85 Lecture 1: Soil Biology and Ecology 87 Demonstration 1: Organic Matter Decomposition in Litter Bags Instructor’s Demonstration Outline 101 Step-by-Step Instructions for Students 103 Demonstration 2: Soil Respiration Instructor’s Demonstration Outline 105 Step-by-Step Instructions for Students 107 Demonstration 3: Assessing Earthworm Populations as Indicators of Soil Quality Instructor’s Demonstration Outline 111 Step-by-Step Instructions for Students 113 Demonstration 4: Soil Arthropods Instructor’s Demonstration Outline 115 Assessment Questions and Key 117 Resources 119 Appendices 1. Major Organic Components of Typical Decomposer 121 Food Sources 2. Litter Bag Data Sheet 122 3. Litter Bag Data Sheet Example 123 4. Soil Respiration Data Sheet 124 5. Earthworm Data Sheet 125 6. Arthropod Data Sheet 126 Part 2 – 84 | Unit 2.3 Soil Biology & Ecology Introduction: Soil Biology & Ecology UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURE (1 LECTURE, 1.5 HOURS) biological properties and ecosystem The lecture covers the basic biology and ecosystem pro- processes of agricultural soils. cesses of soils, focusing on ways to improve soil quality for organic farming and gardening systems. The lecture reviews the constituents of soils > DEMONSTRATION 1: ORGANIC MATTER DECOMPOSITION and the physical characteristics and soil (1.5 HOURS) ecosystem processes that can be managed to In Demonstration 1, students will learn how to assess the improve soil quality. Demonstrations and capacity of different soils to decompose organic matter. exercises introduce students to techniques Discussion questions ask students to reflect on what envi- used to assess the biological properties of ronmental and management factors might have influenced soils. -
Can Algal Photosynthetic Inorganic Carbon Isotope Fractionation Be Predicted in Lakes Using Existing Models?
Aquat. Sci. 68 (2006) 142–153 1015-1621/06/020142-12 DOI 10.1007/s00027-006-0818-5 Aquatic Sciences © Eawag, Dübendorf, 2006 Research Article Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models? Darren L. Bade1,3,*, Michael L. Pace2, Jonathan J. Cole2 and Stephen R. Carpenter1 1 Center for Limnology, University of Wisconsin-Madison, USA 2 Institute of Ecosystem Studies, Millbrook, NY, USA 3 Present address: Institute of Ecosystem Studies, PO Box AB (65 Sharon Turnpike), Millbrook, NY 12545, USA Received: 30 June 2005; revised manuscript accepted: 7 December 2005 Abstract. Differential fractionation of inorganic carbon stable isotopes for studies ranging from food webs to stable isotopes during photosynthesis is an important paleolimnology. In our largest comparative study, values cause of variability in algal carbon isotope signatures. of δ13C-POC ranged from –35.1 ‰ to –21.3 ‰. Using Several physiological models have been proposed to ex- several methods to obtain an algal isotopic signature, we ε plain algal photosynthetic fractionation factors ( p). These found high variability in fractionation among lakes. There ε models generally consider CO2 concentration, growth was no relationship between p and one of the most im- rate, or cell morphometry and have been supported by portant predictors in existing models, pCO2. A whole-lake empirical evidence from laboratory cultures. Here, we inorganic 13C addition was used to create distinct algal ε explore the applicability of these models to a broad range isotope signatures to aid in examining p. Measurements of lakes with mixed phytoplankton communities. Under- and a statistical model from the isotope addition revealed standing this fractionation is necessary for using carbon that algal fractionation was often low (0 – 15 ‰). -
Improving Garden Soils with Organic Matter, EC 1561
EC 1561 • May 2003 $2.50 Improving Garden Soils with Organic Matter N. Bell, D.M. Sullivan, L.J. Brewer, and J. Hart This publication will help you understand the • Tomatoes and peppers get blossom-end rot, importance of soil organic matter levels to good even if fertilized with calcium. plant performance. It also contains suggestions • Water tends to pool on the soil surface and to for suitable soil amendments. Any soil, no drain slowly, or it runs off the surface. matter how compacted, can be improved by the addition of organic matter. The result will be a nnnn better environment for almost any kind of plant. What makes a productive soil? nnnn A productive soil provides physical support, water, air, and nutrients to plants and soil- What gardening problems are dwelling organisms (see “What is soil?” caused by poor soil quality? page 2). Like humans, roots and soil organisms Many problems with home vegetable gar- breathe and require sufficient air and water to dens, fruit trees, shrubs, and flower gardens are live. As a result, a good soil is not “solid”; caused not by pests, diseases, or a lack of rather, between 40 and 60 percent of the soil nutrients, but by poor soil physical conditions. volume is pores. The pores may be filled with Symptoms of poor soil quality include the water or air, making both available to plants following. (see illustration on page 3). • The soil is dried and cracked in summer. The largest pores control aeration and move- • Digging holes in the soil is difficult, whether ment of water through the soil and are largely it is wet or dry.