Changing Seasonality of Panarctic Tundra Vegetation in Relationship to Climatic Variables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Time and Tides in the Gulf of Maine a Dockside Dialogue Between Two Old Friends
1 Time and Tides in the Gulf of Maine A dockside dialogue between two old friends by David A. Brooks It's impossible to visit Maine's coast and not notice the tides. The twice-daily rise and fall of sea level never fails to impress, especially downeast, toward the Canadian border, where the tidal range can exceed twenty feet. Proceeding northeastward into the Bay of Fundy, the range grows steadily larger, until at the head of the bay, "moon" tides of greater than fifty feet can leave ships wallowing in the mud, awaiting the water's return. My dockside companion, nodding impatiently, interrupts: Yes, yes, but why is this so? Why are the tides so large along the Maine coast, and why does the tidal range increase so dramatically northeastward? Well, my friend, before we address these important questions, we should review some basic facts about the tides. Here, let me sketch a few things that will remind you about our place in the sky. A quiet rumble, as if a dark cloud had suddenly passed overhead. Didn’t expect a physics lesson on this beautiful day. 2 The only physics needed, my friend, you learned as a child, so not to worry. The sketch is a top view, looking down on the earth’s north pole. You see the moon in its monthly orbit, moving in the same direction as the earth’s rotation. And while this is going on, the earth and moon together orbit the distant sun once a year, in about twelve months, right? Got it skippah. -
Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region. -
Yamalia English Language Teachers’ Association
Yamalia English Language Teachers’ Association YAMALIA – THE BACK OF BEYOND A Series of English Lessons in Yamalia Studies Edited by Eugene Kolyadin Yelena Gorshkova Oxana Sokolenko Irina Kolyadina Based on teaching materials created by Alevtina Andreyeva (Salemal), Svetlana Bochkaryova (Salekhard), Natalia Bordzilovskaya (Noyabrsk), Natalia Derevyanko (Noyabrsk), Yelena Gorshkova (Gubkinsky), Olga Grinkevich (Muravlenko), Tamara Khokhlova (Noyabrsk), Anzhelika Khokhlyutina (Muravlenko), Irina Kolyadina (Gubkinsky), Yulia Rudakova (Nadym), Irina Rusina (Noyabrsk), Diana Saitova (Nadym), Yulia Sibulatova (Nadym), Natalia Soip (Nadym), Yelena Ten (Nadymsky district), Natalya Togo (Nyda), Olga Yelizarova (Noyabrsk), Alfiya Yusupova (Muravlenko), Irina Zinkovskaya (Nadym) Phonetic and Listening Comprehension tapescripts sounded by Svetlana Filippova, Associate Professor, Nizhny Novgorod Dobrolyubov State Linguistics University Gubkinsky Yamalo-Nenets Autonomous Okrug 2015 2 Yamalia English Language Teachers’ Association Yamalia – the Back of Beyond. A Series of English Lessons in Yamalia Studies: Сборник учебно-методических материалов для проведения учебных занятий по регионоведению Ямало-Ненецкого автономного округа на английском языке в 8 – 11 классах средних общеобразовательных организаций / Под ред. Е.А. Колядина, Е.А. Горшковой, И.А. Колядиной, О.Б. Соколенко. – Губкинский, 2015. – 82 c. – На англ. яз. Yamalia – the Back of Beyond 3 FOREWORD1 The booklet you are holding in your hands now is a fruit of collaboration of tens of Yamalia teachers of English from different parts of the okrug. The main goal of the authors’ team was to summarise the best practices developed by the okrug educators as well as their expertise in teaching regional studies and disseminate that all around Yamalia. We think that it is a brilliant idea to arm our teachers with ready-made though flexible to adaptation lessons to teach students to different aspects of life in our lands in English. -
Russia's Policies for Arctic Cities
RUSSIAN ANALYTICAL DIGEST No. 129, 24 June 2013 2 ANALYSIS Russia’s Policies for Arctic Cities By Alexander Pilyasov, Moscow Abstract Although the population of Russia’s Arctic has shrunk notably in the past two decades, the region contin- ues to be highly urbanized. The process of developing sustainable, economically self-sufficient, and socially resilient urban centers requires the implementation of informed and directed policy at the federal and local level. In order to assist in informing better policy, this article establishes several categories of northern urban centers based on their economies, political situation, and social networks. The efficacy of policy is analyzed through two case studies, the cities of Muravlenko and Gubkinsky, which have experienced divergent out- comes despite their proximity and organization. Finally, some general policy recommendations are proposed for the different urban categories, based on their varying needs and characteristics. Introduction (a short statistical review of mum to minimum salaries is often a factor of three. The Russian Arctic cities) most attractive sectors in terms of salary are usually pub- Russian Arctic cities are known for the large size of their lic policy, finance, and mining. In the single-industry populations relative to the Arctic region in general. By cities, differentials between maximum and minimum far, the majority of the biggest Arctic cities are located salaries are usually greater, sometimes by a factor of six, in Russia. Their large size stems from the Soviet era’s but in extreme cases the difference between the best and “triumph of the cities,” and continues to be centered worst paid can be as much as 13 times. -
Russia's Arctic Cities
? chapter one Russia’s Arctic Cities Recent Evolution and Drivers of Change Colin Reisser Siberia and the Far North fi gure heavily in Russia’s social, political, and economic development during the last fi ve centuries. From the beginnings of Russia’s expansion into Siberia in the sixteenth century through the present, the vast expanses of land to the north repre- sented a strategic and economic reserve to rulers and citizens alike. While these reaches of Russia have always loomed large in the na- tional consciousness, their remoteness, harsh climate, and inaccessi- bility posed huge obstacles to eff ectively settling and exploiting them. The advent of new technologies and ideologies brought new waves of settlement and development to the region over time, and cities sprouted in the Russian Arctic on a scale unprecedented for a region of such remote geography and harsh climate. Unlike in the Arctic and sub-Arctic regions of other countries, the Russian Far North is highly urbanized, containing 72 percent of the circumpolar Arctic population (Rasmussen 2011). While the largest cities in the far northern reaches of Alaska, Canada, and Greenland have maximum populations in the range of 10,000, Russia has multi- ple cities with more than 100,000 citizens. Despite the growing public focus on the Arctic, the large urban centers of the Russian Far North have rarely been a topic for discussion or analysis. The urbanization of the Russian Far North spans three distinct “waves” of settlement, from the early imperial exploration, expansion of forced labor under Stalin, and fi nally to the later Soviet development 2 | Colin Reisser of energy and mining outposts. -
Warmer Urban Climates for Development of Green
DOI: 10.15356/2071-9388_04v09_2016_04 Igor Esau1*, Victoria Miles1 1 Nansen Environmental and Remote Sensing Center/Bjerknes Centre for Climate Research, Thormohlensgt. 47, 5006, Bergen, Norway *Corresponding author; e-mail: [email protected] WARMER URBAN CLIMATES ENVIRONMENT FOR DEVELOPMENT OF GREEN SPACES 48 IN NORTHERN SIBERIAN CITIES ABSTRACT. Modern human societies have accumulated considerable power to modify their environment and the earth’s system climate as the whole. The most significant environmental changes are found in the urbanized areas. This study considers coherent changes in vegetation productivity and land surface temperature (LST) around four northern West Siberian cities, namely, Tazovsky, Nadym, Noyabrsk and Megion. These cities are located in tundra, forest-tundra, northern taiga and middle taiga bioclimatic zones correspondingly. Our analysis of 15 years (2000–2014) Moderate Resolution Imaging Spectroradiometer (MODIS) data revealed significantly (1.3 °C to 5.2 °C) warmer seasonally averaged LST within the urbanized territories than those of the surrounding landscapes. The magnitude of the urban LST anomaly corresponds to climates found 300–600 km to the South. In the climate change perspective, this magnitude corresponds to the expected regional warming by the middle or the end of the 21st century. Warmer urban climates, and specifically warmer upper soil layers, can support re-vegetation of the disturbed urban landscapes with more productive trees and tall shrubs. This afforestation is welcome by the migrant city population as it is more consistent with their traditional ecological knowledge. Survival of atypical, southern plant species encourages a number of initiatives and investment to introduce even broader spectrum of temperate blossoming trees and shrubs in urban landscapes. -
A Changing Nutrient Regime in the Gulf of Maine
ARTICLE IN PRESS Continental Shelf Research 30 (2010) 820–832 Contents lists available at ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr A changing nutrient regime in the Gulf of Maine David W. Townsend Ã, Nathan D. Rebuck, Maura A. Thomas, Lee Karp-Boss, Rachel M. Gettings University of Maine, School of Marine Sciences, 5706 Aubert Hall, Orono, ME 04469-5741, United States article info abstract Article history: Recent oceanographic observations and a retrospective analysis of nutrients and hydrography over the Received 13 July 2009 past five decades have revealed that the principal source of nutrients to the Gulf of Maine, the deep, Received in revised form nutrient-rich continental slope waters that enter at depth through the Northeast Channel, may have 4 January 2010 become less important to the Gulf’s nutrient load. Since the 1970s, the deeper waters in the interior Accepted 27 January 2010 Gulf of Maine (4100 m) have become fresher and cooler, with lower nitrate (NO ) but higher silicate Available online 16 February 2010 3 (Si(OH)4) concentrations. Prior to this decade, nitrate concentrations in the Gulf normally exceeded Keywords: silicate by 4–5 mM, but now silicate and nitrate are nearly equal. These changes only partially Nutrients correspond with that expected from deep slope water fluxes correlated with the North Atlantic Gulf of Maine Oscillation, and are opposite to patterns in freshwater discharges from the major rivers in the region. Decadal changes We suggest that accelerated melting in the Arctic and concomitant freshening of the Labrador Sea in Arctic melting Slope waters recent decades have likely increased the equatorward baroclinic transport of the inner limb of the Labrador Current that flows over the broad continental shelf from the Grand Banks of Newfoundland to the Gulf of Maine. -
A Spatial Study of Geo-Economic Risk Exposure of Russia's Arctic Mono-Towns with Commodity Export-Based Economy
Journal of Geography and Geology; Vol. 6, No. 1; 2014 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education A Spatial Study of Geo-Economic Risk Exposure of Russia’s Arctic Mono-Towns with Commodity Export-Based Economy Anatoly Anokhin1, Sergey Kuznetsov2 & Stanislav Lachininskii1 1 Department of Economic & Social Geography, Saint-Petersburg State University, Saint-Petersburg, Russia 2 Institute of Regional Economy of RAS, Russian Academy of Science, Saint-Petersburg, Russia Correspondence: Stanislav Lachininskii, Department of Economic & Social Geography, Saint-Petersburg State University, Saint-Petersburg, Russia. Tel: 7-812-323-4089. E-mail: [email protected] Received: December 30, 2013 Accepted: January 14, 2014 Online Published: January 16, 2014 doi:10.5539/jgg.v6n1p38 URL: http://dx.doi.org/10.5539/jgg.v6n1p38 Abstract In the context of stagnating global economy mono-towns of Arctic Russia are especially exposed to uncertainty in their socio-economic development. Resource orientation of economy that formed in the 20th century entails considerable geo-economical risk exposure both for the towns and their population as well as for Russia's specific regions. In the 1990–2000s Russia’s Arctic regions were exposed to a systemic crisis which stemmed from production decline, out-migration, capital asset obsolescence, depletion of mineral resources and environmental crisis. This spatial study of geo-economic risk exposure of Russia’s Arctic mono-towns with commodity export-based economy was conducted at four dimensions - global, macro-regional, regional and local. The study of the five types of geo-economic risks was based on the existing approach, economic and socio-demographic risks being the most critical for the towns under consideration. -
Presentation
Environmental aspects of urbanization in the Russian Arctic E.V. Abakumov Saint-Petersburg State University, Department of Applied Ecology, 1 [email protected] Arctic is about 37 % of Russian territory, but the Cryolithozone is about 54-60 % of total state area Population of Russian Arctic Developmental Population, thousands zone people European part –Siberia - Chukotka Murmansk 796 Population of key developmantal zones Arkhangelsk 661 800 Nenets 42 700 Vorkuta 143 600 Yamal 522 500 Taymyr 217 400 thousands 300 Yakutsk 65 (not all republic) 200 Chukotka 52 100 0 Nenets Yamal Total 2498 (involved in to Mumansk Yakutsk economic activity - 1300) Creation of “Development zones” in the Arctic accodring to Federal program “Development of the Arctic zone of the Russian Federation and the national security up to 2020” • Development zones: 1 – Kola, 2 –Arkhangelsk, 3 – Nenets, 4 – Vorkuta, 5 Yamal, 6- Taymyr, 7 – North-Yakutks, 8 - Chukotka Population of the Russian Arctic: 2391 min =2,2% of whole population Arctic Population total urban 89,3 % 2500 2000 1500 1000 10,7% other 500 0 total urban other Number of cities with population range number of cities with population 14 14 12 9 10 8 6 4 4 3 4 2 1 2 0 5000 10000 20000 50000 1000000 250000 300000 Key Factors, Limiting the Arctic Zone Development • a) extreme climatic conditions, including low temperatures, strong winds and the presence of ice in the waters of the Arctic seas; • b) the localized nature of industrial and economic development of the areas and low population density; • c) the distance -
Additional Information to OAO Gazprom's 2010 Annual Report
ADDITIONAL INFORMATION TO OAO GAZPROM’S 2010 ANNUAL REPORT TABLE OF CONTENTS Members of OAO Gazprom’s Revision Commission .....................................................................................2 Meetings held by OAO Gazprom’s Board of Directors in 2010 ......................................................................3 Ongoing legal proceedings connected with debt enforcement as of December 31, 2010 ..........................11 OAO Gazprom participation in share capital of third companies as of December 31, 2010 .......................13 MEMBERS OF OAO GAZPROM’S REVISION COMMISSION Information about the People Elected as Members of the Revision Commission at the Annual General Shareholders Meeting Dated June 25, 2010. Full name Date of Birth Position as of December 31, 2010 Dmitry Alexandrovich Arkhipov 1975 Deputy Head of the Administration of the Management Committee – Head of OAO Gazprom’s Internal Audit Department, Chairman of the Commission Vadim Kasymovich Bikulov 1957 Head of Directorate of the Internal Audit Department of the Administration of OAO Gazprom’s Management Committee, secretary of the Commission Andrey Nikolaevich Kobzev 1971 Head of the Expert Analysis Department of the Federal Agency for State Property Management Nina Vladislavovna Lobanova 1955 Dmitry Sergeevich Logunov 1979 Deputy Director of the Economics and Analysis Department of the Russian Ministry of Agriculture Yury Stanislavovich Nosov 1963 Deputy Head of the Administration of the Management Committee – Head of OAO Gazprom’s Affairs Management -
An Assessment of the Flux of Radionuclide Contamination Through the Ob and Yenisei Rivers and Estuaries to the Kara Sea
NO9700007 An Assessment of the Flux of Radionuclide Contamination Through the Ob and Yenisei Rivers and Estuaries to the Kara Sea THERESA PALUSZKIEWICZ1, LYLE F. HIBLER1, MARSHALL C. RICHMOND2, DON J. BRADLEY2 ''Pacific Northwest Laboratory, Battelle Marine Sciences Laboratory, 1529 West Sequim Bay Road, Sequim, WA 98382, USA . 2Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, USA. Introduction Extensive radioactive contamination (about 63,000 PBq) has been discharged to the environment of the West Siberian Basin. The former Soviet Union (FSU) nuclear program has been operating for the last 50 years; most of its facilities are located in the West Siberian Basin. These nuclear facilities include three sites for reprocessing spent fuel from the FSU's production reactors: Mayak, Tomsk-7, and Krasnoyarsk-26 (Fig. 1). These are believed to be responsible for the majority of the radioactive contamination that is in the major river systems, the Ob and Yenisei, which feed into the Arctic Ocean through the Kara Sea. Extensive radioactive contamination has been reported in surface water reservoirs, and large amounts of radioactive contamination have been discharged to injection sites that are adjacent to tributaries of the Ob and Yenisei Rivers. A massive release of radionuclide contaminants could result if floods, reservoir failures, or containment failures were to occur (Foley, 1991; Bradley, 1991, 1992a, 1992b; Bradley and Schneider, 1990). The Ob River system consists of the contaminant release sites (FSU nuclear defense sites on land), the terrestrial, ground, and surface waters that link the contaminant release sites to the rivers, the Ob River, its tributaries, the estuary, and the confluence region where the estuaries of the Ob and Yenisei mix and flow into the Kara Sea (Fig. -
Agrochemical and Pollution Status of Urbanized Agricultural Soils in the Central Part of Yamal Region
energies Article Agrochemical and Pollution Status of Urbanized Agricultural Soils in the Central Part of Yamal Region Timur Nizamutdinov 1 , Evgeny Abakumov 1,* , Eugeniya Morgun 2, Rostislav Loktev 2 and Roman Kolesnikov 2 1 Department of Applied Ecology, Faculty of Biology, St. Petersburg State University, 16th Liniya V.O., 29, 199178 St. Petersburg, Russia; [email protected] 2 Arctic Research Center of the Yamal-Nenets Autonomous District, Respublikiv, 20, 629008 Salekhard, Russia; [email protected] (E.M.); [email protected] (R.L.); [email protected] (R.K.) * Correspondence: [email protected] Abstract: This research looked at the state of soils faced with urbanization processes in the Arctic region of the Yamal-Nenets Autonomous District (YANAO). Soils recently used in agriculture, which are now included in the infrastructure of the cities of Salekhard, Labytnangi, Kharsaim, and Aksarka in the form of various parks and public gardens were studied. Morphological, physico-chemical, and agrochemical studies of selected soils were conducted. Significant differences in fertility parameters between urbanized abandoned agricultural soils and mature soils of the region were revealed. The quality of soil resources was also evaluated in terms of their ecotoxicology condition, namely, the concentrations of trace metals in soils were determined and their current condition was assessed using calculations of various individual and complex soil quality indices. Keywords: Arctic; soil resources; polar urbanization; permafrost; trace metals; nutrients Citation: Nizamutdinov, T.; Abakumov, E.; Morgun, E.; Loktev, R.; Kolesnikov, R. Agrochemical and Pollution Status of Urbanized 1. Introduction Agricultural Soils in the Central Part Nowadays, the majority of countries of the world are faced with new development of Yamal Region.