Can Use Magnetic Field Polarity to Orient in Space and Solve a Maze
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Stingray from South Africa
Nature Vol. 289 22 January 1981 221 A new stingray from South Africa from Alwyne Wheeler ICHTHYOLOGISTS are accustomed to the regular description of previously un recognized species of fishes, which if not a daily event at least happens so frequently as not to cause great comment. Previously undescribed genera are like wise not infrequently published, but higher categories are increasingly less common. The discovery of a new stingray, which is so different from all known rays as to require both a new family and a new suborder to accommodate its distinctive characters, is therefore a remarkable event. A recent paper by P.e. Heemstra and M.M. Smith (Ichthyological Bulletin oj the J. L.B. Smith Institute of Ichthyology 43, I; 1980) describes this most striking ray as Hexatrygon bickelli and discusses its differences from other batoid fishes. Surprisingly, this remarkable fish was not the result of some organized deep-sea fishing programme, but was found lying on the beach at Port Elizabeth. It was fresh but had suffered some loss of skin by sand abrasion on the beach, and the margins of its fins appeared desiccated in places. The way it was discovered leaves a tantalising question as to its normal habitat, but Heemstra and Smith suggest that it may live in moderately deep water of 400-1,000m. This suggestion is Ventral view of Hexatrygon bickelli supported by its general appearance (small eyes, thin black dorsal skin, f1acid an acellular jelly, while the underside is chimaeroids Rhinochimaera and snout) and the chemistry of its liver-oil. richly supplied with well developed Harriota, and there can be little doubt The classification of Hexatrygon ampullae of Lorenzini. -
Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011
August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai Published by: TheNatureConservancy,Indo-PacificDivision Purwanto:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] Muhajir: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] JoanneWilson: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia. RizyaArdiwijaya:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur, Bali,Indonesia.Email: [email protected] SangeetaMangubhai: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2, Sanur,Bali,Indonesia.Email: [email protected] Suggested Citation: Purwanto,Muhajir,Wilson,J.,Ardiwijaya,R.,Mangubhai,S.2012.CoralReefMonitoringinKofiau andBooIslandsMarineProtectedArea,RajaAmpat,WestPapua.2009-2011.TheNature Conservancy,Indo-PacificDivision,Indonesia.ReportN,6/12.50pp. © 2012012012201 222 The Nature Conservancy AllRightsReserved.Reproductionforanypurposeisprohibitedwithoutpriorpermission. AllmapsdesignedandcreatedbyMuhajir. CoverPhoto: -
By Species Items
1 Fish, crustaceans, molluscs, etc Capture production by species items Mediterranean and Black Sea C-37 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Méditerranée et mer Noire (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Mediterráneo y Mar Negro English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 1998 1999 2000 2001 2002 2003 2004 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 495 335 336 108 47 7 10 Common carp Cyprinus carpio 11 3 1 - 2 3 4 4 Roach Rutilus rutilus 11 1 1 2 7 11 12 5 Roaches nei Rutilus spp 11 13 78 73 114 72 83 47 Sichel Pelecus cultratus 11 105 228 276 185 147 52 39 Cyprinids nei Cyprinidae 11 - - 167 159 95 141 226 European perch Perca fluviatilis 13 - - - 1 1 - - Percarina Percarina demidoffi 13 - - - - 18 15 202 Pike-perch Stizostedion lucioperca 13 3 031 2 568 2 956 3 504 3 293 2 097 1 043 Freshwater fishes nei Osteichthyes 13 - - - 17 - 249 - Danube sturgeon(=Osetr) Acipenser gueldenstaedtii 21 114 36 20 8 10 3 3 Sterlet sturgeon Acipenser ruthenus 21 - - 0 - - - - Starry sturgeon Acipenser stellatus 21 13 11 5 3 5 1 1 Beluga Huso huso 21 12 10 1 0 4 1 3 Sturgeons nei Acipenseridae 21 290 185 59 22 23 14 8 European eel Anguilla anguilla 22 917 682 464 602 642 648 522 Salmonoids nei Salmonoidei 23 26 - - 0 - - 7 Pontic shad Alosa pontica 24 153 48 15 21 112 68 115 Shads nei Alosa spp 24 2 742 2 640 2 095 2 929 3 984 2 831 3 645 Azov sea sprat Clupeonella cultriventris 24 3 496 10 862 12 006 27 777 27 239 17 743 14 538 Three-spined stickleback Gasterosteus aculeatus 25 - - - 8 4 6 1 European plaice Pleuronectes platessa 31 - 0 6 7 7 5 5 European flounder Platichthys flesus 31 69 62 56 29 29 11 43 Common sole Solea solea 31 5 047 4 179 5 169 4 972 5 548 6 273 5 619 Wedge sole Dicologlossa cuneata 31 .. -
Florida, Caribbean, Bahamas by Paul Humann and Ned Deloach
Changes in the 4th Edition of Reef Fish Identification - Florida, Caribbean, Bahamas by Paul Humann and Ned DeLoach Prepared by Paul Humann for members of Reef Environmental Education Foundation (REEF) This document summarizes the changes, updates, and new species presented in the 4th edition of Reef Fish Identification- Florida, Caribbean, and Bahamas by Paul Humann and Ned DeLoach (1st printing, released June 2014). This document was created as reference for REEF volunteer surveyors. Chapter 1 – no significant changes Chapter 2 - Silvery pg 64-5t – Redfin Needlefish – new species pg 68-9m – Ladyfish – new species pg 72-3m – Harvestfish – new species pg 72-3b – Longspine Porgy – new species pg74-5 – Silver Porgy & Spottail Pinfish – 2 additional pictures of young and more information on distinguishing between the two species pg 84-5b – Bigeye Mojarra – new species pgs 90-1 & 92-3t – Chubs new species – there are now 4 species of chub in the book – Topsail Chub and Brassy Chub are easily distinguishable. Brassy Chub is the updated ID of Yellow Chub. Bermuda Chub and Gray Chub are lumped due to difficulties in underwater ID (Gray Chub, K biggibus, replaced Yellow Chub in this lumping). Chapter 3 – Grunts & Snappers pg 106-7b and 108-9t – Boga and Bonnetmouth are both now in the Grunt Family (Haemulidae), the Bonnetmouth Family, Inermiidae, is no longer valid. Chapter 4 – Damselfish & Hamlets pgs 132-3 & 134-5 – Cocoa Damselfish and Beaugregory, new pictures and tips for distinguishing between the species pg 142m – Yellowtail Reeffish - new picture of older adult brown variation has been added, which looks of strikingly different from the younger adult pg 147-8b – Florida Barred Hamlet – new species (distinctive from regular Barred Hamlet) pg 153-4t – Tan Hamlet – official species has now been described (Hypoplectrus randallorum), differs from previously included “Tan Hypoplectrus sp.”. -
Fish Species and for Eggs and Larvae of Larger Fish
BATIQUITOS LAGOON FOUNDATION F I S H Fishes of the Lagoon There were only a few species of fish in Batiquitos Lagoon (just five!) BATIQUITOS LAGOON FOUNDATION before it was opened to the ocean and tides at the end of 1996. High temperatures in the summer, low oxygen levels, and wide ranges of ANCHOVY salinity did not allow the ecosystem to flourish. Since the restoration of tidal action to the lagoon, the fish populations have significantly increased in numbers and diversity and more than sixty-five species have been found. Lagoons serve as breeding and nursery areas for a wide array of coastal fish, provide habitat and food for resident species TOPSMELT and serve as feeding areas for seasonal species. Different areas of the lagoon environment provide specific habitat needs. These include tidal creeks, sandy bottoms, emergent vegetation, submergent vegetation, nearshore shallows, open water, saline pools and brackish/freshwater areas. These habitats are defined by water YELLOWFIN GOBY characteristics including salinity, water temperature, water velocity and water depth. The lagoon bottom varies with the type of substrate such as rock, cobble, gravel, sand, clay, mud and silt. Tidal creeks and channels provide refuges for small fish species and for eggs and larvae of larger fish. Species in tidal creeks include ROUND STINGRAY gobies and topsmelt. Sandy bottoms provide important habitat for bottom-dwelling fish species such as rays, sharks and flatfish. The sandy areas provide important refuges for crustaceans, which are prey to many fish species within the lagoon. The burrows of ghost shrimp are utilized by the arrow goby. -
Chondrichthyes: Dasyatidae)
1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018). move between freshwater and saltwater) (Last et Particularly, the dasyatid fauna of Borneo al., 2016a). Recently, a total of 89 species of Dasy- includes the giant freshwater stingray Urogymnus atidae has been confirmed worldwide (Last et al., polylepis. The occurrence of U. polylepis in Borneo 2016a), including 14 species which are known to has been reported from Sabah and Sarawak in enter or live permanently in freshwater habitats of Malaysia and the Mahakam basin in Kaliman- Southeast Asia [Brevitrygon imbricata, Fluvitrygon tan of Indonesia (Monkolprasit & Roberts, 1990; kittipongi, F. -
Stingray Injuries
Stingray Injuries FINDLAY E. RUSSELL, M.D. inflicted by stingrays are com¬ the integumentary sheath surrounding the INJURIESmon in several areas of the coastal waters spine is ruptured and the venom escapes into of North America (1-4). Approximately 750 the victim's tissues. In withdrawing the spine, people a year along our coasts are stung by the integumentary sheath may be torn free and these elasmobranchs. The largest number of remain in the wound. stings are reported from southern California, Unlike the injuries inflicted by many venom¬ the Gulf of California, the Gulf of Mexico, and ous animals, wounds produced by the stingray the south Atlantic coast (5). may be large and severely lacerated, requiring Of 1,097 stingray injuries reported over a 5- extensive debridement and surgical closure. A year period in the United States (5, tf), 232 sting no wider than 5 mm. may produce a were seen by a physician at some time during wound 3.5 cm. long (#), and larger stings may the course of the recovery of the victim. Sixty- produce wounds 7 inches long (7). Occasion¬ two patients were hospitalized; the majority of ally, the sting itself may be broken off in the these required surgical closure of their wounds wound. or treatment for secondary infection, or both. The sting, or caudal spine, is a bilaterally ser¬ At least 10 of the 62 victims were hospitalized rated dentinal structure located on the dorsal for treatment for overexuberant first aid care. surface of the animal's tail. The sharp serra¬ Only eight patients were hospitalized for the tions are curved cephalically and as such are treatment of the systemic effects produced by responsible for the lacerating effects as the sting the venom. -
Insight Into Shark Magnetic Field Perception from Empirical
www.nature.com/scientificreports OPEN Insight into shark magnetic feld perception from empirical observations Received: 13 February 2017 James M. Anderson 1,2, Tamrynn M. Clegg1, Luisa V. M. V. Q. Véras3 & Kim N. Holland1,4 Accepted: 24 August 2017 Elasmobranch fshes are among a broad range of taxa believed to gain positional information and Published: xx xx xxxx navigate using the earth’s magnetic feld, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making signifcantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S−). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic feld, with no diference seen in approaches to the target under the S+ and S− conditions (p = 0.375). We provide quantifed detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic feld perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks. Many animals from several taxa are able to perceive the earth’s magnetic feld and discriminate changes in that feld1. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Species Diversity of Rhinebothrium Linton, 1890 (Eucestoda
Zootaxa 4300 (1): 421–437 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4300.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:EE5688F1-3235-486C-B981-CBABE462E8A2 Species diversity of Rhinebothrium Linton, 1890 (Eucestoda: Rhinebothriidea) from Styracura (Myliobatiformes: Potamotrygonidae), including the description of a new species BRUNA TREVISAN1,2 & FERNANDO P. L. MARQUES1 1Laboratório de Helmintologia Evolutiva, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, travessa 14, Cidade Universitária, São Paulo, SP, 05508-090 2Corresponding author. E-mail: [email protected] Abstract The present study contributes to the knowledge of the cestode fauna of species of Styracura de Carvalho, Loboda & da Silva, which is the putative sister taxon of freshwater potamotrygonids—a unique group of batoids restricted to Neotro- pical freshwater systems. We document species of Rhinebothrium Linton, 1890 as a result of the examination of newly collected specimens of Styracura from five different localities representing the eastern Pacific Ocean and the Caribbean Sea. Overall, we examined 33 spiral intestines, 11 from the eastern Pacific species Styracura pacifica (Beebe & Tee-Van) and 22 from the Caribbean species S. schmardae (Werner). However, only samples from the Caribbean were infected with members of Rhinebothrium. Rhinebothrium tetralobatum Brooks, 1977, originally described from S. schmardae—as Hi- mantura schmardae (Werner)—off the Caribbean coast of Colombia based on six specimens is redescribed. This rede- scription provides the first data on the microthriches pattern, more details of internal anatomy (i.e., inclusion of histological sections) and expands the ranges for the counts and measurements of several features. -
SSD Fish Monitoring Briefing 2013
The Stingray Shore: The common stingray in the UK and why the New Forest shore is a stronghold. Dr. Georgina Samoluk (on behalf of Dom Longley) January 2020 Common stingray: Dasyatis pastinaca IUCN status: “Data deficient” Declared “Near threatened” in certain areas of the Mediterranean & NE Atlantic. May have disappeared from the Bay of Biscay Several protected sites in the Balearics Difficult species to study – no formal UK research. Range: Anatomy: dorsal Spiracles (breathing inlets) Stingers (usually 2) “Claspers”: male sex organs Pectoral fin / “wing” (thick & muscular compared with other rays) Anatomy: ventral Mouth: teeth form two rough, crushing pads, consisting of modified scales Nostrils Breathing: the primary route for Gill slits water intake is the mouth – the spiracles are less efficient & are used when the ray is at rest on the seabed or is buried with only eyes & spiracles protruding. Skeleton: As an Elasmobranch (sharks, skates, rays & sawfishes) the common stingray has an entirely cartilaginous skeleton. With no swim bladder, buoyancy is aided by the large, oily liver General ecology: Diet: • Crabs, worms, molluscs, fish, cephalopods, carrion Breeding: • Migrate into warm, shallow coastal waters in late spring • Aplacental viviparous: embryos develop inside eggs that remain in the mother's body until they are ready • Two litters of 4-9 “pups” each summer, in warm, shallow coastal waters “The Stingray Shore”: Lymington to Lepe – why such a special habitat? • Shallow • Warm • Sheltered • Food-rich • Relatively unmodified • Relatively undisturbed • Sowley & Park shores fishing hotspots Stingray food Food heaven: …peeler, or “softback” crab (moulting shore crab) Tabloid nonsense: Earliest known depiction of a stingray in Europe; 1553 (they’re common in aboriginal art) Were they known to the medieval inhabitants of the New Forest? Old English name is “Fire Flaire” • Sting is defensive only – muscular tail operates like a scorpion tail, curling over to protect vulnerable back. -
An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.