A N–S-Trending Active Extensional Structure, the Fiuhut (Afyon) Graben
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frontiers in Earth Sciences
Frontiers in Earth Sciences Series Editors: J.P. Brun, O. Oncken, H. Weissert, W.-C. Dullo . Dennis Brown • Paul D. Ryan Editors Arc-Continent Collision Editors Dr. Dennis Brown Dr. Paul D. Ryan Instituto de Ciencias de la Tierra National University of Ireland, Galway “Jaume Almera”, CSIC Dept. Earth & Ocean Sciences (EOS) C/ Lluis Sole i Sabaris s/n University Road 08028 Barcelona Galway Spain Ireland [email protected] [email protected] This publication was grant-aided by the National University of Ireland, Galway ISBN 978-3-540-88557-3 e-ISBN 978-3-540-88558-0 DOI 10.1007/978-3-540-88558-0 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011931205 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface One of the key areas of research in the Earth Sciences are processes that occur along the boundaries of the tectonic plates that make up Earth’s lithosphere. -
Introduction San Andreas Fault: an Overview
Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest. -
Agricultural Sector Survey
Report No. 1684-TU Turkey Agricultural Sector Survey (In Two Volumes) Public Disclosure Authorized Volume II: Annexes June 23, 1978 Projects Department Europe, Middle East and North Africa Regional Office FOR OFFICIAL USE ONLY Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Document of the World Bank This docUment has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents mray not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS- DECEMBER 1976 / US$1.00 = 16.5 Turkish Lira (LT) LT 1.00 = us$o.o6 WEIGHTS AND MEASURES Metric System British/US System 1 kilogram (kg) = 2.2 pounds 1 metric ton (ton) = 2,205 pounds 1 millimeter (mm) = 0.04 inch 1 meter (m) = 3.28 feet 1 kilometer (km) = 0.62 mile 1 hectare (ha)=10 deca es (da) = 2.47 acre 1 square kilometer (kmc) = 0.386 square mile 1 liter (1) = 0.264 gallon 1 cubic meter (m3 ) = 35.28 cubic feet 1 million cubic meters (Mm3) = 810.7 acre feet 1 liter per second (1/sec) = 0.04 cubic feet per second GLOSSARY OF ABBREVIATIONS DSI - Ministry of Energy and Natural Resources' General Directorate of State Hydraulic Works EBK - Meat and Fish Organization FFYP - First Five-Year Plan (1963-1967) LRO - Land Reform Organization MA - Ministry of Food, Agriculture and Livestock MF - Ministry of Forestry MVA - Ministry of Village Affairs SEE - State Economic Enterprise SFYP - Second Five-Year Plan (1968-1972) SIS - State Institute of Statistics SPO - State Planning Organization TCZB - Agricultural Bank TEK - Turkish Electricity Authority TFYP - Third Five-Year Plan (1973-1977) TMO - Soil Products Office TOPRAKSU- MVA's General Directorate of Land and Water Resources Development TSEK - Milk Organization TSF - Turkish Sugar Factories Corporation TZDK - Agricultural Supply Organization GOVERNMENT OF TURKEY FISCAL YEAR March 1 - February 28 LI At the time of the mission's visit to Turkey, On March 31, 1978, the exchange rate was US$1,00 = 25,25 LT. -
Preliminary Catalog of the Sedimentary Basins of the United States
Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1 -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Part 3: Normal Faults and Extensional Tectonics
12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a lowangle master detachment. -
Tectonics and Sedimentation in Foreland Basins: Results from the Integrated Basin Studies Project
Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Tectonics and sedimentation in foreland basins: results from the Integrated Basin Studies project ALAIN MASCLE 1 & CAI PUIGDEFABREGAS 2,3 IIFP School, 228-232 avenue Napoldon Bonaparte, 92852 Rueil-Malmaison Cedex, France (e-mail: [email protected]) 2Norsk Hydro Research Centre, Bergen, Norway. 3Institut de Ciences de la Terra, (?SIC, Barcelona, Spain. Why foreland basins? to a better understanding of some basic interact- ing tectonic, sedimentary and hydrologic pro- Over the last ten years or so, since the Fribourg cesses (More & Vrolijk 1992; Touret & van meeting in 1985 (Homewood et al. 1986), the Hinte 1992). Additional data have also been attention given by sedimentologists and struc- obtained through the development of analogue tural geologists to the geology of foreland basins and numerical models (Larroque et al. 1992; has been growing continuously, parallel to the Zoetemeijer 1993). The physical parameters increase of co-operative links between scientists controlling the forward propagation of d6colle- from the two disciplines. A number of reasons ments and thrusts (fluid pressure, roughness, lie behind this development. Attempting to sediment thickness, etc.) have been determined understand the growth of an orogen without and tested. The relationships between rapidly paying due attention to the stratigraphic record subsiding piggyback basins and growing ramp of the derived sediments would be unrealistic. It anticlines have also been imaged, although the would, moreover, be equally unrealistic to con- lack of deep-sea well control still prevents accu- struct restored sections across the chain without rate sedimentological studies. More significant considering the constraints imposed by the has been the progress in our understanding of basin-fill architecture, or to describe the basin- the role of fluids and pore pressure in the fill evolution disregarding the development of development of thrust belts. -
Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault. -
Late Mesozoic Compressional to Extensional Tectonics in The
Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints Wei Lin, Michel Faure, Yan Chen, Wenbin Ji, Fei Wang, Lin Wu, Nicolas Charles, Jun Wang, Qingchen Wang To cite this version: Wei Lin, Michel Faure, Yan Chen, Wenbin Ji, Fei Wang, et al.. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints. Gond- wana Research, Elsevier, 2013, 23 (1), pp.54-77. 10.1016/j.gr.2012.02.013. insu-00681290 HAL Id: insu-00681290 https://hal-insu.archives-ouvertes.fr/insu-00681290 Submitted on 21 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints Wei Lina Michel Faureb Yan Chenb Wenbin Jia Fei Wanga Lin Wua Nicolas Charlesb Jun Wanga Qingchen Wanga a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. -
Yenice Köyü Köprüsü Ve Miryokefalon Savaşi Yenice
Eylül 2010 Cilt:18 No:3 Kastamonu Eğitim Dergisi 997-1012 YENİCE KÖYÜ KÖPRÜSÜ VE MİRYOKEFALON SAVAŞI Ramazan Topraklı Gazi Üniversitesi, Eğitim Fakültesi, Tarih Öğretmenliği Bölümü, Ankara Özet Miryokefalon savaşı, 1071’deki Malazgirt Savaşı’nı müteakip kurulan Türkiye Selçuklu Devleti’nin Anadolu’da var olma mücadelesidir. 1176 yılında Doğu Roma İmparatorluğu ile yapılan Miryokefalon Savaşı’nın yeri konusunda çeşitli görüşler vardır. Bu görüşlerden önemlileri savaş alanını, Kundanlı, Karamık Beli, Çivril ve Gelendost Fatlın Ovası olarak göstermektedir. Bu çalışmada bunlardan farklı, yeni bir görüş tarih camiasına sunulmuştur. Anahtar Kelimeler: Miryokefalon Savaşı, Türkiye Selçuklu Devleti, Doğu Roma İmparatorluğu, Yenice köyü köprüsü. YENİCE VILLAGE BRIDGE AND MYRIAKEPHALON WAR Abstract The Myriakephalon (Tribritze) War, the struggle of the Turkey Seljukid State for existence in Anatolia afterwards the Manzigert victory. There are various thoughts about the true place of the Myriakephalon War, happened in 1176, between the East Roman Empire and the Turkey Seljukids State. Subtantials from these, signing about the war place Kundanlı, Karamık Beli, Çivril and Gelendost Fatlın Plain. In this paper, a distinctive sight are presented to historians except former idias newly. Key Words: Myriakephalon (Tribritze) War, Seljukid Sultanate of Rum, East Roman Empire, Yenice village bridge. 1. Giriş Türkiye’nin en güzel köşelerinden biri olan Hamideli diyarının tarihini öğren- mek için Devlet Arşivleri’nden konuyla ilgili kitapları incelerken Afşar kazasına bağ- lı “Yenice köyü köprüsü” diye bir ibare dikkatimizi çekmişti. Maamafih, bölgede daha başka köprüler veya yapılar kayıt altına alınmazken, sadece Yenice köyü köprüsünün vakıf konusu olması ve vakıf defterine yazılmış olması ayrıca dikkatimizi çeken bir nokta olmuştur. Özellikle Hamidoğulları Beyliği, Türkiye Selçuklu Devleti’nin bıraktığı tekke, za- viye, mescit, cami, medrese, kervansaray ve bunların vakıflarını sağlam muhafaza et- meyi başarmış, daha da önemlisi bunları hizmet hâlinde Osmanlıya devretmiştir. -
Analyzing the Aspects of International Migration in Turkey by Using 2000
MiReKoc MIGRATION RESEARCH PROGRAM AT THE KOÇ UNIVERSITY ______________________________________________________________ MiReKoc Research Projects 2005-2006 Analyzing the Aspects of International Migration in Turkey by Using 2000 Census Results Yadigar Coşkun Address: Kırkkonoaklar Mah. 202. Sokak Utku Apt. 3/1 06610 Çankaya Ankara / Turkey Email: [email protected] Tel: +90. 312.305 1115 / 146 Fax: +90. 312. 311 8141 Koç University, Rumelifeneri Yolu 34450 Sarıyer Istanbul Turkey Tel: +90 212 338 1635 Fax: +90 212 338 1642 Webpage: www.mirekoc.com E.mail: [email protected] Table of Contents Abstract....................................................................................................................................................3 List of Figures and Tables .......................................................................................................................4 Selected Abbreviations ............................................................................................................................5 1. Introduction..........................................................................................................................................1 2. Literature Review and Possible Data Sources on International Migration..........................................6 2.1 Data Sources on International Migration Data in Turkey..............................................................6 2.2 Studies on International Migration in Turkey..............................................................................11 -
Download Preprint
This is a preprint that has no-yet undergone peer-review. Please note that subsequent versions of this manuscript may have different content. We share this preprint to openly share our ongoing work and to generate community discussion; we warmly welcome comments or feedback via email ([email protected]). Rift Flank Erosion & Sediment Routing Paper_____________________________________________________Elliott et al 1 Tectono-stratigraphic development of a salt-influenced rift margin; Halten 2 Terrace, offshore Mid-Norway 3 Gavin M. Elliott*1, Christopher A-L. Jackson1, Robert L. Gawthorpe2, Paul Wilson3,6, 4 5 4 Ian R. Sharp & Lisa Michelsen 5 1 Basin Research Group (BRG), Department of Earth Science & Engineering, Imperial College 6 London, London, UK 7 2 Department of Earth Sciences, University of Bergen, Norway 8 3 Basin Studies & Petroleum Geoscience, SEAES, University of Manchester, Manchester UK 9 4 Equinor Research Centre, Sandsliveien 90, Bergen, Norway 10 5 Equinor ASA, Mølnholtet 42, Harstad, Norway 11 6 Now at: Schlumberger Oilfield UK PLC, Schlumberger House, Gatwick, UK 12 *Corresponding Author Email: [email protected] 13 1. Abstract 14 In salt-influenced rift basins the presence of a pre-rift salt layer will control the 15 tectono-stratigraphic evolution of the rift due to the decoupling of the sub- and supra- 16 salt faults leading to temporal and spatial variations in structural style. Lateral 17 variations in rift flank structure will control the dispersal and volumes of sediment 18 deposited in rifts and along rifted margins, which in turn impacts facies distributions 19 within syn-rift stratigraphic successions. We here use 3D seismic reflection and 20 borehole data to study the tectono-stratigraphic development of the Halten Terrace, 21 offshore Mid-Norway, a salt-influenced rifted margin formed during Middle to Late 22 Jurassic extension.