Tectonics and Sedimentation in Foreland Basins: Results from the Integrated Basin Studies Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preliminary Catalog of the Sedimentary Basins of the United States
Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1 -
French Massif Armoricain
The Léon Domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights Michel Faure, Claire Sommers, Jérémie Melleton, Alain Cocherie, Olivier Lautout To cite this version: Michel Faure, Claire Sommers, Jérémie Melleton, Alain Cocherie, Olivier Lautout. The Léon Domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights. International Journal of Earth Sciences, Springer Verlag, 2010, 99 (1), pp.65-81. 10.1007/s00531-008-0360-x. insu-00352053 HAL Id: insu-00352053 https://hal-insu.archives-ouvertes.fr/insu-00352053 Submitted on 12 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Léon Domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights Michel Faure1 , Claire Sommers1, Jérémie Melleton1, 2, Alain Cocherie2 and Olivier Lautout1 (1) ISTO Campus Géosciences, Orléans University, 1A Rue de la Férollerie, 45071 Orléans Cedex 2, France (2) BRGM, Av. Claude-Guillemin, 45060 Orléans Cedex 2, France Abstract The Léon Domain in the NW part of the French Massif Armoricain is a stack of synmetamorphic nappes displaced from south to north in ductile conditions. -
Pull-Apart Basin Tectonic Model Is Structurally Impossible for Kashmir Basin, NW Himalaya A
Solid Earth Discuss., doi:10.5194/se-2016-4, 2016 Manuscript under review for journal Solid Earth Published: 18 January 2016 c Author(s) 2016. CC-BY 3.0 License. Pull-apart basin tectonic model is structurally impossible for Kashmir basin, NW Himalaya A. A. Shah 5 Physical & Geological Sciences, Faculty of Science Universiti Brunei Darussalam, Brueni Correspondence to: A. A. Shah ([email protected]) Abstract: Kashmir Basin in NW Himalaya is considered a Neogene-Quatermary piggyback basin that was formed as result of the continent-continent collision of Indian and Eurasian plates. This model however is recently challenged by a pull-apart 10 basin model, which argues that a major dextral strike-slip fault through Kashmir basin is responsible for its formation. And here it is demonstrated that the new tectonic model is structurally problematic, and conflicts with the geomorphology, geology, and tectonic setting of Kashmir basin. It also conflicts, and contradicts with the various structural features associated with a typical dextral strike-slip fault system where it shows that such a major structure cannot pass through the middle of the basin. It is demonstrated that such a structure is structurally, and kinematically impossible, and could not exist. 15 1 Introduction Kashmir basin of NW Himalaya is a typical example of a piggyback basin that was forced as a result of the continent-continent collision of Indian and Eurasian plates (Burbank and Johnson, 1982). This tectonic model has been recently challenged by Alam et al. (2015, 2016). They have introduced a pull-apart basin model to argue that Kashmir basin was formed as a result 20 of a large dextral-strike-slip fault that runs through it. -
Development of the Rocky Mountain Foreland Basin: Combined Structural
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA Emily Geraghty Ward The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ward, Emily Geraghty, "DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1234. https://scholarworks.umt.edu/etd/1234 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA By Emily M. Geraghty Ward B.A., Whitman College, Walla Walla, WA, 1999 M.S., Washington State University, Pullman, WA, 2002 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology The University of Montana Missoula, MT Spring 2007 Approved by: Dr. David A. Strobel, Dean Graduate School James W. Sears, Chair Department of Geosciences Julia A. Baldwin Department of Geosciences Marc S. Hendrix Department of Geosciences Steven D. -
Lithospheric Folding and Sedimentary Basin Evolution: a Review and Analysis of Formation Mechanisms Sierd Cloething, Evgenii Burov
Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms Sierd Cloething, Evgenii Burov To cite this version: Sierd Cloething, Evgenii Burov. Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research, Wiley, 2011, 23 (3), pp.257-290. 10.1111/j.1365- 2117.2010.00490.x. hal-00640964 HAL Id: hal-00640964 https://hal.archives-ouvertes.fr/hal-00640964 Submitted on 24 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Basin Research For Review Only Page 1 of 91 Basin Research 1 2 3 4 1 Lithospheric folding and sedimentary basin evolution: 5 6 2 a review and analysis of formation mechanisms 7 8 9 3 10 11 4 12 13 5 14 a,* b 15 6 Sierd Cloetingh and Evgenii Burov 16 7 17 18 8 aNetherlands ResearchFor Centre forReview Integrated Solid EarthOnly Sciences, Faculty of Earth and Life 19 20 9 Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 21 10 22 23 11 bUniversité Pierre et Marie Curie, Laboratoire de Tectonique, 4 Place Jussieu, 24 25 12 75252 Paris Cedex 05, France. -
Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles. -
Chapter BS (Brookian Sequences) SEISMIC FACIES ANALYSIS AND
Chapter BS (Brookian Sequences) SEISMIC FACIES ANALYSIS AND HYDROCARBON POTENTIAL OF BROOKIAN STRATA by David W. Houseknecht1 and Christopher J. Schenk2 in The Oil and Gas Resource Potential of the 1002 Area, Arctic National Wildlife Refuge, Alaska, by ANWR Assessment Team, U.S. Geological Survey Open-File Report 98-34. 1999 1 U.S. Geological Survey, MS 915, Reston, Va 20192 2 U.S. Geological Survey, MS 939, Denver, CO 80225 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Geological Survey. BS-1 TABLE OF CONTENTS Abstract Introduction Methods Stratigraphy Cretaceous - Tertiary Depositional Sequences Sequence G Sequence F Sequence E Sequence D Sequence C Sequence B Sequence A Summary Acknowledgments References FIGURES BSG1. Location map BSG2. Summary of depositional sequences BSG3. Correlation of depositional sequences to stratigraphy BSG4. Correlation of depositional sequences to plays used in assessment BSG5. Isopach map of sequences F and G BSG6. Isopach map of sequence E BSG7. Isopach map of sequence D BSG8. Isopach map of sequence C BSG9. Isopach map of sequence B BSG10. Isopach map of sequence A BSG11. Map of ancient shelf edges within Brookian strata BSP1. Turbidite facies within sequence F BSP2. Thin bedded turbidite sandstones within sequence F BSP3. Turbidite channel facies within sequence E BSP4. Slope facies within sequence E BSP5. Marine shelf facies within sequence E BSP6. Hummocky cross-bedded sandstones within sequence E BSP7. -
Basin Analysis.Pdf
Basin Analysis Introduction Basin Analysis Mechanisms of Basin Formation Basin Classification Basins and Sequence Stratigraphy Summary Introduction Introduction Basin analysis - Study of sedimentary rocks What is a basin? to determine: Repository for sediment Subsidence history Formed by crustal subsidence relative to Stratigraphic architecture surrounding areas Paleogeographic evolution Surrounding areas sometimes uplifted Tools: Many different shapes, sizes and Geology (outcrops, wireline logs, core) mechanisms of formation Geophysics (seismic, gravity, aeromag) Computers (modeling, data analysis) Introduction Introduction Zonation of the Earth – Composition Zonation of the Upper Earth – Crust Rheology Mantle Lithosphere Core Rigid outer shell Crust and upper mantle Asthenosphere Weaker than lithosphere Flows (plastic deformation) 1 Introduction Introduction Zonation of the Upper Earth – Plate motions Rheology Plate-plate interactions can generate Vertical motions (subsidence, uplift) in vertical crustal movements sedimentary basins are primarily in We will examine basins according to their response to deformation of lithosphere positions with respect to plate and asthenosphere boundaries and plate-plate interactions “Wilson Cycle” – opening and closing of ocean basins Mechanisms of Basin Introduction Formation Three types of plate boundaries: Major mechanisms for regional Divergent – plates moving apart subsidence/uplift: Mid-ocean ridges, rifts Isostatic – changes in crustal or Convergent – -
Orogenic Processes in the Alpine Collision Zone
Orogenic Processes in the Alpine Collision Zone Guest Editors: Nikolaus Froitzheim Stefan M. Schmid Vol. 101 Swiss Journal of Geosciences Supplement 1 formerly Eclogae Geologicae Helvetiae 2008 Pages S1–S 310 ISSN 1661-8726 Journal of the Swiss Geological Society Swiss Society of Mineralogy and Petrology Swiss Palaeontological Society and affiliated organisations and specialist groups: Platform Geosciences of the Swiss Academy of Sciences Swiss Geological Survey Swiss Tectonic Studies Group SwissSed Swiss Group of Geophysicists Contents FROITZHEIM, N., SCHMID, S. M.: HERWARTZ, D., MÜNKER, C., SCHERER, E. E., NAGEL, T. J., Orogenic processes in the Alpine collision zone, Preface ....... S1 PLEUGER, J., FROITZHEIM, N.: Lu-Hf garnet geochronology of eclogites from the Balma ROURE, F.: Unit (Pennine Alps): implications for Alpine paleotectonic Foreland and Hinterland basins: what controls their evolution? S5 reconstructions .......................................... S173 MIKES, T., CHRIST, D., PETRI, R., DUNKL, I., FREI, D., KURZ, W., HANDLER, R., BERTOLDI, C.: BÁLDI-BEKE, M., REITNER, J., WEMMER, K., HRVATOVIĆ, H., Tracing the exhumation of the Eclogite Zone (Tauern Window, VON EYNATTEN, H.: Eastern Alps) by 40Ar/39Ar dating of white mica in eclogites .... S191 Provenance of the Bosnian Flysch .......................... S31 LUTH, S. W., WILLINGSHOFER, E.: ORTNER, H., USTASZEWSKI, M., RITTNER, M.: Mapping of the post-collisional cooling history of the Eastern Late Jurassic tectonics and sedimentation: breccias in the Unken Alps ................................................... S207 syncline, central Northern Calcareous Alps .................. S55 DANIŠÍK, M., KOHÚT, M., DUNKL, I., HRAŠKO, L., FRISCH, W.: VESELÁ, P., LAMMERER, B.: Apatite fission track and (U-Th)/He thermochronology of the The Pfitsch-Mörchner Basin, an example of the post-Variscan Rochovce granite (Slovakia) – implications for the thermal sedimentary evolution in the Tauern Window (Eastern Alps) . -
Stages of Development in the Polish Carpathian Foredeep Basin
Cent. Eur. J. Geosci. • 4(1) • 2012 • 138-162 DOI: 10.2478/s13533-011-0044-0 Central European Journal of Geosciences Stages of development in the Polish Carpathian Foredeep Basin Review article Nestor Oszczypko1∗∗, Marta Oszczypko – Clowes1† 1 Institute of Geological Sciences, Jagiellonian University, 30-063 Kraków, Poland Received 27 September 2011; accepted 16 November 2011 Abstract: In southern Poland, Miocene deposits have been recognised both in the Outer Carpathians and the Carpathian Foredeep (PCF). In the Outer Carpathians, the Early Miocene deposits represent the youngest part of the flysch sequence, while in the Polish Carpathian Foredeep they are developed on the basement platform. The inner foredeep (beneath the Carpathians) is composed of Early to Middle Miocene deposits, while the outer foredeep is filled up with the Middle Miocene (Badenian and Sarmatian) strata, up to 3,000 m thick. The Early Miocene strata are mainly terrestrial in origin, whereas the Badenian and Sarmatian strata are marine. The Carpathian Foredeep developed as a peripheral foreland basin related to the moving Carpathian front. The main episodes of intensive subsidence in the PCF correspond to the period of progressive emplacement of the Western Carpathians onto the foreland plate. The important driving force of tectonic subsidence was the emplacement of the nappe load related to subduction roll-back. During that time the loading effect of the thickening of the Carpathian accretionary wedge on the foreland plate increased and was followed by progressive acceleration of total subsidence. The mean rate of the Carpathian overthrusting, and north to north-east migration of the axes of depocentres reached 12 mm/yr at that time. -
Fluid Systems in Foreland Fold-And-Thrust Belts : on Overview from the Southern Pyrennees A
Fluid systems in foreland fold-and-thrust belts : on overview from the Southern Pyrennees A. Travé, Pierre Labaume, J. Vergès To cite this version: A. Travé, Pierre Labaume, J. Vergès. Fluid systems in foreland fold-and-thrust belts : on overview from the Southern Pyrennees. O. Lacombe; F. Roure; J. Lavé; J. Vergés. Thrust belts and foreland basins, from fold kinematics to hydrocarbon systems, Springer, pp.93-115, 2007, 10.1007/978-3-540- 69426-7_5. hal-00408001 HAL Id: hal-00408001 https://hal.archives-ouvertes.fr/hal-00408001 Submitted on 6 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Fluid Systems in Foreland Fold-and-Thrust Belts: An Overview from the Southern Pyrenees Travé, A. · Labaume, P. · Vergés, J. Abstract. The analysis of three different regions of the South- The progressive increase of the 87Sr/86Sr ratio through time is Pyrenean fold-and-thrust belt reveals that during the Tertiary due to the progressive uplift, exposure and erosion of the in- compression the hydrological system was compartmental- ternal Pyrenean Axial Zone. ised in time and space. -
Sequential Laramide Deformation and Paleocene Depositional Patterns in Deep Gas-Prone Basins of the Rocky Mountain Region
Contents Previous Section Sequential Laramide Deformation and Paleocene Depositional Patterns in Deep Gas-Prone Basins of the Rocky Mountain Region By William J. Perry, Jr., and R.M. Flores GEOLOGIC CONTROLS OF DEEP NATURAL GAS RESOURCES IN THE UNITED STATES T OF EN TH U.S. GEOLOGICAL SURVEY BULLETIN 2146–E TM E R I A N P T E E D R . I O S . R U M 9 A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1997 CONTENTS Abstract .......................................................................................................................... 49 Introduction .................................................................................................................... 49 Hanna Basin ................................................................................................................... 51 Wind River Basin ........................................................................................................... 55 References Cited ............................................................................................................ 58 FIGURES 1. Map of Rocky Mountain foreland province showing principal Laramide basins and uplifts ......................................... 50 2. Map showing sequence of inception of Laramide deformation in Rocky Mountain region........................................... 51 3. Tectonic map of Hanna Basin region .............................................................................................................................. 52 4. Schematic cross section