6.11 Tectonic Models for the Evolution of Sedimentary Basins S

Total Page:16

File Type:pdf, Size:1020Kb

6.11 Tectonic Models for the Evolution of Sedimentary Basins S 6.11 Tectonic Models for the Evolution of Sedimentary Basins S. Cloetingh, Vrije Universiteit, Amsterdam, The Netherlands P. A. Ziegler, University of Basel, Basel, Switzerland ª 2007 Elsevier B.V. All rights reserved. 6.11.1 Introduction 486 6.11.2 Tectonics of Extensional and Compressional Basins: Concepts and Global-Scale Observations 490 6.11.2.1 Extensional Basin Systems 490 6.11.2.1.1 Modes of rifting and extension 491 6.11.2.1.2 Thermal thinning and stretching of the lithosphere: concepts and models 493 6.11.2.1.3 Syn-rift subsidence and duration of rifting stage 496 6.11.2.1.4 Postrift subsidence 498 6.11.2.1.5 Finite strength of the lithosphere in extensional basin formation 504 6.11.2.1.6 Rift-shoulder development and architecture of basin fill 505 6.11.2.1.7 Transformation of an orogen into a cratonic platform: the area of the European Cenozoic Rift System 508 6.11.2.2 Compressional Basins Systems 519 6.11.2.2.1 Development of foreland basins 519 6.11.2.2.2 Compressional basins: lateral variations in flexural behaviour and implications for palaeotopography 520 6.11.2.2.3 Lithospheric folding: an important mode of intraplate basin formation 523 6.11.3 Rheological Stratification of the Lithosphere and Basin Evolution 525 6.11.3.1 Lithosphere Strength and Deformation Mode 525 6.11.3.2 Mechanical Controls on Basin Evolution: Europe’s Continental Lithosphere 529 6.11.4 Northwestern European Margin: Natural Laboratory for Continental Breakup and Rift Basins 535 6.11.4.1 Extensional Basin Migration: Observations and Thermomechanical Models 535 6.11.4.2 Fast Rifting and Continental Breakup 540 6.11.4.3 Thermomechanical Evolution and Tectonic Subsidence During Slow Extension 542 6.11.4.4 Breakup Processes: Timing, Mantle Plumes, and the Role of Melts 544 6.11.4.5 Postrift Inversion, Borderland Uplift, and Denudation 544 6.11.5 Black Sea Basin: Compressional Reactivation of an Extensional Basin 546 6.11.5.1 Rheology and Sedimentary Basin Formation 548 6.11.5.2 Role of Intraplate Stresses 550 6.11.5.3 Strength Evolution and Neotectonic Reactivation at the Basin Margins during the Postrift Phase 552 6.11.6 Modes of Basin (De)formation, Lithospheric Strength, and Vertical Motions in the Pannonian–Carpathian Basin System 555 6.11.6.1 Lithospheric Strength in the Pannonian–Carpathian System 559 6.11.6.2 Neogene Development and Evolution of the Pannonian Basin 561 6.11.6.2.1 Dynamic models of basin formation 561 6.11.6.2.2 Stretching models and subsidence analysis 563 6.11.6.3 Neogene Evolution of the Carpathians System 566 6.11.6.3.1 Role of the 3-D distributions of load and lithospheric strength in the Carpathian foredeep 567 6.11.6.4 Deformation of the Pannonian–Carpathian System 575 485 486 Tectonic Models for the Evolution of Sedimentary Basins 6.11.7 The Iberia Microcontinent: Compressional Basins within the Africa–Europe Collision Zone 579 6.11.7.1 Constraints on Vertical Motions 581 6.11.7.2 Present-Day Stress Regime and Topography 585 6.11.7.3 Lithospheric Folding and Drainage Pattern 586 6.11.7.4 Interplay between Tectonics, Climate, and Fluvial Transport during the Cenozoic Evolution of the Ebro Basin (NE Iberia) 588 6.11.7.4.1 Ebro Basin evolution: a modeling approach 590 6.11.8 Conclusions and Future Perspectives 593 References 596 6.11.1 Introduction basin migration processes using the NW European margin as a natural laboratory. We specifically In this chapter we review the formation and evolu- address relationships between rift duration and tion of sedimentary basins in their lithospheric extension velocities, thermal evolution, and the role context. To this purpose, we follow a natural labora- of mantle plumes and melts. This is followed by a tory approach, selecting some well-documented brief discussion of compressional reactivation and its basins of Europe. We begin with a brief outline of consequences for postrift inversion, borderland the evolution of tectonic modeling of sedimentary uplift, and denudation. basin systems since its inception in the late 1970s. In Section 6.11.5, we further develop the treat- We subsequently review key features of the tectonics ment of polyphase deformation of extensional basins of rifted and compressional basins in Section 6.11.2. taking the Black Sea Basin as a natural laboratory. We These include the classification of extensional basins concentrate on rheological controls on basin forma- into Atlantic type, back-arc, syn- and postorogenic tion affecting the large-scale basin stratigraphy and rifts. This is followed by a discussion of thermal rift shoulder dynamics. We also discuss the role of thinning of the lithosphere, doming and flood basalts, intraplate stresses and lithospheric strength evolution aspects of particular importance to volcanic rifted during the postrift phase and consequences for neo- margins. We discuss the record of vertical motions tectonic reactivation of the Black Sea basin system. during and after rifting in the context of stretching In Section 6.11.6, we give an overview on the models developed to quantify rifted basin formation. interplay of extension and compression in the As discussed in Section 6.11.2.1.5., the finite strength Pannonian–Carpathian basin system of Central of the lithosphere has an important effect on the Eastern Europe. We begin with a review of temporal formation of extensional basins. This applies both to and lateral variations in lithospheric strength in the the geometry of the basin shape as well as to the region and its effects on late-stage basin deformation. record of vertical motions during and after rifting. This is followed by summary of models proposed We also address the tectonic control on postrift evo- for the development of the Pannonian–Carpathian lution of extensional basins. The concept of strength system. We also present results of three-dimensional of the lithosphere has also important consequences (3-D) modeling approaches investigating the role for compressional basins. The latter include foreland of 3-D distributions of load and lithospheric strength basins as well as basins formed by lithospheric in orogenic arcs. In doing so, we focus on implications folding. of these models for a better understanding of poly- In Section 6.11.3, we focus on thermomechanical phase subsidence in the Carpathian foredeep. aspects of sedimentary basin formation in the context For our discussion of lithospheric folding as a of large-scale models for the underlying lithosphere. mode of basins formation, and for the interplay We highlight the connection between the bulk rheo- between lithosphere and surface processes in a com- logical properties of Europe’s lithosphere and the pressional setting, we have selected the Iberian evolution of some of Europe’s main sedimentary microcontinent, located within the Africa–Europe basins. collision zone. In the first part of Section 6.11.7,we In Section 6.11.4, we investigate thermomechani- review constraints on vertical motions, present-day cal controls on continental breakup and associated stress regime and interaction between surface Tectonic Models for the Evolution of Sedimentary Basins 487 transport and vertical motions for Iberia at large. accommodation space (Burton et al.,1987; Lawrence This is followed by a more detailed treatment of et al.,1990). For the evolution of extensional basins tectonic controls on drainage systems using the this approach made a clear distinction between their Ebro basin system of NE Iberia as a natural syn-rift and postrift stage, relating exponentially laboratory. decreasing postrift tectonic subsidence rates to a com- The closing section, Section 6.11.8, draws general bination of thermal equilibration of the lithosphere– conclusions and addresses future perspectives. asthenosphere system and lithospheric flexure (Watts The origin of sedimentary basins is a key element et al., 1982). in the geological evolution of the continental litho- A similar set of assumptions were made to sphere. During the last decades, substantial progress describe the syn-rift phase. In the simplest version was made in the understanding of thermomechanical of the stretching model (McKenzie, 1978), litho- processes controlling the evolution of sedimentary spheric thinning was described as resulting from basins and the isostatic response of the lithosphere more or less instantaneous extension. In these models to surface loads such as sedimentary basins. Much of a component of lithosphere mechanics was obviously this progress stems from improved insights into the lacking. On a smaller scale, tilted fault block models mechanical properties of the lithosphere, from the were introduced for modeling of the basin fill at the development of new modeling techniques, and from scale of half-graben models. Such models essentially the evaluation of new, high-quality datasets from decouple the response of the brittle upper crust from previously inaccessible areas of the globe. The focus deeper lithospheric levels during rifting phases (see, of this chapter is on tectonic models processes con- e.g., Kusznir et al., 1991). trolling the evolution of sedimentary basins. A noteworthy feature of most modeling approaches After the realization that subsidence patterns of was their emphasis on the basin subsidence record and Atlantic-type margins, corrected for effects of sediment their very limited capability to handle differential loading and palaeo-bathymetry, displayed the typical subsidence and uplift patterns in a process-oriented, time-dependent decay characteristic of ocean-floor internally consistent manner (see, e.g., Kusznir and cooling (Sleep, 1971), a large number of studies were Ziegler, 1992; Larsen et al.,1992; Dore´ et al.,1993). undertaken aimed at restoring the quantitative subsi- To a large extent the same was true for most of dence history of basins on the basis of well data and compressional basin modeling.
Recommended publications
  • Tectonics and Sedimentation in Foreland Basins: Results from the Integrated Basin Studies Project
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Tectonics and sedimentation in foreland basins: results from the Integrated Basin Studies project ALAIN MASCLE 1 & CAI PUIGDEFABREGAS 2,3 IIFP School, 228-232 avenue Napoldon Bonaparte, 92852 Rueil-Malmaison Cedex, France (e-mail: [email protected]) 2Norsk Hydro Research Centre, Bergen, Norway. 3Institut de Ciences de la Terra, (?SIC, Barcelona, Spain. Why foreland basins? to a better understanding of some basic interact- ing tectonic, sedimentary and hydrologic pro- Over the last ten years or so, since the Fribourg cesses (More & Vrolijk 1992; Touret & van meeting in 1985 (Homewood et al. 1986), the Hinte 1992). Additional data have also been attention given by sedimentologists and struc- obtained through the development of analogue tural geologists to the geology of foreland basins and numerical models (Larroque et al. 1992; has been growing continuously, parallel to the Zoetemeijer 1993). The physical parameters increase of co-operative links between scientists controlling the forward propagation of d6colle- from the two disciplines. A number of reasons ments and thrusts (fluid pressure, roughness, lie behind this development. Attempting to sediment thickness, etc.) have been determined understand the growth of an orogen without and tested. The relationships between rapidly paying due attention to the stratigraphic record subsiding piggyback basins and growing ramp of the derived sediments would be unrealistic. It anticlines have also been imaged, although the would, moreover, be equally unrealistic to con- lack of deep-sea well control still prevents accu- struct restored sections across the chain without rate sedimentological studies. More significant considering the constraints imposed by the has been the progress in our understanding of basin-fill architecture, or to describe the basin- the role of fluids and pore pressure in the fill evolution disregarding the development of development of thrust belts.
    [Show full text]
  • French Massif Armoricain
    The Léon Domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights Michel Faure, Claire Sommers, Jérémie Melleton, Alain Cocherie, Olivier Lautout To cite this version: Michel Faure, Claire Sommers, Jérémie Melleton, Alain Cocherie, Olivier Lautout. The Léon Domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights. International Journal of Earth Sciences, Springer Verlag, 2010, 99 (1), pp.65-81. 10.1007/s00531-008-0360-x. insu-00352053 HAL Id: insu-00352053 https://hal-insu.archives-ouvertes.fr/insu-00352053 Submitted on 12 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Léon Domain (French Massif Armoricain): a westward extension of the Mid-German Crystalline Rise? Structural and geochronological insights Michel Faure1 , Claire Sommers1, Jérémie Melleton1, 2, Alain Cocherie2 and Olivier Lautout1 (1) ISTO Campus Géosciences, Orléans University, 1A Rue de la Férollerie, 45071 Orléans Cedex 2, France (2) BRGM, Av. Claude-Guillemin, 45060 Orléans Cedex 2, France Abstract The Léon Domain in the NW part of the French Massif Armoricain is a stack of synmetamorphic nappes displaced from south to north in ductile conditions.
    [Show full text]
  • New Insights on the Marseille-Aubagne Oligocene Basins (France)
    Nury, D., Villeneuve, M., Arlhac, P., Gärtner, A., Linnemann, U., Châteauneuf, J.J., Riveline, J. and Hippolyte, J.C., 2016. New insights on the Marsei- lle-Aubagne Oligocene basins (France). Boletín Geológico y Minero, 127 (2/3): 483-498 ISSN: 0366-0176 New insights on the Marseille-Aubagne Oligocene basins (France) D. Nury(1), M. Villeneuve(2), P. Arlhac(3), A. Gärtner(4), U. Linnemann(4), J.J. Châteauneuf(5), J. Riveline(6) and J.C. Hippolyte(2) (1) MCF honoraire, 48, impasse des Micocoules, 13390, Auriol, France. [email protected] (2) Cerege, case 67, 3 place Victor Hugo, 13331, Marseille, France. [email protected] (3) MCF honoraire, 2208, chemin de Cuges, 83740, La Cadière d’Azur. [email protected] (4) Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Königsbrücker Landstrasse 159, D 01109, Dresden, Germany. Email:[email protected] [email protected] (5) BRGM. 8, Quai du Chatelet, 45000 , Orléans, France. [email protected] (6) UPMC – ISTEP UMR 7193, laboratoire de biominéralisations et environnements sédimentaires, case 116, 4, Place Jussieu, 75252 Paris Cedex 05. [email protected] ABSTRACT The Marseille-Aubagne Basins, which extend from Marseille to Roquevaire, occupy more than fifty per cent of the Marseille-Aubagne geological map, with approximately one million people living in this area. Despite this geological importance they are still poorly known. The first synthetic view was delivered in the 1935 geological map. Studied by Bonifay, the Quaternary deposits have been included in the 1969 geological map. Nevertheless, the Oligocene formations remained unmodified until Nury, who provided a lot of very detailed stratigraphic data.
    [Show full text]
  • French Geothermal Resources Survey BRGM Contribution to the Market Study in the LOW-BIN Project
    French geothermal resources survey BRGM contribution to the market study in the LOW-BIN project BRGM/RP - 57583 - FR August, 2009 French geothermal resources survey BRGM contribution to the market study in the LOW-BIN project (TREN/05/FP6EN/S07.53962/518277) BRGM/RP-57583-FR August, 2009 F. Jaudin With the collaboration of M. Le Brun, V.Bouchot, C. Dezaye IM 003 ANG – April 05 Keywords: French geothermal resources, geothermal heat, geothermal electricity generation schemes, geothermal Rankine Cycle, cogeneration, geothermal binary plants In bibliography, this report should be cited as follows: Jaudin F. , Le Brun M., Bouchot V., Dezaye C. (2009) - French geothermal resources survey, BRGM contribution to the market study in the LOW-BIN Project. BRGM/RP-57583 - FR © BRGM, 2009. No part of this document may be reproduced without the prior permission of BRGM French geothermal resources survey BRGM contribution to the market study in the LOW-BIN Project BRGM, July 2009 F.JAUDIN M. LE BRUN, V. BOUCHOT, C. DEZAYE 1 / 33 TABLE OF CONTENT 1. Introduction .......................................................................................................................4 2. The sedimentary regions...................................................................................................5 2.1. The Paris Basin ........................................................................................................5 2.1.1. An overview of the exploitation of the low enthalpy Dogger reservoir ..............7 2.1.2. The geothermal potential
    [Show full text]
  • Post-Collisional Formation of the Alpine Foreland Rifts
    Annales Societatis Geologorum Poloniae (1991) vol. 61:37 - 59 PL ISSN 0208-9068 POST-COLLISIONAL FORMATION OF THE ALPINE FORELAND RIFTS E. Craig Jowett Department of Earth Sciences, University of Waterloo, Waterloo, Ontario Canada N2L 3G1 Jowett, E. C., 1991. Post-collisional formation of the Alpine foreland rifts. Ann. Soc. Geol. Polon., 6 1 :37-59. Abstract: A series of Cenozoic rift zones with bimodal volcanic rocks form a discontinuous arc parallel to the Alpine mountain chain in the foreland region of Europe from France to Czechos­ lovakia. The characteristics of these continental rifts include: crustal thinning to 70-90% of the regional thickness, in cases with corresponding lithospheric thinning; alkali basalt or bimodal igneous suites; normal block faulting; high heat flow and hydrothermal activity; regional uplift; and immature continental to marine sedimentary rocks in hydrologically closed basins. Preceding the rifting was the complex Alpine continental collision orogeny which is characterized by: crustal shortening; thrusting and folding; limited calc-alkaline igneous activity; high pressure metamorphism; and marine flysch and continental molasse deposits in the foreland region. Evidence for the direction of subduction in the central area is inconclusive, although northerly subduction likely occurred in the eastern and western Tethys. The rift events distinctly post-date the thrusthing and shortening periods of the orogeny, making “impactogen” models of formation untenable. However, the succession of tectonic and igneous events, the geophysical characteristics, and the timing and location of these rifts are very similar to those of the Late Cenozoic Basin and Range province in the western USA and the Early Permian Rotliegendes troughs in Central Europe.
    [Show full text]
  • Alpine Orogeny the Geologic Development of the Mediterranean
    Alpine Orogeny The geologic development of the Mediterranean region is driven by the Alpine-Himalayan orogeny, a suturing of Gondwana-derived terranes with the Eurasion craton. In broad terms, this is a Mesozoic and Cenozoic convergent zone that extends from the Spain to Southeastern Asia and may extend along the southwest Pacific as far as New Zealand (Rosenbaum and Lister, 2002). The Alpine orogeny was caused by the convergence of the African and European plates (Frisch, 1979; Tricart, 1984; Haas et al., 1995) with peak collisional phases occurring at different times: Cretaceous in the Eastern Alps and Tertiary in the Western Alps (Schmid et al., 2004). Note: prior to the opening of the Paleotethys sea, the Variscan orogenic belt developed in central Europe then the Laurussian and Gondwana converged in the Devonian and Late Carboniferous. Although the location of the suture Extent of the Alpine-Himalayan orogenic belt is not clear, the orogenic belt was extensive, (Rosenbaum and Lister, 2002). running from the Bohemian Massif to the Alpine-Carpathian-Dinarides belt (). The Paleotethys sea existed in the Triassic but closed in the early Mesozoic due to convergence along the Cimmerian (and Indosinian) suture zone. The Paleotethys (or Tethys I) has been described as a wedge- shaped ocean that opened to the east, separating Eurasia from Africa, India, and Australia (Laurasia and Gondwana). Very little evidence of the Paleotethys exists today which has caused some to question its existence (Meyerhoff and Eremenko, 1976) The Tethys opened as Pangea broke up in the Early Jurassic and Africa moved east relative to Europe.
    [Show full text]
  • Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles.
    [Show full text]
  • The Evolution of the Massif Central Rift: Spatio-Temporal Distribution of the Volcanism
    The evolution of the Massif Central rift : spatio-temporal distribution of the volcanism Laurent Michon, Olivier Merle To cite this version: Laurent Michon, Olivier Merle. The evolution of the Massif Central rift : spatio-temporal distribution of the volcanism. Bulletin de la Société Géologique de France, Société géologique de France, 2001, 172 (2), pp.201-211. 10.2113/172.2.201. hal-01391919 HAL Id: hal-01391919 https://hal.univ-reunion.fr/hal-01391919 Submitted on 4 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The evolution of the Massif Central rift : spatio-temporal distribution of the volcanism LAURENT MJCHON 1 and OLIVIER MERLE1 Key 11·ords. - Massif Central. Ccnozoic, Rifling, DEM, Volcanism, Tcctonic Abstrac1. - The Massif Central area is the larges! magmatic province of the West-European Rift system.The spa­ tial-temporal distribution of Te rtiary-Quaternary volcanism in the Massif Central, France, shows that three magma tic phases can be defined, each of them characterized by different volumes and different locations. The first event, termed the pre-rifl magmatic event, is very scarce and restricted to the north of the Massif Central.
    [Show full text]
  • Page Numbers in Italic, Eg 305, Refer to Figures
    Index Page numbers in italic, e.g. 305, refer to figures. Page numbers in bold, e.g. 99, signify entries in tables. Aalen, modelled subsidence curves 305 Bourneville Ahun Basin 59 air-loaded tectonic subsidence curves 303 Albacete 466 modelled subsidence curves 304 Albarracin 466 Bowland Basin 45 Alcoroches 468 Brande Graben 77 Ales/Cevennes Basin 59 Bray Fault 337 Alps, Stephanian-Autunian magmatism 57 Bremen 51 Altmark 14 Bresse Graben 290 Anayet 442, 443 Brive Basin 59 Ancenis 104 Bronchales 468 Andross Fault 46, 53 Brousse Basin 59 Arag6n-Subordfi. Basin 442, 443 Burgundy Trough 296, 302 Aranaz 442 Burntisland 196 Armorica-Barrandia Terrane 2 Bute 196 Armorican Composite Terrane 43 Buxton 47 Armorican Massif 43, 95 age and thickness of strata 99, 100 Caherconlish 48 Carboniferous basins 104 Calatayud 468 transect 105-107 Caledonian Deformation Front 14, 140 Arran 196 Campanil 442 Arthur's Seat, Edinburgh 43, 44 Campsie Fells 196, 220 Asker Group sediments 17 Canfranc 442 Asta Graben 77, 160 Cardigan Bay/St George's Channel Basin, age and thickness Ateca 468 of strata 103 Atienza 466, 468, 469 Carlisle 196 Avalonia terrane 2, 14, 244 Castell6n de la Plana 466 Ayr 196, 200 Castleton 47 Central Graben, North Sea 14, 77, 160 Bad Kreuznach 56 age determinations 17 Bad Liebenstein 321 Central Irish Sea Basin 108 Bad Sachsa 55 age and thickness of strata 103 Bad Salzungen 321 Champotran, modelled subsidence curves 304 Bakewell 47 Chantonnay Basin 104 Ballybrood 48 Chart6w 394 Baltic Sea 261 Chateaulin 104 Baltic Shield 14 Cheshire Basin
    [Show full text]
  • Ranges and Basins in the Iberian Peninsula: Their Contribution to the Present Topography
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/241554530 Ranges and basins in the Iberian Peninsula: Their contribution to the present topography Article in Geological Society London Memoirs · January 2006 DOI: 10.1144/GSL.MEM.2006.032.01.13 CITATIONS READS 45 1,503 2 authors, including: Jaume Vergés Geosciences Barcelona (Geo3Bcn) CSIC 305 PUBLICATIONS 9,296 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Growth Strata in the Central Zagros fold-and-thrust belt, Dehdasht area View project MITE: Modeling the Iberian Topographic Evolution View project All content following this page was uploaded by Jaume Vergés on 21 May 2014. The user has requested enhancement of the downloaded file. Ranges and basins in the Iberian Peninsula: their contribution to the present topography JAUME VERGE´ S & MANEL FERNA` NDEZ Group of Dynamics of the Lithosphere (GDL), Institute of Earth Sciences ‘Jaume Almera’, CSIC, 08028 Barcelona, Spain (e-mail: [email protected]) Abstract: The Iberian Peninsula, at the western end of the Alpine–Himalayan Belt, displays a complex structure with mountain ranges of diverse structural trends and sedimentary basins between them. The Iberian Peninsula also shows an elevated mean topography, the highest in Europe. In this short paper, we investigate the Alpine evolution of the Iberian Peninsula since Mesozoic times, when Iberia was isolated as an independent plate. This occurred from Albian (formation of the northern plate boundary) to Oligocene times (end of the Pyrenean Orogeny). Iberia was squeezed between Africa and Europe during Tertiary times and all previously established Mesozoic extensional basins were inverted, as were some of the Hercynian structures.
    [Show full text]
  • Camelbeeck Seismicity Fidgeo-3866
    Historical Earthquakes, Paleoseismology, Neotectonics and Seismic Hazard: New Insights and Suggested Procedures DOI: 10.23689/fidgeo-3866 How well does known seismicity between the Lower Rhine Graben and southern North Sea reflect future earthquake activity? Thierry Camelbeeck1, Kris Vanneste1, Koen Verbeek1, David Garcia-Moreno1,2, Koen van Noten1 & Thomas Lecocq1 1 Royal Observatory of Belgium: [email protected], [email protected], [email protected], [email protected], [email protected] 2 University of Ghent: [email protected] Abstract th Since the 14 century, moderate seismic activity with 14 earthquakes of magnitude MW≥5.0 occurred in Western Europe in a region extending from the Lower Rhine Graben (LRG) to the southern North Sea. In this paper, we investigate how well this seismic activity could reflect that of the future. The observed earthquake activity in the LRG is continuous and concentrates on the Quaternary normal faults delimiting the LRG, which are also the source of large surface rupturing Holocene and Late Pleistocene earthquakes. The estimated magnitude of these past earthquakes ranges from 6.3±0.3 to 7.0±0.3 while their average recurrence on individual faults varies from ten thousand to a few ten thousand years, which makes foreseeing future activity over the long-term possible. Three of the largest historical earthquakes with MW≥5.5 occurred outside the LRG. Late Quaternary activity along the fault zones suspected to be the source of two of these earthquakes, i.e. the 1580 Strait of Dover and 1692 northern Belgian Ardennes earthquakes, is very elusive if it exists.
    [Show full text]
  • Integrated Approach for Sinkhole Evaluation and Evolution Prediction in the Central Ebro Basin (NE Spain) Óscar Pueyo Anchuela*, Andrés Pocoví Juan, Antonio M
    International Journal of Speleology 46 (2) 237-249 Tampa, FL (USA) May 2017 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Integrated approach for sinkhole evaluation and evolution prediction in the Central Ebro Basin (NE Spain) Óscar Pueyo Anchuela*, Andrés Pocoví Juan, Antonio M. Casas Sainz, Javier Gracia Abadías, and Carlos L. Liesa Carrera Grupo de Investigación Geotransfer, Instituto Universitario en Ciencias Ambientales Universidad de Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain Abstract: Evaluation of karst hazards benefits from the integration of different techniques, methodologies and approaches. Each one presents a different signature and is sensitive to certain indicators related to karst hazards. In some cases, detailed analysis permits the evaluation of representativeness either from isolated approaches or by means of integrated analyses. In this study, we present the evaluation of an area with high density of karstic collapses at different evolutionary stages through the integration of surficial, historical, geomorphological and geophysical data in order to finally define the evolutionary model for karst activity development. The obtained dataset permits to identify different steps in sinkhole evolution: (i) cavities and open sinkholes, (ii) filling of these cavities, with materials having different signatures, (iii) the progression from collapses to subsidence sinkholes and (iv) enlargement through collapses in marginal areas of previous sinkholes. The presence of different stages of this evolutionary model permits to determine their own signatures that can be of application in contexts where analysis cannot be so systematic and also to evaluate the definition of the marginal areas of previous sinkholes as the most hazardous sectors.
    [Show full text]