Acting on the CCR1 Receptor Mediates Neutrophil Migration in Immune Inflammation Via Sequential ␣ Release of TNF- and LTB4 Cleber D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation. -
Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates. -
Bioinformatics Identification of CCL8/21 As Potential Prognostic
Bioscience Reports (2020) 40 BSR20202042 https://doi.org/10.1042/BSR20202042 Research Article Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment 1,* 2,* 3 4 5 1 Bowen Chen , Shuyuan Zhang ,QiuyuLi, Shiting Wu ,HanHe and Jinbo Huang Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20202042/897847/bsr-2020-2042.pdf by guest on 28 September 2021 1Department of Breast Disease, Maoming People’s Hospital, Maoming 525000, China; 2Department of Clinical Laboratory, Maoming People’s Hospital, Maoming 525000, China; 3Department of Emergency, Maoming People’s Hospital, Maoming 525000, China; 4Department of Oncology, Maoming People’s Hospital, Maoming 525000, China; 5Department of Medical Imaging, Maoming People’s Hospital, Maoming 525000, China Correspondence: Shuyuan Zhang ([email protected]) Background: Breast cancer (BC) is the most common malignancy among females world- wide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host toreject the tumor. CC chemokines play a significant role in inflammation and infection. Methods: In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. Results: The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remark- ably increased while CCL14/21/23/28 was significantly down-regulated in BC tis- sues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC. -
Association of Chemokine CCL5 and Systemic Malignancies
J Hum Genet (2008) 53:377–378 DOI 10.1007/s10038-008-0270-6 LETTER TO THE EDITOR Association of chemokine CCL5 and systemic malignancies Shailendra Kapoor Received: 28 January 2008 / Accepted: 8 February 2008 / Published online: 27 March 2008 Ó The Japan Society of Human Genetics and Springer 2008 To the Editor CCL5 levels are also increased in a wide spectrum of The article by Konta et al. (2008) on the relationship other diseases, such as idiopathic inflammatory myopathies between CC chemokine ligand 5 (CCL5) genotype and (Civatte et al. 2005) and chronic gastritis (Ohtani et al. urinary albumin excretion in the nondiabetic Japanese 2004). The recent study by Konta et al. further adds to general population is highly interesting. The study by diseases in which CCL5 plays a major pathogenetic role. Konta et al. adds to the growing array of pathological Further studies are needed to identify potent and safe conditions in which CCL5 plays a major role. Interestingly, inhibitors of CCL5 for better management of these diseases CCL5 has recently been implicated in the etiopathogenesis ranging from breast cancer to nondiabetic albuminuria. of a number of systemic malignancies. For instance, Luboshits et al. (1999), in a recent study, have shown that advanced breast cancers are associated References with increased expression of CCL5. CCL5 has also been shown to be a significant predictor of progression in Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A, Colombatti A (2008) Expression of CCR5 receptors patients with stage II breast cancer (Hahoshen et al. 2006). on Reed-Sternberg cells and Hodgkin lymphoma cell lines: In another study, tumors that expressed higher levels of involvement of CCL5/Rantes in tumor cell growth and micro- CCL5 were more likely to metastasize in comparison with environmental interactions. -
The Chemokine System in Innate Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function. -
Haplotypes in CCR5-CCR2, CCL3 and CCL5 Are Associated with Natural Resistance to HIV-1 Infection in a Colombian Cohort Jorge A
Biomédica 2017;37:267-73 Haplotypes associated with resistance to HIV-1 doi: http://dx.doi.org/10.7705/biomedica.v37i3.3237 BRIEF COMMUNICATION Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort Jorge A. Vega1,2,3, Simón Villegas-Ospina1, Wbeimar Aguilar-Jiménez1, María T. Rugeles1, Gabriel Bedoya3, Wildeman Zapata1,4 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia 2 Laboratorio de Genética, Dirección Regional Noroccidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Medellín, Colombia 3 Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia Introduction: Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. Objective: To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Materials and methods: Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p’ value <0.05 after Bonferroni correction was considered significant. Results: Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. -
Ccl17-Dependent Release of Ccl3 Restrains Regulatory T Cells Thereby Aggravating Atherosclerosis
From the Institute for Cardiovascular Prevention (IPEK) of the Ludwig-Maximilians-Universität München Director: Univ.-Prof. Dr. med. Christian Weber Ccl17-dependent release of Ccl3 restrains regulatory T cells thereby aggravating atherosclerosis Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Submitted by M.Sc. Carlos Neideck from Taió in Santa Catarina, Brazil on 21.03.2018 Supervisor: Prof. Dr. med. Christian Weber Second evaluator: Prof. Dr. rer. nat. Jürgen Bernhagen Dean: Prof. Dr. Reinhard Hickel Date of oral defense: 23.07.2018 Affidavit Neideck, Carlos ______________________________________________________________________ Name, Surname ______________________________________________________________________ Street ______________________________________________________________________ Zip Code, Town ______________________________________________________________________ Country I hereby declare, that the submitted thesis entitled: “Ccl17-dependent release of Ccl3 restrains regulatory T cells thereby aggravating atherosclerosis.” is my own work. I have only used the sources indicated and have not made unauthorized use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given. I further declare that the submitted thesis or parts thereof have not been presented as part of an examination degree to any other university. Munich, 25.07.2018 Carlos Neideck Place, date Signature doctoral candidate Confirmation -
Platelet-Derived Growth Factor Isoform Expression in Carbon Tetrachloride
Laboratory Investigation (2008) 88, 1090–1100 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury Erawan Borkham-Kamphorst1, Evgenia Kovalenko1, Claudia RC van Roeyen2, Nikolaus Gassler3, Michael Bomble1, Tammo Ostendorf 2,Ju¨rgen Floege2, Axel M Gressner1 and Ralf Weiskirchen1 Platelet-derived growth factor (PDGF) has an essential role in liver fibrogenesis, as PDGF-B and -D both act as potent mitogens on culture-activated hepatic stellate cells (HSCs). Induction of PDGF receptor type-b (PDGFRb) in HSC is well documented in single-dose carbon tetrachloride (CCl4)-induced acute liver injury. Of the newly discovered isoforms PDGF- C and -D, only PDGF-D shows significant upregulation in bile duct ligation (BDL) models. We have now investigated the expression of PDGF isoforms and receptors in chronic liver injury in vivo after long-term CCl4 treatment and demonstrated that isolated hepatocytes have the requisite PDGF signaling pathways, both in the naive state and when isolated from CCl4-treated rats. In vivo, PDGF gene expression showed upregulation of all PDGF isoforms and receptors, with values peaking at 4 weeks and decreasing to near basal levels by 8 and 12 weeks. Interestingly, PDGF-C increased significantly when compared to BDL-models. PDGF-A, PDGF-C and PDGF receptor type-a (PDGFRa) correlated closely with in- flammation and steatosis. Immunohistochemistry revealed expression of PDGF-B, -C and -D in areas corresponding to centrilobular necrosis, inflammation and fibrosis, whereas PDGF-A localized in regenerative hepatocytes. PDGFRb was identified along the fibrotic septa, whereas PDGFRa showed positive staining in fibrotic septa and regenerative hepa- tocytes. -
CCL5 T Cells to CCL3 and + Human Naive CD4 Associated with The
An Abortive Ligand-Induced Activation of CCR1-Mediated Downstream Signaling Event and a Deficiency of CCR5 Expression Are Associated with the Hyporesponsiveness of This information is current as Human Naive CD4 + T Cells to CCL3 and of October 3, 2021. CCL5 Katsuaki Sato, Hiroshi Kawasaki, Chikao Morimoto, Naohide Yamashima and Takami Matsuyama J Immunol 2002; 168:6263-6272; ; Downloaded from doi: 10.4049/jimmunol.168.12.6263 http://www.jimmunol.org/content/168/12/6263 References This article cites 44 articles, 26 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/168/12/6263.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 3, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology An Abortive Ligand-Induced Activation of CCR1-Mediated Downstream Signaling Event and a Deficiency of CCR5 Expression Are Associated with the Hyporesponsiveness of Human Naive CD4؉ T Cells to CCL3 and CCL51 Katsuaki Sato,2* Hiroshi Kawasaki,† Chikao Morimoto,† Naohide Yamashima,‡ and Takami Matsuyama* .Human memory CD4؉ T cells respond better to inflammatory CCLs/CC chemokines, CCL3 and CCL5, than naive CD4؉ T cells We analyzed the regulatory mechanism underlying this difference. -
PM Coronary Artery Atherosclerosis 8740 Online
RnDSy-lu-2945 Atherosclerosis Disease Progression Healthy Endothelial Damage Cellular uptake of lipids Intracellular cholesterol metabolism LDL oxidation Reverse cholesterol transport Foam cell development LDL OXIDATION Minimally modified (mmLDL) to oxidized (oxLDL) Agents Substrates Products Lipoxygenase ApoA1,ApoB Aldehydes (HNE,MDA) Myeloperoxidase Cholesteryl esters Free fatty acids NADPH oxidase Phospholipids Lipid hydroperoxides Phospholipases Polyunsaturated fatty acids Lysophosphatidic acid (LPA) Xanthine oxidase Lysophosphatidyl choline (LPC) TBARS Cathepsin K IFN-γ Prostaglandin E2 CCL2,3,4,5,8,11,19,20,22 IL-6,10,17,18 PLA2G7 CX3CL1 MMPs Thromboxane A2 CXCL2,8,9,10,16 Prostaglandin D2 TNF-α NITRIC OXIDE EFFECTS Vasoconstriction DC-SIGN CD11b CCL2 Fcγ RII/III Endothelial permeability CD14 IL-12,23 Angiogenesis NO IFN-γ R1 α Platelet aggregation TNF- AT1 SMC proliferation RAGE TLR4-MD2-CD14 PDGF R Leukocyte adhesion ApoA1 LOX-1 Dendritic DEC205 Cell RAGE SREBP HMG Co A PTGER2 CD11c Low Sterol Conditions SCAP SREBP Cholesterol MARCO Reductase CD36 Cholesteryl esters Activation Synthesis GM-CSF INSIG LDL R TLR4 ligation Triglycerides CX3CR1 γ LOX-1 Monocyte LOX-1 RAGE Fc RII/III LXRα or β ABCA1, G1 NO TLR2 Phospholipids P-Selectin Integrin α4β1 High Sterol Conditions ROR PLTP, CETP, LPL E-Selectin CCR5 + eNOS ApoE2,C1,C2,C4 Integrin αLβ2 CD36 Oxysterols CCR2 IDOL LDL PGI2 Macrophage degradation (M1 polarized) SR-A TLR4-MD2-CD14 CCL2,3,4,5,8,11,15,19,20,22 IL-6,10,15,17,18,23 CXCL1,2,3,5,8,9,10,11,13,16 Cathepsin K Mature -
5-O-Demethylnobiletin Alleviates Ccl4-Induced Acute Liver Injury by Equilibrating ROS-Mediated Apoptosis and Autophagy Induction
International Journal of Molecular Sciences Article 5-O-Demethylnobiletin Alleviates CCl4-Induced Acute Liver Injury by Equilibrating ROS-Mediated Apoptosis and Autophagy Induction Sukkum Ngullie Chang 1,2,†, Se Ho Kim 2,3,†, Debasish Kumar Dey 1, Seon Min Park 2, Omaima Nasif 4, Vivek K. Bajpai 5,*, Sun Chul Kang 1, Jintae Lee 3,* and Jae Gyu Park 2,* 1 Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; [email protected] (S.N.C.); [email protected] (D.K.D.); [email protected] (S.C.K.) 2 Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Korea; [email protected] (S.H.K.); [email protected] (S.M.P.) 3 School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea 4 Department of Physiology, College of Medicine, King Saud University (Medical City), King Khalid University Hospital, P.O. Box 2925, Riyadh 11461, Saudi Arabia; [email protected] 5 Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea * Correspondence: [email protected] (V.K.B.); [email protected] (J.T.L.); [email protected] (J.G.P.); Fax: +82-32-872-4046 (V.K.B.); +82-53-810-4631 (J.L.); +82-54-223-2780 (J.G.P.) † Contributed equally to this work. Abstract: Polymethoxyflavanoids (PMFs) have exhibited a vast array of therapeutic biological properties. 5-O-Demethylnobiletin (5-DN) is one such PMF having anti-inflammatory activity, yet its role in hepatoprotection has not been studied before. Results from in vitro study revealed that Citation: Chang, S.N.; Kim, S.H.; 5-DN did not exert a high level of cytotoxicity on HepG2 cells at 40 µM, and it was able to rescue Dey, D.K.; Park, S.M.; Nasif, O.; HepG2 cell death induced by carbon tetrachloride (CCl4). -
COVID-19: Mechanisms of Vaccination and Immunity
Review COVID-19: Mechanisms of Vaccination and Immunity Daniel E. Speiser 1,* and Martin F. Bachmann 2,3,4,* 1 Department of Oncology, University Hospital and University of Lausanne, 1066 Lausanne, Switzerland 2 International Immunology Centre, Anhui Agricultural University, Hefei 230036, China 3 Department of Rheumatology, Immunology and Allergology, Inselspital, University of Bern, 3010 Bern, Switzerland 4 Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland * Correspondence: [email protected] (D.E.S.); [email protected] (M.F.B.) Received: 2 July 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Vaccines are needed to protect from SARS-CoV-2, the virus causing COVID-19. Vaccines that induce large quantities of high affinity virus-neutralizing antibodies may optimally prevent infection and avoid unfavorable effects. Vaccination trials require precise clinical management, complemented with detailed evaluation of safety and immune responses. Here, we review the pros and cons of available vaccine platforms and options to accelerate vaccine development towards the safe immunization of the world’s population against SARS-CoV-2. Favorable vaccines, used in well-designed vaccination strategies, may be critical for limiting harm and promoting trust and a long-term return to normal public life and economy. Keywords: SARS-CoV-2; COVID-19; nucleic acid tests; serology; vaccination; immunity 1. Introduction The COVID-19 pandemic holds great challenges for which the world is only partially prepared [1]. SARS-CoV-2 combines serious pathogenicity with high infectivity. The latter is enhanced by the fact that asymptomatic and pre-symptomatic individuals can transmit the virus, in contrast to SARS-CoV-1 and MERS-CoV, which were transmitted by symptomatic patients and could be contained more efficiently [2,3].