CCL5 T Cells to CCL3 and + Human Naive CD4 Associated with The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Monocyte Migration to CXCR3 and CCR5 Chemokines in COPD
ERJ Express. Published on March 10, 2016 as doi: 10.1183/13993003.01642-2015 ORIGINAL ARTICLE IN PRESS | CORRECTED PROOF Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD Claudia Costa1, Suzanne L. Traves1, Susan J. Tudhope1, Peter S. Fenwick1, Kylie B.R. Belchamber1, Richard E.K. Russell2, Peter J. Barnes1 and Louise E. Donnelly1 Affiliations: 1Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK. 2Chest Clinic, King Edward King VII Hospital, Windsor, UK. Correspondence: Louise E. Donnelly, Airway Disease, National Heart and Lung Institute, Dovehouse Street, London, SW3 6LY, UK. E-mail: [email protected] ABSTRACT Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. -
Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation. -
S41467-017-02610-0.Pdf
ARTICLE DOI: 10.1038/s41467-017-02610-0 OPEN Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours Adama Sidibe 1,4, Patricia Ropraz1, Stéphane Jemelin1, Yalin Emre 1, Marine Poittevin1, Marc Pocard2,3, Paul F. Bradfield1 & Beat A. Imhof1 1234567890():,; Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ inter- mediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies. 1 Department of Pathology and Immunology, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. 2 Department of Oncologic and Digestive Surgery, AP-HP, Hospital Lariboisière, 2 rue Ambroise Paré, F-75475 Paris cedex 10, France. 3 Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965, 49 boulevard de la Chapelle, F-75475 Paris cedex 10, France. 4Present address: Department of Physiology and Metabolism, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. -
Lung Adenocarcinoma-Intrinsic GBE1 Signaling Inhibits Anti-Tumor Immunity
Li et al. Molecular Cancer (2019) 18:108 https://doi.org/10.1186/s12943-019-1027-x RESEARCH Open Access Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity Lifeng Li1,3,4,5†, Li Yang1,3,4†, Shiqi Cheng1,3,4†, Zhirui Fan3, Zhibo Shen1,3,4, Wenhua Xue2, Yujia Zheng1,3,4, Feng Li1,3,4, Dong Wang1,3,4, Kai Zhang1,3,4, Jingyao Lian1,3,4, Dan Wang1,3,4, Zijia Zhu2, Jie Zhao2,5,6* and Yi Zhang1,3,4* Abstract Background: Changes in glycogen metabolism is an essential feature among the various metabolic adaptations used by cancer cells to adjust to the conditions imposed by the tumor microenvironment. Our previous study showed that glycogen branching enzyme (GBE1) is downstream of the HIF1 pathway in hypoxia-conditioned lung cancer cells. In the present study, we investigated whether GBE1 is involved in the immune regulation of the tumor microenvironment in lung adenocarcinoma (LUAD). Methods: We used RNA-sequencing analysis and the multiplex assay to determine changes in GBE1 knockdown cells. The role of GBE1 in LUAD was evaluated both in vitro and in vivo. Results: GBE1 knockdown increased the expression of chemokines CCL5 and CXCL10 in A549 cells. CD8 expression correlated positively with CCL5 and CXCL10 expression in LUAD. The supernatants from the GBE1 knockdown cells increased recruitment of CD8+ T lymphocytes. However, the neutralizing antibodies of CCL5 or CXCL10 significantly inhibited cell migration induced by shGBE1 cell supernatants. STING/IFN-I pathway mediated the effect of GBE1 knockdown for CCL5 and CXCL10 upregulation. Moreover, PD-L1 increased significantly in shGBE1 A549 cells compared to those in control cells. -
Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates. -
Acting on the CCR1 Receptor Mediates Neutrophil Migration in Immune Inflammation Via Sequential ␣ Release of TNF- and LTB4 Cleber D
MIP-1␣[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential ␣ release of TNF- and LTB4 Cleber D. L. Ramos,* Claudio Canetti,*,† Janeusa T. Souto,‡,§ Joa˜ o S. Silva,‡ Cory M. Hogaboam,¶ Sergio H. Ferreira,* and Fernando Q. Cunha*,1 Departments of *Pharmacology and ‡Biochemistry and Immunology, School of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Brazil; §Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; and †Division of Pulmonary & Critical Care Medicine and ¶Department of Pathology, University of Michigan, Ann Arbor Abstract: In the present study, we investigated nists might have a therapeutic potential. J. Leukoc. the involvement of macrophage-inflammatory pro- Biol. 78: 167–177; 2005. tein-1␣ (MIP-1␣)[CC chemokine ligand 3 (CCL3)], MIP-1[CCL4], regulated on activation, normal Key Words: chemokines ⅐ chemokine receptors ⅐ chemotaxis T expressed and secreted (RANTES)[CCL5], and CC chemokine receptors (CCRs) on neutrophil mi- gration in murine immune inflammation. Previ- INTRODUCTION ously, we showed that ovalbumin (OVA)-triggered neutrophil migration in immunized mice depends on the sequential release of tumor necrosis factor Neutrophil migration is a complex process, which results ␣ ␣ mainly from the release of neutrophil chemotactic factors by (TNF- ) and leukotriene B4 (LTB4). Herein, we show increased mRNA expression for MIP- resident cells, inducing rolling and adhesion of neutrophils on 1␣[CCL3], MIP-1[CCL4], RANTES[CCL5], and endothelial cells, followed by their transmigration to the ex- travascular space [1, 2]. Apart from its importance in host CCR1 in peritoneal cells harvested from OVA-chal- defense, the migration of neutrophils to the inflammatory site lenged, immunized mice, as well as MIP-1␣[CCL3] is, at least in part, responsible for tissue damage observed in and RANTES[CCL5] but not MIP-1[CCL4] proteins several inflammatory diseases such as rheumatoid arthritis, in the peritoneal exudates. -
The Chemokine System in Innate Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function. -
Haplotypes in CCR5-CCR2, CCL3 and CCL5 Are Associated with Natural Resistance to HIV-1 Infection in a Colombian Cohort Jorge A
Biomédica 2017;37:267-73 Haplotypes associated with resistance to HIV-1 doi: http://dx.doi.org/10.7705/biomedica.v37i3.3237 BRIEF COMMUNICATION Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort Jorge A. Vega1,2,3, Simón Villegas-Ospina1, Wbeimar Aguilar-Jiménez1, María T. Rugeles1, Gabriel Bedoya3, Wildeman Zapata1,4 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia 2 Laboratorio de Genética, Dirección Regional Noroccidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Medellín, Colombia 3 Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia Introduction: Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. Objective: To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Materials and methods: Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p’ value <0.05 after Bonferroni correction was considered significant. Results: Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. -
Ccl17-Dependent Release of Ccl3 Restrains Regulatory T Cells Thereby Aggravating Atherosclerosis
From the Institute for Cardiovascular Prevention (IPEK) of the Ludwig-Maximilians-Universität München Director: Univ.-Prof. Dr. med. Christian Weber Ccl17-dependent release of Ccl3 restrains regulatory T cells thereby aggravating atherosclerosis Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Submitted by M.Sc. Carlos Neideck from Taió in Santa Catarina, Brazil on 21.03.2018 Supervisor: Prof. Dr. med. Christian Weber Second evaluator: Prof. Dr. rer. nat. Jürgen Bernhagen Dean: Prof. Dr. Reinhard Hickel Date of oral defense: 23.07.2018 Affidavit Neideck, Carlos ______________________________________________________________________ Name, Surname ______________________________________________________________________ Street ______________________________________________________________________ Zip Code, Town ______________________________________________________________________ Country I hereby declare, that the submitted thesis entitled: “Ccl17-dependent release of Ccl3 restrains regulatory T cells thereby aggravating atherosclerosis.” is my own work. I have only used the sources indicated and have not made unauthorized use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given. I further declare that the submitted thesis or parts thereof have not been presented as part of an examination degree to any other university. Munich, 25.07.2018 Carlos Neideck Place, date Signature doctoral candidate Confirmation -
Fas Ligand Elicits a Caspase-Independent Proinflammatory Response in Human Keratinocytes: Implications for Dermatitis Sherry M
CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois ORIGINAL ARTICLE See related commentary on pg 2364 Fas Ligand Elicits a Caspase-Independent Proinflammatory Response in Human Keratinocytes: Implications for Dermatitis Sherry M. Farley1, Anjali D. Dotson1, David E. Purdy1, Aaron J. Sundholm1, Pascal Schneider2, Bruce E. Magun1 and Mihail S. Iordanov1 Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells and in reconstructed human epidermis (RHE), FasL triggered a NF-kB-dependent mRNA accumulation of inflammatory cytokines (tumor necrosis factor-a, IL-6, and IL-1b), chemokines (CCL2/MCP-1, CXCL1/GROa, CXCL3/GROg, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis; however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas. Journal of Investigative Dermatology (2006) 126, 2438–2451. doi:10.1038/sj.jid.5700477; published online 20 July 2006 INTRODUCTION increased local concentration of procaspase 8 allows for Apoptosis (Kerr et al., 1972), the principal mechanism for its spontaneous autocatalytic cleavage and activation by elimination of damaged cells in metazoan organisms (Edinger ‘‘induced proximity’’ (Muzio et al., 1998). -
CCL5 Deficiency Promotes Liver Repair by Improving Inflammation
Cellular & Molecular Immunology www.nature.com/cmi ARTICLE CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization Meng Li1, Xuehua Sun2, Jie Zhao1, Lei Xia1, Jichang Li1, Min Xu1, Bingrui Wang1, Han Guo1, Chang Yu1, Yueqiu Gao2, Hailong Wu3, Xiaoni Kong1,2 and Qiang Xia1 Despite the diverse etiologies of drug-induced liver injury (DILI), innate immunity activation is a common feature involved in DILI progression. However, the involvement of innate immunity regulation in inflammation resolution and liver regeneration in DILI remains obscure. Herein, we identified the chemokine CCL5 as a central mediator of innate immunity regulation in the pathogenesis of DILI. First, we showed that serum and hepatic CCL5 levels are elevated in both DILI patients and an APAP-induced liver injury (AILI) mouse model. Interestingly, both nonparenchymal cells and stressed hepatocytes are cell sources of CCL5 induction in response to liver injury. Functional experiments showed that CCL5 deficiency has no effect on the early phase of AILI but promotes liver repair in the late phase mainly by promoting inflammation resolution and liver regeneration, which are associated with an increased number of hepatic M2 macrophages. Mechanistically, CCL5 can directly activate M1 polarization and impede M2 polarization through the CCR1- and CCR5-mediated activation of the MAPK and NF-κB pathways. We then showed that CCL5 inhibition mediated by either a CCL5-neutralizing antibody or the antagonist Met-CCL5 can greatly alleviate liver injury and improve survival in an AILI mouse model. Our data demonstrate CCL5 induction during DILI, identify CCL5 as a novel innate immunity regulator in macrophage polarization, and suggest that CCL5 blockage is a promising therapeutic strategy for the treatment of DILI. -
PM Coronary Artery Atherosclerosis 8740 Online
RnDSy-lu-2945 Atherosclerosis Disease Progression Healthy Endothelial Damage Cellular uptake of lipids Intracellular cholesterol metabolism LDL oxidation Reverse cholesterol transport Foam cell development LDL OXIDATION Minimally modified (mmLDL) to oxidized (oxLDL) Agents Substrates Products Lipoxygenase ApoA1,ApoB Aldehydes (HNE,MDA) Myeloperoxidase Cholesteryl esters Free fatty acids NADPH oxidase Phospholipids Lipid hydroperoxides Phospholipases Polyunsaturated fatty acids Lysophosphatidic acid (LPA) Xanthine oxidase Lysophosphatidyl choline (LPC) TBARS Cathepsin K IFN-γ Prostaglandin E2 CCL2,3,4,5,8,11,19,20,22 IL-6,10,17,18 PLA2G7 CX3CL1 MMPs Thromboxane A2 CXCL2,8,9,10,16 Prostaglandin D2 TNF-α NITRIC OXIDE EFFECTS Vasoconstriction DC-SIGN CD11b CCL2 Fcγ RII/III Endothelial permeability CD14 IL-12,23 Angiogenesis NO IFN-γ R1 α Platelet aggregation TNF- AT1 SMC proliferation RAGE TLR4-MD2-CD14 PDGF R Leukocyte adhesion ApoA1 LOX-1 Dendritic DEC205 Cell RAGE SREBP HMG Co A PTGER2 CD11c Low Sterol Conditions SCAP SREBP Cholesterol MARCO Reductase CD36 Cholesteryl esters Activation Synthesis GM-CSF INSIG LDL R TLR4 ligation Triglycerides CX3CR1 γ LOX-1 Monocyte LOX-1 RAGE Fc RII/III LXRα or β ABCA1, G1 NO TLR2 Phospholipids P-Selectin Integrin α4β1 High Sterol Conditions ROR PLTP, CETP, LPL E-Selectin CCR5 + eNOS ApoE2,C1,C2,C4 Integrin αLβ2 CD36 Oxysterols CCR2 IDOL LDL PGI2 Macrophage degradation (M1 polarized) SR-A TLR4-MD2-CD14 CCL2,3,4,5,8,11,15,19,20,22 IL-6,10,15,17,18,23 CXCL1,2,3,5,8,9,10,11,13,16 Cathepsin K Mature