The CCL7-CCL2-CCR2 Axis Regulates IL-4 Production in Lungs and Fungal Immunity Wendy A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation. -
Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates. -
Acting on the CCR1 Receptor Mediates Neutrophil Migration in Immune Inflammation Via Sequential ␣ Release of TNF- and LTB4 Cleber D
MIP-1␣[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential ␣ release of TNF- and LTB4 Cleber D. L. Ramos,* Claudio Canetti,*,† Janeusa T. Souto,‡,§ Joa˜ o S. Silva,‡ Cory M. Hogaboam,¶ Sergio H. Ferreira,* and Fernando Q. Cunha*,1 Departments of *Pharmacology and ‡Biochemistry and Immunology, School of Medicine of Ribeira˜o Preto, University of Sa˜o Paulo, Brazil; §Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil; and †Division of Pulmonary & Critical Care Medicine and ¶Department of Pathology, University of Michigan, Ann Arbor Abstract: In the present study, we investigated nists might have a therapeutic potential. J. Leukoc. the involvement of macrophage-inflammatory pro- Biol. 78: 167–177; 2005. tein-1␣ (MIP-1␣)[CC chemokine ligand 3 (CCL3)], MIP-1[CCL4], regulated on activation, normal Key Words: chemokines ⅐ chemokine receptors ⅐ chemotaxis T expressed and secreted (RANTES)[CCL5], and CC chemokine receptors (CCRs) on neutrophil mi- gration in murine immune inflammation. Previ- INTRODUCTION ously, we showed that ovalbumin (OVA)-triggered neutrophil migration in immunized mice depends on the sequential release of tumor necrosis factor Neutrophil migration is a complex process, which results ␣ ␣ mainly from the release of neutrophil chemotactic factors by (TNF- ) and leukotriene B4 (LTB4). Herein, we show increased mRNA expression for MIP- resident cells, inducing rolling and adhesion of neutrophils on 1␣[CCL3], MIP-1[CCL4], RANTES[CCL5], and endothelial cells, followed by their transmigration to the ex- travascular space [1, 2]. Apart from its importance in host CCR1 in peritoneal cells harvested from OVA-chal- defense, the migration of neutrophils to the inflammatory site lenged, immunized mice, as well as MIP-1␣[CCL3] is, at least in part, responsible for tissue damage observed in and RANTES[CCL5] but not MIP-1[CCL4] proteins several inflammatory diseases such as rheumatoid arthritis, in the peritoneal exudates. -
Inhibition of CCL7 Derived from Mo-Mdscs Prevents Metastatic
Ren et al. Cell Death and Disease (2021) 12:484 https://doi.org/10.1038/s41419-021-03698-5 Cell Death & Disease ARTICLE Open Access Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer Xiaoli Ren1,2, Jianbiao Xiao1,3, Wanning Zhang1,3,FeifeiWang1,3, Yongrong Yan1,3,XuehuiWu 1,3, Zhicheng Zeng1,3, Yumei He4,WeiYang1,3, Wangjun Liao5,YanqingDing1,3 and Li Liang 1,3 Abstract In colorectal cancer (CRC), overt metastases often appear after years of latency. But the signals that cause micro- metastatic cells to remain indolent, thereby enabling them to survive for extended periods of time, are unclear. Immunofluorescence and co-immunoprecipitation assays were used to explore the co-localization of CCL7 and CCR2. Immunohistochemical (IHC) assays were employed to detect the characters of metastatic HT29 cells in mice liver. Flow cytometry assays were performed to detect the immune cells. Bruberin vivo MS FX Pro Imager was used to observe the liver metastasis of CRC in mice. Quantitative real-time PCR (qRT-PCR) and western blot were employed to detect the expressions of related proteins. Trace RNA sequencing was employed to identify differentially expressed genes in MDSCs from liver micro-M and macro-M of CRC in mice. Here, we firstly constructed the vitro dormant cell models and metastatic dormant animal models of colorectal cancer. Then we found that myeloid-derived suppressor cells (MDSCs) were increased significantly from liver micro-metastases to macro-metastases of CRC in mice. Moreover, monocytic MDSCs (Mo-MDSC) significantly promoted the dormant activation of micro-metastatic cells compared to 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; polymorphonuclear MDSCs (PMN-MDSC). -
Bioinformatics Identification of CCL8/21 As Potential Prognostic
Bioscience Reports (2020) 40 BSR20202042 https://doi.org/10.1042/BSR20202042 Research Article Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment 1,* 2,* 3 4 5 1 Bowen Chen , Shuyuan Zhang ,QiuyuLi, Shiting Wu ,HanHe and Jinbo Huang Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20202042/897847/bsr-2020-2042.pdf by guest on 28 September 2021 1Department of Breast Disease, Maoming People’s Hospital, Maoming 525000, China; 2Department of Clinical Laboratory, Maoming People’s Hospital, Maoming 525000, China; 3Department of Emergency, Maoming People’s Hospital, Maoming 525000, China; 4Department of Oncology, Maoming People’s Hospital, Maoming 525000, China; 5Department of Medical Imaging, Maoming People’s Hospital, Maoming 525000, China Correspondence: Shuyuan Zhang ([email protected]) Background: Breast cancer (BC) is the most common malignancy among females world- wide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host toreject the tumor. CC chemokines play a significant role in inflammation and infection. Methods: In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. Results: The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remark- ably increased while CCL14/21/23/28 was significantly down-regulated in BC tis- sues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC. -
Association of Chemokine CCL5 and Systemic Malignancies
J Hum Genet (2008) 53:377–378 DOI 10.1007/s10038-008-0270-6 LETTER TO THE EDITOR Association of chemokine CCL5 and systemic malignancies Shailendra Kapoor Received: 28 January 2008 / Accepted: 8 February 2008 / Published online: 27 March 2008 Ó The Japan Society of Human Genetics and Springer 2008 To the Editor CCL5 levels are also increased in a wide spectrum of The article by Konta et al. (2008) on the relationship other diseases, such as idiopathic inflammatory myopathies between CC chemokine ligand 5 (CCL5) genotype and (Civatte et al. 2005) and chronic gastritis (Ohtani et al. urinary albumin excretion in the nondiabetic Japanese 2004). The recent study by Konta et al. further adds to general population is highly interesting. The study by diseases in which CCL5 plays a major pathogenetic role. Konta et al. adds to the growing array of pathological Further studies are needed to identify potent and safe conditions in which CCL5 plays a major role. Interestingly, inhibitors of CCL5 for better management of these diseases CCL5 has recently been implicated in the etiopathogenesis ranging from breast cancer to nondiabetic albuminuria. of a number of systemic malignancies. For instance, Luboshits et al. (1999), in a recent study, have shown that advanced breast cancers are associated References with increased expression of CCL5. CCL5 has also been shown to be a significant predictor of progression in Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A, Colombatti A (2008) Expression of CCR5 receptors patients with stage II breast cancer (Hahoshen et al. 2006). on Reed-Sternberg cells and Hodgkin lymphoma cell lines: In another study, tumors that expressed higher levels of involvement of CCL5/Rantes in tumor cell growth and micro- CCL5 were more likely to metastasize in comparison with environmental interactions. -
The Chemokine System in Innate Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function. -
Haplotypes in CCR5-CCR2, CCL3 and CCL5 Are Associated with Natural Resistance to HIV-1 Infection in a Colombian Cohort Jorge A
Biomédica 2017;37:267-73 Haplotypes associated with resistance to HIV-1 doi: http://dx.doi.org/10.7705/biomedica.v37i3.3237 BRIEF COMMUNICATION Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort Jorge A. Vega1,2,3, Simón Villegas-Ospina1, Wbeimar Aguilar-Jiménez1, María T. Rugeles1, Gabriel Bedoya3, Wildeman Zapata1,4 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia 2 Laboratorio de Genética, Dirección Regional Noroccidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Medellín, Colombia 3 Genética Molecular, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia Introduction: Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. Objective: To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. Materials and methods: Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p’ value <0.05 after Bonferroni correction was considered significant. Results: Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. -
Rescuing Functional T Cells Induced by Growth Factor Deprivation, CCL2 Inhibits the Apoptosis Program
CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells This information is current as Eva Diaz-Guerra, Rolando Vernal, M. Julieta del Prete, of September 24, 2021. Augusto Silva and Jose A. Garcia-Sanz J Immunol 2007; 179:7352-7357; ; doi: 10.4049/jimmunol.179.11.7352 http://www.jimmunol.org/content/179/11/7352 Downloaded from References This article cites 41 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/179/11/7352.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1 Eva Diaz-Guerra,2 Rolando Vernal,2 M. Julieta del Prete,2 Augusto Silva, and Jose A. Garcia-Sanz3 The precise mechanisms involved in the switch between the clonal expansion and contraction phases of a CD8؉ T cell response remain to be fully elucidated. -
Ccl17-Dependent Release of Ccl3 Restrains Regulatory T Cells Thereby Aggravating Atherosclerosis
From the Institute for Cardiovascular Prevention (IPEK) of the Ludwig-Maximilians-Universität München Director: Univ.-Prof. Dr. med. Christian Weber Ccl17-dependent release of Ccl3 restrains regulatory T cells thereby aggravating atherosclerosis Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München Submitted by M.Sc. Carlos Neideck from Taió in Santa Catarina, Brazil on 21.03.2018 Supervisor: Prof. Dr. med. Christian Weber Second evaluator: Prof. Dr. rer. nat. Jürgen Bernhagen Dean: Prof. Dr. Reinhard Hickel Date of oral defense: 23.07.2018 Affidavit Neideck, Carlos ______________________________________________________________________ Name, Surname ______________________________________________________________________ Street ______________________________________________________________________ Zip Code, Town ______________________________________________________________________ Country I hereby declare, that the submitted thesis entitled: “Ccl17-dependent release of Ccl3 restrains regulatory T cells thereby aggravating atherosclerosis.” is my own work. I have only used the sources indicated and have not made unauthorized use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given. I further declare that the submitted thesis or parts thereof have not been presented as part of an examination degree to any other university. Munich, 25.07.2018 Carlos Neideck Place, date Signature doctoral candidate Confirmation -
Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials
nanomaterials Article Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials Chinatsu Nishida 1, Hiroto Izumi 2, Taisuke Tomonaga 2 , Jun-ichi Takeshita 3 , Ke-Yong Wang 4, Kei Yamasaki 1, Kazuhiro Yatera 1 and Yasuo Morimoto 2,* 1 Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (C.N.); [email protected] (K.Y.); [email protected] (K.Y.) 2 Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (H.I.); [email protected] (T.T.) 3 Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; [email protected] 4 Shared-Use Research Center, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-93-691-7136 Received: 3 September 2020; Accepted: 9 October 2020; Published: 15 October 2020 Abstract: We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW). -
CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1
The Journal of Immunology CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1 Eva Diaz-Guerra,2 Rolando Vernal,2 M. Julieta del Prete,2 Augusto Silva, and Jose A. Garcia-Sanz3 The precise mechanisms involved in the switch between the clonal expansion and contraction phases of a CD8؉ T cell response remain to be fully elucidated. One of the mechanisms implicated in the contraction phase is cytokine deprivation, which triggers apoptosis in these cells. CCR2 chemokine receptor is up-regulated following IL-2 deprivation, and its ligand CCL2 plays an essential role preventing apoptosis induced by IL-2 withdrawal not only in CTLL2 cells, but also in mouse Ag-activated primary CD8؉ T cells because it rescued functional CD8؉ T cells from deprivation induced apoptosis, promoting proliferation in response to subsequent addition of IL-2 or to secondary antigenic challenges. Thus, up-regulation of the CCR2 upon growth factor with- drawal together with the protective effects of CCL2, represent a double-edged survival strategy, protecting cells from apoptosis and enabling them to migrate toward sites where Ag and/or growth factors are available. The Journal of Immunology, 2007, 179: 7352–7357. espite the continuous generation of T lymphocytes in the is induced by TCR stimulation of naive T cells in the absence of body, their total number is tightly regulated, implying costimulatory signals. Such T cell death can be inhibited in vivo by D that T cells disappear at about the same rate as they are inflammation and in vitro by cytokines; bacterial products promote being produced.