Rescuing Functional T Cells Induced by Growth Factor Deprivation, CCL2 Inhibits the Apoptosis Program

Total Page:16

File Type:pdf, Size:1020Kb

Rescuing Functional T Cells Induced by Growth Factor Deprivation, CCL2 Inhibits the Apoptosis Program CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells This information is current as Eva Diaz-Guerra, Rolando Vernal, M. Julieta del Prete, of September 24, 2021. Augusto Silva and Jose A. Garcia-Sanz J Immunol 2007; 179:7352-7357; ; doi: 10.4049/jimmunol.179.11.7352 http://www.jimmunol.org/content/179/11/7352 Downloaded from References This article cites 41 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/179/11/7352.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1 Eva Diaz-Guerra,2 Rolando Vernal,2 M. Julieta del Prete,2 Augusto Silva, and Jose A. Garcia-Sanz3 The precise mechanisms involved in the switch between the clonal expansion and contraction phases of a CD8؉ T cell response remain to be fully elucidated. One of the mechanisms implicated in the contraction phase is cytokine deprivation, which triggers apoptosis in these cells. CCR2 chemokine receptor is up-regulated following IL-2 deprivation, and its ligand CCL2 plays an essential role preventing apoptosis induced by IL-2 withdrawal not only in CTLL2 cells, but also in mouse Ag-activated primary CD8؉ T cells because it rescued functional CD8؉ T cells from deprivation induced apoptosis, promoting proliferation in response to subsequent addition of IL-2 or to secondary antigenic challenges. Thus, up-regulation of the CCR2 upon growth factor with- drawal together with the protective effects of CCL2, represent a double-edged survival strategy, protecting cells from apoptosis Downloaded from and enabling them to migrate toward sites where Ag and/or growth factors are available. The Journal of Immunology, 2007, 179: 7352–7357. espite the continuous generation of T lymphocytes in the is induced by TCR stimulation of naive T cells in the absence of body, their total number is tightly regulated, implying costimulatory signals. Such T cell death can be inhibited in vivo by D that T cells disappear at about the same rate as they are inflammation and in vitro by cytokines; bacterial products promote http://www.jimmunol.org/ being produced. During the course of an in vivo acute viral infec- T cell survival by a mechanism involving Bcl-3 (11). The second tion, the appropriate Ag presentation by APCs leads to a rapid is induced by repeated TCR stimulation of activated T cells (ac- clonal expansion of CD8ϩ T cells (by ϳ4–5 log, ϳ1 wk), gener- tivation induced cell death), increasing Fas ligand expression, ating a population of effector cells where up to 50% respond to that which induces apoptosis of neighboring Fasϩ T cells; its role on single infectious agent (1). After infection clearance, there is a mature T and B cell homeostasis is shown by Fas and Fas ligand clonal contraction (by ϳ1–2 log, 8–30 days), leaving a smaller mutants, which trigger progressive lymphadenopathies (12, 13). population of virus-specific memory cells (ϳ5% of the virus-spe- Finally, during the clonal contraction phase of acute primary in- cific CD8ϩ T cells present at the response’s peak), which are main- fections, inflammation wanes, causing a reduction in cytokine ex- tained for years (1, 2). pression and triggering growth factor withdrawal-induced apopto- by guest on September 24, 2021 Recent data have shown that after stimulation, Ag-specific T sis. This apoptotic pathway is independent of Fas-mediated cells continue to divide in a “programmed” Ag-independent man- signaling (14) and strictly dependent on de novo transcription and ner (3–6). Interestingly, the population of epitope-specific CD8ϩ translation (15). It has been suggested that Bcl-2 protein family T cells changes exponentially during both the clonal expansion and members are implicated in this type of apoptosis, requiring the contraction phases (1, 7), where apoptosis plays a prominent role proapoptotic BH3-only member Bim (16). maintaining the system homeostasis. To gain insight on the mechanisms involved in the switch be- Apoptotic cell death plays a critical role not only during T cell tween clonal expansion and clonal contraction phases of CD8ϩ T development, but also for the homeostatic control of peripheral cell responses, the analysis of apoptosis induced by growth factor lymphoid organs and infected tissues, limiting the extent and du- deprivation was undertaken, uncovering the up-regulation of the ration of immune responses and providing a safeguard against im- chemokine receptor CCR2 upon growth factor deprivation. Its spe- munopathology (8–10). Three physiological mechanisms are cific ligand CCL2 significantly inhibited the apoptosis induced by known to trigger apoptosis of Ag-stimulated T cells. The first one IL-2 withdrawal in IL-2-dependent CTL cells, CTLL2 as well as in Ag-activated primary T cells. This inhibition led to an increase in the frequency of cells able to proliferate in response to either ex- Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cientı´fi- cas, Madrid, Spain ogenous IL-2 or to a secondary antigenic stimulation. These data ϩ Received for publication September 26, 2007. Accepted for publication September allow hypothesizing that in cytokine-deprived activated CD8 T 26, 2007. cells, CCL2 signaling can modulate the “choice” between survival The costs of publication of this article were defrayed in part by the payment of page and apoptosis; enabling them to migrate toward sites where Ag or charges. This article must therefore be hereby marked advertisement in accordance growth factors are available. with 18 U.S.C. Section 1734 solely to indicate this fact. 1 This work was supported by Grants SAF2003-00519 and SAF2006-04903 (to J.A.G.-S.) and SAF2006–4826 (to A.S.) from Spanish Ministry of Education and Materials and Methods Science contracts. Cell lines, culture conditions, and reagents 2 E.D.-G., R.V., and M.J. del P. contributed equally to this work and should be considered as joint first authors. CTLL2 (no. TIB214; American Type Culture Collection) (17) and B6.1 3 Address correspondence and reprint requests to Dr. Jose A. Garcia-Sanz, Centro de (18) are mouse CTL cell clones strictly dependent on exogenous IL-2 for Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cientı´ficas, Ramiro growth. In CTLL2 cells IL-2 deprivation induces apoptosis, where as this de Maeztu 9, 28040 Madrid, Spain. E-mail address: [email protected] treatment leads to a reversible proliferation arrest in B6.1 cells (19, 20). Cells were cultured in IMDM containing 10% heat-inactivated FCS, 10 Copyright © 2007 by The American Association of Immunologists, Inc. 0022-1767/07/$2.00 mM HEPES (pH 7.0), 0.05 mM 2-ME, 2 mM glutamine and saturating www.jimmunol.org The Journal of Immunology 7353 concentrations of mouse recombinant IL-2 (1% ϫ63 mIL-2 supernatant). cells were resuspended in PBS and stained with PI. For FACS Murine recombinant chemokines (PeproTech) were reconstituted at 0.1 analysis, the whole cell population was analyzed, after exclusion of cell mg/ml in water and used at 200 ng/ml CCL2, 100 ng/ml CCL5, and 10 doublets. ng/ml CXCL9, unless otherwise indicated. Goat anti-mouse CCR2 (CKR2b; Santa Cruz Biotechnology) revealed with a secondary rabbit anti- Limiting dilution analysis goat-FITC (Biomedia), and a PE-conjugated anti-mouse CCR5 Ab (BD Ag-activated primary CD8ϩ Pharmingen), were used at 0.2 ␮g of Ab/106 cells for FACS analysis, as T cells (7–15 days upon activation) were described (21). CCR2 and CCR5 analyses were conducted by gating the deprived of IL-2. Viable cells were FACS sorted and directly collected in 100 ␮ life cell population, which was negative for propidium iodide (PI)4 and l of IMDM, either in the absence or presence of recombinant Ϫ Ϫ IL-2 (100 U/well) or CCL2 (200 ng/ml), onto 96-well plates at 1, 3, 10, Annexin V (PI Annexin V ). or 30 cells/well (24 wells/group). Eighteen hours later, 100 ␮lofme- Primary CD8ϩ T cells and APCs dium containing 400 U/ml recombinant IL-2, either alone or in combi- nation with 100 irradiated APCs, and 2.4 nmol of antigenic peptide ϩ/ϩ Ϫ/Ϫ F5-TCR mice on a Rag1 background (22) were maintained in ho- (NH2-ASNENMDAM-COOH), were added to each well. After a 2-wk mozygosis on a C57BL/6 background. Animals were housed and bred in incubation at 37°C in a 5% CO2 incubator, plates were scored for the our animal facility, and in all experiments were treated in accordance to the presence of live proliferating cells. The frequency of cells able to pro- European Union and National Guide Lines and the Helsinki Declaration. liferate in each experimental condition determined as mean Ϯ SD were ␣ ␤ b The F5-TCR (V 4V 11) is positively selected on the H-2 haplotype; the estimated by interpolating the frequency that contains an average of one ϩ ␣ ϩ ␤ ϩ ϭ mature T cells are MHC class I-restricted CD8 V 4 V 11 , able to rec- precursor cell (F 0.37) on a semi-logarithmic plot containing the ognize the influenza virus A nucleoprotein peptide (366–374) in the con- estimated cells/well and the frequency of negative cultures on a log text of H2-Db (23).
Recommended publications
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials
    nanomaterials Article Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials Chinatsu Nishida 1, Hiroto Izumi 2, Taisuke Tomonaga 2 , Jun-ichi Takeshita 3 , Ke-Yong Wang 4, Kei Yamasaki 1, Kazuhiro Yatera 1 and Yasuo Morimoto 2,* 1 Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (C.N.); [email protected] (K.Y.); [email protected] (K.Y.) 2 Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (H.I.); [email protected] (T.T.) 3 Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; [email protected] 4 Shared-Use Research Center, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-93-691-7136 Received: 3 September 2020; Accepted: 9 October 2020; Published: 15 October 2020 Abstract: We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW).
    [Show full text]
  • Interleukin-15-Mediated Immunotoxicity and Exacerbation of Sepsis
    INTERLEUKIN-15-MEDIATED IMMUNOTOXICITY AND EXACERBATION OF SEPSIS: ROLE OF NATURAL KILLER CELLS AND INTERFERON γ By Yin Guo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Microbiology and Immunology December 2016 Nashville, Tennessee Approved Luc Van Kaer, Ph.D. Stokes Peebles, M.D. Lorraine Ware, M.D. Daniel Moore, M.D., Ph.D. Edward Sherwood, M.D, Ph.D. i Copyright © 2016 by Yin Guo All Rights Reserved ii ACKNOWLEDGEMENTS I would like to thank my thesis mentor, Dr. Edward Sherwood for his tremendous instruction and support during my entire Ph.D. training course. I joined Dr. Sherwood’s lab in the department of Microbiology and Immunology of University of Texas Medical Branch (UTMB) at Galveston in 2011. I appreciated the offer Dr. Sherwood provided to move to Vanderbilt University together. During the new lab setup period, he gave me a lot of encouragement about going out to meet students and professors at the Pathology, Microbiology and Immunology Department. From making new friends in our department, I started to know a lot of useful information and resources about how to adapt to new life in Nashville and how to prepare for the qualifying exam. Dr. Sherwood is a highly responsible and enthusiastic mentor although he has busy medical practice in the operating room and needs to write many grants. I have to say, he is the most diligent person I have seen in the world. It is amazing to me that he never seems to be exhausted or desensitized with reviewing our papers, reading papers, writing grants, and discussing data and new ideas.
    [Show full text]
  • CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1
    The Journal of Immunology CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1 Eva Diaz-Guerra,2 Rolando Vernal,2 M. Julieta del Prete,2 Augusto Silva, and Jose A. Garcia-Sanz3 The precise mechanisms involved in the switch between the clonal expansion and contraction phases of a CD8؉ T cell response remain to be fully elucidated. One of the mechanisms implicated in the contraction phase is cytokine deprivation, which triggers apoptosis in these cells. CCR2 chemokine receptor is up-regulated following IL-2 deprivation, and its ligand CCL2 plays an essential role preventing apoptosis induced by IL-2 withdrawal not only in CTLL2 cells, but also in mouse Ag-activated primary CD8؉ T cells because it rescued functional CD8؉ T cells from deprivation induced apoptosis, promoting proliferation in response to subsequent addition of IL-2 or to secondary antigenic challenges. Thus, up-regulation of the CCR2 upon growth factor with- drawal together with the protective effects of CCL2, represent a double-edged survival strategy, protecting cells from apoptosis and enabling them to migrate toward sites where Ag and/or growth factors are available. The Journal of Immunology, 2007, 179: 7352–7357. espite the continuous generation of T lymphocytes in the is induced by TCR stimulation of naive T cells in the absence of body, their total number is tightly regulated, implying costimulatory signals. Such T cell death can be inhibited in vivo by D that T cells disappear at about the same rate as they are inflammation and in vitro by cytokines; bacterial products promote being produced.
    [Show full text]
  • Predictive Value of Preoperative Serum CCL2, CCL18, and VEGF for the Patients with Gastric Cancer Jianghong Wu1,2†, Xiaowen Liu1,2† and Yanong Wang1,2*
    Wu et al. BMC Clinical Pathology 2013, 13:15 http://www.biomedcentral.com/1472-6890/13/15 RESEARCH ARTICLE Open Access Predictive value of preoperative serum CCL2, CCL18, and VEGF for the patients with gastric cancer Jianghong Wu1,2†, Xiaowen Liu1,2† and Yanong Wang1,2* Abstract Background: To investigate the expression of chemokine ligand 2 (CCL2), chemokine ligand 18 (CCL18), and vascular endothelial growth factor (VEGF) in peripheral blood of patients with gastric cancer and their correlation with presence of malignancy and disease progression. Methods: Sixty patients with pathological proved gastric cancer were prospectively included into study. The levels of CCL2, CCL18, and VEGF in peripheral blood were examined by enzyme-linked immunosorbentassay (ELISA). Peripheral blood from 20 healthy people was examined as control. Results: The preoperative serum levels of CCL2, CCL18 and VEGF in gastric cancer patients were significantly higher than that of controls (P <0.001, P <0.001, and P <0.001, respectively). ROC curve analysis showed that with a cut-off value of ≥1272.8, the VEGF*CCL2 predicted the presence of gastric cancer with 83% sensitivity and 80% specificity. Preoperative serum CCL2 was significantly correlated to N stage (P =0.040); CCL18 associated with N stage (P =0.002), and TNM stage (P =0.002); VEGF correlated to T stage (P =0.000), N stage (P =0.015), and TNM stage (P =0.000). Conclusion: Preoperative serum levels of CCL2 and VEGF could play a crucial role in predicting the presence and progression of gastric cancer. Keywords: Gastric cancer, Diagnosis, Biological markers Background Chemokines were a kind of low-molecular weight cy- Although the incidence of gastric cancer has been sub- tokines, which were implicated in many biological pro- stantially declining for several decades, it was still the cesses, such as migration of leukocytes, angiogenesis, fourth most common cancer and the second most fre- and tumor growth.
    [Show full text]
  • Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1
    pathogens Article Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1 Acacia F. Dishman 1,2,†, Jie He 3,†, Brian F. Volkman 1,* and Anna R. Huppler 3,* 1 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 2 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected] (B.F.V.); [email protected] (A.R.H.) † These authors contributed equally. Abstract: Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α–β monomer) and an alternate fold (an all-β dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate Citation: Dishman, A.F.; He, J.; the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associ- Volkman, B.F.; Huppler, A.R.
    [Show full text]
  • CCL2 Is a Vascular Permeability Factor Inducing CCR2-Dependent Endothelial Retraction During Lung Metastasis Marko Roblek1, Darya Protsyuk1, Paul F
    Published OnlineFirst December 14, 2018; DOI: 10.1158/1541-7786.MCR-18-0530 Signal Transduction and Functional Imaging Molecular Cancer Research CCL2 Is a Vascular Permeability Factor Inducing CCR2-Dependent Endothelial Retraction during Lung Metastasis Marko Roblek1, Darya Protsyuk1, Paul F. Becker2, Cristina Stefanescu1, Christian Gorzelanny3, Jesus F.Glaus Garzon1, Lucia Knopfova4,5, Mathias Heikenwalder2,6, Bruno Luckow7, Stefan W. Schneider3, and Lubor Borsig1 Abstract Increased levels of the chemokine CCL2 in cancer patients of vascular permeability induction was observed only in are associated with poor prognosis. Experimental evidence Ccr2ecKO mice. CCL2 stimulation of pulmonary endothe- suggests that CCL2 correlates with inflammatory monocyte lial cells resulted in increased phosphorylation of MLC2, recruitment and induction of vascular activation, but the endothelial cell retraction, and vascular leakiness that was functionality remains open. Here, we show that endothelial blocked by an addition of a CCR2 inhibitor. These data Ccr2 facilitates pulmonary metastasis using an endothelial- demonstrate that endothelial CCR2 expression is required specific Ccr2-deficient mouse model (Ccr2ecKO). Similar for tumor cell extravasation and pulmonary metastasis. levels of circulating monocytes and equal leukocyte recruit- fl/fl ment to metastatic lesions of Ccr2ecKO and Ccr2 litter- Implications: The findings provide mechanistic insight into mates were observed. The absence of endothelial Ccr2 how CCL2–CCR2 signaling in endothelial cells promotes their strongly reduced pulmonary metastasis, while the primary activation through myosin light chain phosphorylation, tumor growth was unaffected. Despite a comparable cyto- resulting in endothelial retraction and enhanced tumor cell fl/fl kine milieu in Ccr2ecKO and Ccr2 littermates the absence migration and metastasis. Introduction monocytic cells that contribute to formation of a metastatic niche (3–5).
    [Show full text]
  • Fbxw7 Increases CCL2/7 in CX3CR1 Macrophages to Promote Intestinal Inflammation
    Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation Jia He, … , Lihua Lai, Qingqing Wang J Clin Invest. 2019. https://doi.org/10.1172/JCI123374. Research In-Press Preview Immunology Inflammation Resident and inflammatory mononuclear phagocytes (MPh) with functional plasticity in the intestine are critically involved in the pathology of Inflammatory Bowel Diseases (IBD), in which the mechanism remains incompletely understood. In the present study, we found that increased expression of E3 ligase FBXW7 in the inflamed intestine was significantly correlated to IBD severity in both human diseases and mice model. Myeloid-Fbxw7 deficiency protected mice from dextran sodium sulfate (DSS) and 2,6,4-trinitrobenzene sulfonic acid (TNBS) induced colitis. Fbxw7 deficiency resulted in decreased production of chemokines CCL2 and CCL7 by colonic CX3CR1hi resident macrophages and reduced accumulation of CX3CR1int pro-inflammatory MPh in colitis colon tissue. Mice received AAV-shFbxw7 administration showed significantly improved survival rate and alleviated colitis. Mechanisms screening demonstrated that FBXW7 suppresses H3K27me3 modification and promotes Ccl2 and Ccl7 expression via degradation of histone-lysine N- methyltransferase EZH2 in macrophages. Taken together, our results indicate that FBXW7 degrades EZH2 and increases Ccl2/Ccl7 in CX3CR1hi macrophages, which promotes the recruiting CX3CR1int pro-inflammatory MPh into local colon tissues with colitis. Targeting FBXW7 might represent a potential therapeutic approach for intestine inflammation intervention. Find the latest version: https://jci.me/123374/pdf Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation Jia He1,#, Yinjing Song1,#, Gaopeng Li1,#, Peng Xiao2, Yang Liu1, Yue Xue1, Qian Cao2, Xintao Tu1, Ting Pan1, Zhinong Jiang3, Xuetao Cao1,4, Lihua Lai1,*, and Qingqing Wang1,* Authors Affiliations 1Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P.
    [Show full text]
  • Lymphotactin Mediates Antiviral T Cell Trafficking Within
    LYMPHOTACTIN MEDIATES ANTIVIRAL T CELL TRAFFICKING WITHIN THE CENTRAL NERVOUS SYSTEM DURING WEST NILE VIRUS ENCEPHALITIS A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Biological Sciences By Sharese Tronti 2019 SIGNATURE PAGE THESIS: LYMPHOTACTIN MEDIATES ANTIVIRAL T CELL TRAFFICKING WITHIN THE CENTRAL NERVOUS SYSTEM DURING WEST NILE VIRUS ENCEPHALITIS AUTHOR: Sharese Tronti DATE SUBMITTED: Spring 2019 Department of Biological Sciences Dr. Douglas Durrant Thesis Committee Chair Biological Sciences Dr. Andrew Steele Biological Sciences Dr. Jamie Snyder Biological Science ii ABSTRACT West Nile Virus (WNV), a neurotropic flavivirus, can cause neuroinvasive disease in humans. After peripheral infection, WNV is able to enter the central nervous system (CNS) and infect neurons causing neuronal injury and inflammation that potentially may result in fatality. In order to restrict viral replication and pathogenesis within the CNS during WNV encephalitis, virus-specific CD8+ T cells are critically dependent on dendritic cell (DC) mediated reactivation at this site. However, the mechanism by which DCs are recruited to the brain to ensure their interaction with infiltrating virus-specific CD8+ T cells remains unknown. Previous studies have demonstrated that, upon activation, CD8+ T cells rapidly produce the chemokine lymphotactin when activated. The receptor for lymphotactin, XCR1, is exclusively expressed on a subset of DCs, CD8+ DCs, which have been shown to be essential in establishing protective peripheral immunity against viruses and intracellular bacteria. In this study, we show that lymphotactin regulates the CNS entry of T lymphocytes, potentially promoting virologic control within the CNS and limiting neuronal cell death.
    [Show full text]
  • CCL2 and CXCL1 Trigger Calcitonin Gene-Related Peptide Release by Exciting Primary Nociceptive Neurons
    Journal of Neuroscience Research 82:51–62 (2005) CCL2 and CXCL1 Trigger Calcitonin Gene-Related Peptide Release by Exciting Primary Nociceptive Neurons Xiaomei Qin,1 You Wan,2 and Xian Wang1,3,4* 1Institute of Vascular Medicine, Peking University Third Hospital, Beijing, People’s Republic of China 2Neuroscience Research Institute, Basic Medical College, Peking University, Beijing, People’s Republic of China 3Department of Physiology, Basic Medical College, Peking University, Beijing, People’s Republic of China 4Key Laboratory of Molecular Cardiovascular Science of Education Ministry, Basic Medical College, Peking University, Beijing, People’s Republic of China Chemokines are important mediators in immune responses inflammation, whereas the release from terminals in the and inflammatory processes. Calcitonin gene-related pep- dorsal horn of the spinal cord modulates pain transmis- tide (CGRP) is produced in dorsal root ganglion (DRG) sion (Oku et al., 1987; Holzer, 1988). neurons. In this study, CGRP radioimmunoassay was used Chemokines are small, secreted proteins that stimu- to investigate whether the chemokines CCL2 and CXCL1 late the directional migration of leukocytes and mediate could trigger CGRP release from cultured DRG neurons of inflammation (Baggiolini et al., 1997). The chemokine neonatal rats and, if so, which cellular signaling pathway receptor family is the largest family of G-protein-coupled was involved. The results showed that CCL2 and CXCL1 receptors. Accordingly, the number of chemokines bind- (5–100 ng/ml) evoked CGRP release and intracellular ing these receptors is large, with >50 chemokine pepti- calcium elevation in a pertussis toxin (PTX)-sensitive man- des identified to date (Onuffer and Horuk, 2002). In ner.
    [Show full text]
  • COVID-19: Mechanisms of Vaccination and Immunity
    Review COVID-19: Mechanisms of Vaccination and Immunity Daniel E. Speiser 1,* and Martin F. Bachmann 2,3,4,* 1 Department of Oncology, University Hospital and University of Lausanne, 1066 Lausanne, Switzerland 2 International Immunology Centre, Anhui Agricultural University, Hefei 230036, China 3 Department of Rheumatology, Immunology and Allergology, Inselspital, University of Bern, 3010 Bern, Switzerland 4 Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland * Correspondence: [email protected] (D.E.S.); [email protected] (M.F.B.) Received: 2 July 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Vaccines are needed to protect from SARS-CoV-2, the virus causing COVID-19. Vaccines that induce large quantities of high affinity virus-neutralizing antibodies may optimally prevent infection and avoid unfavorable effects. Vaccination trials require precise clinical management, complemented with detailed evaluation of safety and immune responses. Here, we review the pros and cons of available vaccine platforms and options to accelerate vaccine development towards the safe immunization of the world’s population against SARS-CoV-2. Favorable vaccines, used in well-designed vaccination strategies, may be critical for limiting harm and promoting trust and a long-term return to normal public life and economy. Keywords: SARS-CoV-2; COVID-19; nucleic acid tests; serology; vaccination; immunity 1. Introduction The COVID-19 pandemic holds great challenges for which the world is only partially prepared [1]. SARS-CoV-2 combines serious pathogenicity with high infectivity. The latter is enhanced by the fact that asymptomatic and pre-symptomatic individuals can transmit the virus, in contrast to SARS-CoV-1 and MERS-CoV, which were transmitted by symptomatic patients and could be contained more efficiently [2,3].
    [Show full text]
  • GM-CSF Up-Regulates the Expression of CCL2 by T Lymphocytes in Mammary Tumor-Bearing Mice
    129-136 2/6/07 11:42 Page 129 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 129-136, 2007 129 GM-CSF up-regulates the expression of CCL2 by T lymphocytes in mammary tumor-bearing mice JENNIFER L. OWEN1, MARTA TORROELLA-KOURI 2, MARY E. HANDEL-FERNANDEZ2 and VIJAYA IRAGAVARAPU-CHARYULU1 1Department of Basic Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431; 2Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA Received January 16, 2007; Accepted February 23, 2007 Abstract. MCP-1/CCL2 (monocyte chemoattractant protein- the appropriate activation of these cells. Chemokines are a 1/CC chemokine ligand 2) is a ß or CC chemokine that is group of inducible, proinflammatory cytokines that interact expressed by a variety of cell types, including fibroblasts, with leukocytes and recruit them into the tumor. Clinically, endothelial, smooth muscle, and glial cells. In addition, cells elevated levels of chemokines have been found in a variety involved in immunity, such as monocytes/macrophages, of inflammatory diseases including cancer (1). The prototype neutrophils, and eosinophils have also been shown to express CC chemokine is a monocyte chemoattractant protein-1 this chemoattractant. Using a murine model of the D1- (MCP-1/CCL2) that was first identified as a potent chemo- DMBA-3 mammary adenocarcinoma, we demonstrated the taxin for monocytes (2) and is also a chemotactic for activated unique production of CCL2 by splenic T lymphocytes from T lymphocytes, natural killer cells, and basophils (3-5). This tumor-bearing animals. Because this tumor produces chemokine is synthesized by a variety of cell types in response GM-CSF, and this factor is also up-regulated in the B to various stimuli including cytokines.
    [Show full text]