Leveraging Omics Data to Expand the Value and Understanding of Alternative Splicing

Total Page:16

File Type:pdf, Size:1020Kb

Leveraging Omics Data to Expand the Value and Understanding of Alternative Splicing Leveraging Omics Data to Expand the Value and Understanding of Alternative Splicing By ______________________ Nathan T. Johnson A Dissertation Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Bioinformatics & Computational Biology APPROVED: __________________________ __________________________ Dmitry Korkin, Ph.D. Amity L. Manning, Ph.D. Advisor Committee Member Program Director __________________________ __________________________ Zheyang Wu, Ph.D. Scarlet Shell, Ph.D. Committee Member Committee Member __________________________ Ben Raphael, Ph.D. External Committee Member i “Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make, because they lead little by little to the truth.” Jules Verne, Journey to the Center of the Earth ii ABSTRACT Utilizing ‘omics’ data of diverse types such as genomics, proteomics, transcriptomics, epigenomics, and others has largely been attributed as holding great promise for solving the complexity of many health and ecological problems such as complex genetic diseases and parasitic destruction of farming crops. By using bioinformatics, it is possible to take advantage of ‘omics’ data to gain a systems level molecular perspective to achieve insight into possible solutions. One possible solution is understanding and expanding the use of alternative splicing (AS) of mRNA precursors. Typically, genes are considered the focal point as the main players in the molecular world. However, due to recent ‘omics’ analysis across the past decade, AS has been demonstrated to be the main player in causing protein diversity. This is possible as AS rearranges the key components of a gene (exon, intron, and untranslated regions) to generate diverse functionally unique proteins and regulatory RNAs. AS is highly prevalent, where on average 10 AS transcripts occur for every gene in humans. Furthermore, multiple transcripts can be expressed at the same moment leading to different protein products that can interact within their molecular environment in unique ways. The prevalence on which transcripts are alternatively spliced has been demonstrated to be based on age, tissue, cell type, and disease state. This work brings together different ‘omics’ data to expand our understanding and promote the value of AS Specifically, there are six projects described here which make use of transcriptomics, proteomics, genomics, and epigenomics, which often overlap, on the focus in a couple of complex genetic diseases as well as analyzing a parasite, which infects soybeans. The projects range from systemically profiling machine learning methods utilizing RNA-Seq based alternative splicing expression data to promote its use, development of a method to predict whether an alternative spliced protein affects its interaction, a systematic analysis across the transcriptome for comparing iii binding sites and domains with alternative splicing and expression patterns, assessment of single nucleotide variation on protein binding sites in cancer, assessment of epigenomics with transcriptomics within the context of acute lymphoblastic leukemia, and looking for patterns of alternative splicing on parasites infecting soybeans. iv ACKNOWLEDGEMENTS I, first, would like to thank my Ph.D. mentor Dr. Dmitry Korkin, who has provided valuable guidance to shape how I approach science. His insight and invaluable ideas constantly refined and challenged me to be a better researcher. I will be forever indebted to him for his valuable mentorship. Additionally, I would like to thank my committee members, Drs. Amity Manning, Ben Raphael, Scarlet Shell, and Zheyang Wu for their valuable feedback and suggestions to improve my quality of communication both orally and in written format. I, second, would like to thank my fellow lab members and collaborators, who without, this work would not have been possible to be completed: Andi Dhroso, Hongzhu Cui, Suhas Srinivasan, Oleksandr (Alex) Narykov, Xingyan Kuang, Katelyn (Katie) Hughes, Anastasia (Ana) Leshchyk, Nan Hu, and Nan (Alan) Zhao. Specifically, I would like to give a double thanks to Andi, Suhas, Hongzhu, and Alex due to their lengthy discussions, debates, and collaborative work that has allowed the various works within this dissertation to be the quality it is. I, third, am grateful to the University of Missouri, Worcester Polytechnic Institute, the National Science Foundation, and National Institute of Health for the environment and resources that allow research to exist. Explicitly, would like to thank my external and internal collaborators, Drs. Kristen Taylor, Melissa Mitchum, Gerald Arthur, Amity Manning, Rodrigo Aldecoa, Dmitri Krioukov, Nematode Consortium, Suzanne Scarlata, Michael Green, and Haiyuan Yu. As without their problems, insight, and data, the work described here and elsewhere would not be possible. Lastly, would like to thank Takeda Pharmaceuticals for their internship, which opened my eyes to the possibilities within science in industry. v I, fourth, would like to acknowledge the countless people that can be attributed for their valuable contribution to the scientist and person that I have become prior to entering this Ph.D. program: Chestnut Laboratories and Drs. Glenner Richards, Stephen Badger, Elizabeth Bryda, and Robert White. Without their countless impact, I would not have ever considered a scientific career path or been equipped with the tools to excel. Finally, I would like to thank my family for their constant support and understanding during this process. Their admiration and support helped give me the persistence to finish this process. Exceptional thanks go to my wife, Amanda Johnson, to whom without I would never have finished. Her constant love, support, and support (on purpose twice) gave me the motivation and perseverance. My honors and achievements are dedicated to all these people, as without, impossible. vi TABLE OF CONTENTS ABSTRACT……………………………………………………………………………………………...iii ACKNOWLEDGEMENTS ............................................................................................. v TABLE OF CONTENTS ............................................................................................... vii LIST OF ILLUSTRATIONS .......................................................................................... xi LIST OF TABLES ....................................................................................................... xxiii CHAPTER 1: Introduction and Literature Review ...................................................... 1 1.1 21ST CENTURY PROBLEMS ............................................................................................ 1 1.2 VALUE OF OMICS DATA (14) ....................................................................................... 2 1.3 ALTERNATIVE SPLICING AND POSTRANSCRIPTIONAL VARIATION IN COMPLEX GENETIC DISORDERS 5 1.4 STUDYING GENETIC VARIATION IN COMPLEX GENETIC DISORDERS ............................... 8 1.5 STUDYING EPIGENOMIC VARIATION IN COMPLEX GENETIC DISORDERS ....................... 10 1.6 SUMMARY 13 1.7 SUMMARY OF DISSERTATION ....................................................................................... 13 CHAPTER 2: TRANSCRIPTOMICS .......................................................................... 16 2.1 EPIGENETIC AND RNA EFFECTS IN ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) .......... 16 2.1.1 Abstract ............................................................................................................. 16 2.1.2 Introduction....................................................................................................... 16 2.1.3 Results ............................................................................................................... 18 2.1.3 Discussion ......................................................................................................... 28 vii 2.1.3 Materials and Methods ..................................................................................... 31 2.2 NOVEL GLOBAL EFFECTOR MINING FROM THE TRANSCRIPTOME OF EARLY LIFE STAGES OF THE SOYBEAN CYST NEMATODE HETERODERA GLYCINES (158) .................................................. 36 2.2.1 Abstract ............................................................................................................. 36 2.2.2 Introduction....................................................................................................... 36 2.2.3 Results ............................................................................................................... 39 2.2.3 Discussion ......................................................................................................... 56 2.2.4 Materials & Methods ........................................................................................ 63 2.3 BIOLOGICAL CLASSIFICATION WITH RNA-SEQ DATA: CAN ALTERNATIVE SPLICED TRANSCRIPT EXPRESSION ENHANCE MACHINE LEARNING CLASSIFIER? (239) ......................................... 71 2.3.1 Abstract ............................................................................................................. 71 2.3.2 Introduction....................................................................................................... 72 2.3.3 Results ............................................................................................................... 75 2.3.4 Discussion ........................................................................................................
Recommended publications
  • Product Data Sheet
    For research purposes only, not for human use Product Data Sheet HIST1H4E siRNA (Human) Catalog # Source Reactivity Applications CRH5487 Synthetic H RNAi Description siRNA to inhibit HIST1H4E expression using RNA interference Specificity HIST1H4E siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Form Lyophilized powder Gene Symbol HIST1H4E Alternative Names H4/E; H4FE; Histone H4 Entrez Gene 8367 (Human) SwissProt P62805 (Human) Purity > 97% Quality Control Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency. Components We offers pre-designed sets of 3 different target-specific siRNA oligo duplexes of human HIST1H4E gene. Each vial contains 5 nmol of lyophilized siRNA. The duplexes can be transfected individually or pooled together to achieve knockdown of the target gene, which is most commonly assessed by qPCR or western blot. Our siRNA oligos are also chemically modified (2’-OMe) at no extra charge for increased stability and enhanced knockdown in vitro and in vivo. Directions for Use We recommends transfection with 100 nM siRNA 48 to 72 hours prior to cell lysis. Application key: E- ELISA, WB- Western blot, IH- Immunohistochemistry,
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs of this journey. iv EPIGRAPH It is foolish to tear one's hair in grief, as though sorrow would be made less by baldness. ~Cicero v TABLE OF CONTENTS Signature Page .............................................................................................................. iii Dedication ....................................................................................................................
    [Show full text]
  • HIST1H3D: a Promising Therapeutic Target for Lung Cancer
    INTERNATIONAL JOURNAL OF ONCOLOGY 50: 815-822, 2017 HIST1H3D: A promising therapeutic target for lung cancer YAN RUI1*, WEN-JIA PENG2*, MING WANG1*, QIAN WANG1*, ZI-LI LIU1, YU-QING CHEN1 and LI-NIAN HUANG1 1Department of Respiration and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Lung Cancer Diagnosis and Treatment Center of Anhui Province, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, Bengbu, Anhui 233004; 2Department of Epidemiology and Health Statistics, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China Received October 6, 2016; Accepted December 1, 2016 DOI: 10.3892/ijo.2017.3856 Abstract. HIST1H3D gene encodes histone H3.1 and is involved CDKN1 and CCNE2 genes. In conclusion, our results suggest in gene-silencing and heterochromatin formation. HIST1H3D that HIST1H3D is highly expressed in lung cancer cell lines expression is upregulated in primary gastric cancer tissue. In and tissues. Furthermore, HIST1H3D may be important in this study, we explored the effects of HIST1H3D expression cell proliferation, apoptosis and cell cycle progression, and is on lung cancer, and its mechanisms. HIST1H3D expression implicated as a potential therapeutic target for lung cancer. was measured by immunohistochemistry and RT-PCR in lung cancer tissues and human lung cancer cell lines. Cell prolif- Introduction eration was assessed by MTT assay. Flow cytometric analysis was used to determine cell cycle distribution and apoptosis. Lung cancer is one of the most common cancers and the Levels of related proteins were detected by western blotting. major cause of cancer deaths worldwide, with 1.6 million new Bioinformatics analysis was performed to investigate related lung cancer cases and 1.4 million lung cancer deaths each signaling pathways.
    [Show full text]
  • Contrasting Expression Patterns of Histone Mrna and Microrna 760 in Patients with Gastric Cancer
    Published OnlineFirst October 4, 2013; DOI: 10.1158/1078-0432.CCR-12-3186 Clinical Cancer Human Cancer Biology Research Contrasting Expression Patterns of Histone mRNA and microRNA 760 in Patients with Gastric Cancer Takeshi Iwaya1,2, Takeo Fukagawa3, Yutaka Suzuki4, Yusuke Takahashi1, Genta Sawada1, Masahisa Ishibashi1, Junji Kurashige1, Tomoya Sudo1, Fumiaki Tanaka1, Kohei Shibata1, Fumitaka Endo2, Hirokatsu Katagiri2, Kaoru Ishida2, Kohei Kume2, Satoshi Nishizuka2, Hisae Iinuma5, Go Wakabayashi2, Masaki Mori6, Mitsuru Sasako7, and Koshi Mimori1 Abstract Purpose: Recent studies revealed that both disseminated tumor cells and noncancerous cells contributed to cancer progression cooperatively in the bone marrow. Here, RNA-seq analysis of bone marrow from gastric cancer patients was performed to identify prognostic markers for gastric cancer. Experimental Design: Bone marrow samples from eight gastric cancer patients (stages I and IV: n ¼ 4 each) were used for RNA-seq analysis. Results were validated through quantitative real-time PCR (qRT-PCR) analysis of HIST1H3D expression in 175 bone marrow, 92 peripheral blood, and 115 primary tumor samples from gastric cancer patients. miR-760 expression was assayed using qRT-PCR in 105 bone marrow and 96 primary tumor samples. Luciferase reporter assays were performed to confirm whether histone mRNAs were direct targets of miR-760. miR-760 expression was also evaluated in noncancerous cells from gastric cancer patients. Results: RNA-seq analysis of bone marrow samples from gastric cancer patients revealed higher expression of multiple histone mRNAs in stage IV patients. HIST1H3D expression in the bone marrow, peripheral blood, and primary tumor of stage IV patients was higher than that in stage I patients (P ¼ 0.0284, 0.0243, and 0.0006, respectively).
    [Show full text]
  • Gene Expression Imputation Across Multiple Brain Regions Provides Insights Into Schizophrenia Risk
    VU Research Portal Gene expression imputation across multiple brain regions provides insights into schizophrenia risk iPSYCH-GEMS Schizophrenia Working Group; CommonMind Consortium; The Schizophrenia Working Group of the PsyUniversity of Copenhagenchiatric Genomics Consortium published in Nature Genetics 2019 DOI (link to publisher) 10.1038/s41588-019-0364-4 document version Publisher's PDF, also known as Version of record document license Article 25fa Dutch Copyright Act Link to publication in VU Research Portal citation for published version (APA) iPSYCH-GEMS Schizophrenia Working Group, CommonMind Consortium, & The Schizophrenia Working Group of the PsyUniversity of Copenhagenchiatric Genomics Consortium (2019). Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 51(4), 659–674. https://doi.org/10.1038/s41588-019-0364-4 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28.
    [Show full text]
  • Network Assessment of Demethylation Treatment in Melanoma: Differential Transcriptome-Methylome and Antigen Profile Signatures
    RESEARCH ARTICLE Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures Zhijie Jiang1☯, Caterina Cinti2☯, Monia Taranta2, Elisabetta Mattioli3,4, Elisa Schena3,5, Sakshi Singh2, Rimpi Khurana1, Giovanna Lattanzi3,4, Nicholas F. Tsinoremas1,6, 1 Enrico CapobiancoID * a1111111111 1 Center for Computational Science, University of Miami, Miami, FL, United States of America, 2 Institute of Clinical Physiology, CNR, Siena, Italy, 3 CNR Institute of Molecular Genetics, Bologna, Italy, 4 IRCCS Rizzoli a1111111111 Orthopedic Institute, Bologna, Italy, 5 Endocrinology Unit, Department of Medical & Surgical Sciences, Alma a1111111111 Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy, 6 Department of a1111111111 Medicine, University of Miami, Miami, FL, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Jiang Z, Cinti C, Taranta M, Mattioli E, Schena E, Singh S, et al. (2018) Network assessment of demethylation treatment in Background melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS ONE 13(11): In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the met- e0206686. https://doi.org/10.1371/journal. astatic process. These effects are usually measured by changes in both methylome and pone.0206686 transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at Editor: Roger Chammas, Universidade de Sao systems scale the significance of epigenetic treatment in melanoma cells with different met- Paulo, BRAZIL astatic potential. Received: June 20, 2018 Accepted: October 17, 2018 Methods and findings Published: November 28, 2018 Treatment by DAC demethylation with 5-Aza-2'-deoxycytidine of two melanoma cell lines Copyright: © 2018 Jiang et al.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Cancer TNT Ashwin Ram 12/5/2017 Background: Chromatin Writers, Readers, Erasers
    Cancer TNT Ashwin Ram 12/5/2017 Background: Chromatin Writers, Readers, Erasers writer effector eg. HAT, HMT reader eg. bromodomain eraser eg. HDAC, KDM The writer HAT1: A known H4 lysine 5,12 di-acetyltransferase writer siHAT1 siControl HAT1 H4 K12Ac H4 K5Ac actin Western blot for histone H4 modifications after control and HAT1 siRNA transfections. HAT1: EGF-stimulated immunoprecipitation specific specific - - HAT1 IgG HAT1 IgG - - R α non R α non EGF: + + + - - - WB: HAT1 Immunoprecipitation / WB to measure HAT1 levels +/- Heatmap of gene expression changes of all human histone EGF acetyltransferases +/- EGF and siRNA treatments shows HAT1 expression is EGF-dependent Working model of HAT1 : The oldest “new” histone acetyltransferase EGF EGFR plasma membrane HAT1 H4 H3 Rbap46/48 a nuclear membrane H4 H2A H3 H2B HAT1 S phase Surprise: HAT1 also binds (a few sites) on chromatin HAT1 ChipSeq signal sits on Hist1 locus on Chromosome 6 Read Depth HAT1 bound sites (zoom) HAT1 ChIP-seq peaks cluster at Read Depth histone H4 promoters. Hist1H2BE Hist1H4D Hist1H3D Hist1H4E Is HAT1 a transcription factor for its substrate (H4)? EGF EGFR plasma membrane HAT1 H4 H3 Rbap46/48 a nuclear membrane H4 H2A H3 H2B HAT1 S phase HAT1 is required for S-phase burst of histone H4 mRNA HAT1 Hist1H4B mRNA level 50 Rbap46 45 shCont-3 H4 40 shHAT1-A7 35 shHAT1-B6 30 25 B6 A7 - - 20 15 shHAT1 shHAT1 shControl 10 Gene actin)Expression (versus 5 HAT1 0 0 2 4 6 8 10 actin hours after release from double thymidine block G1 S G2/M HAT1 loss: Life with less histones EGF
    [Show full text]
  • Description: Uniprot:P68431 Alternative Names:
    TA0863 Histone H3 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post- translational modifications of histones, also called histone code, and nucleosome remodeling. Uniprot:P68431 Alternative Names: H3 histone family, member A; H3/A; H31_HUMAN; H3FA; Hist1h3a; HIST1H3B; HIST1H3C; HIST1H3D; HIST1H3E; HIST1H3F; HIST1H3G; HIST1H3H; HIST1H3I; HIST1H3J; histone 1, H3a; Histone cluster 1, H3a; Histone H3.1; Histone H3/a; Histone H3/b; Histone H3/c; Histone H3/d; Histone H3/f; Histone H3/h; Histone H3/i; Histone H3/j; Histone H3/k; Histone H3/l; ;H3.3A; HIST1 cluster, H3E; H3 histone family, member A; H3.1; H3/l; H3F3; H3FF; H3FJ; H3FL; Histone gene cluster 1, H3 histone family, member E; histone H3.1t; Histone H3/o; FLJ92264; H 3; H3; H3 histone family, member B; H3 histone family, member C; H3 histone family, member D; H3 histone family, member F; H3 histone family, member H; H3 histone family, member I; H3 histone family, member J; H3 histone family, member K; H3 histone family, member L; H3 histone family, member T; H3 histone, family 3A; H3/A; H3/b; H3/c; H3/d; h3/f; H3/h; H3/i; H3/j; H3/k; H3/t; H31_HUMAN; H3F1K;
    [Show full text]
  • Genome-Wide Association Study of Dietary Intake in the UK Biobank Study and Its Associations with Schizophrenia and Other Traits Maria Niarchou1,2,3, Enda M
    Niarchou et al. Translational Psychiatry (2020) 10:51 https://doi.org/10.1038/s41398-020-0688-y Translational Psychiatry ARTICLE Open Access Genome-wide association study of dietary intake in the UK biobank study and its associations with schizophrenia and other traits Maria Niarchou1,2,3, Enda M. Byrne1, Maciej Trzaskowski4, Julia Sidorenko 1,5, Kathryn E. Kemper1, John J. McGrath 6,7,8,MichaelC.O’ Donovan 2,MichaelJ.Owen2 and Naomi R. Wray 1,6 Abstract Motivated by observational studies that report associations between schizophrenia and traits, such as poor diet, increased body mass index and metabolic disease, we investigated the genetic contribution to dietary intake in a sample of 335,576 individuals from the UK Biobank study. A principal component analysis applied to diet question item responses generated two components: Diet Component 1 (DC1) represented a meat-related diet and Diet Component 2 (DC2) a fish and plant-related diet. Genome-wide association analysis identified 29 independent single- nucleotide polymorphisms (SNPs) associated with DC1 and 63 SNPs with DC2. Estimated from over 35,000 3rd-degree relative pairs that are unlikely to share close family environments, heritabilities for both DC1 and DC2 were 0.16 (standard error (s.e.) = 0.05). SNP-based heritability was 0.06 (s.e. = 0.003) for DC1 and 0.08 (s.e = 0.004) for DC2. We estimated significant genetic correlations between both DCs and schizophrenia, and several other traits. Mendelian randomisation analyses indicated a negative uni-directional relationship between liability to schizophrenia and tendency towards selecting a meat-based diet (which could be direct or via unidentified correlated variables), but a bi- fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; directional relationship between liability to schizophrenia and tendency towards selecting a sh and plant-based diet consistent with genetic pleiotropy.
    [Show full text]
  • Comprehensive Genome Methylation Analysis in Bladder Cancer: Identification and Validation of Novel Methylated Genes and Application of These As Urinary Tumor Markers
    Published OnlineFirst July 25, 2011; DOI: 10.1158/1078-0432.CCR-10-2659 Clinical Cancer Human Cancer Biology Research Comprehensive Genome Methylation Analysis in Bladder Cancer: Identification and Validation of Novel Methylated Genes and Application of These as Urinary Tumor Markers Thomas Reinert1, Charlotte Modin1, Francisco M. Castano1, Philippe Lamy1, Tomasz K. Wojdacz4, Lise Lotte Hansen4, Carsten Wiuf3, Michael Borre2, Lars Dyrskjøt1, and Torben F. Ørntoft1 Abstract Purpose: Epigenetic alterations are common and can now be addressed in a parallel fashion. We investigated the methylation in bladder cancer with respect to location in genome, consistency, variation in metachronous tumors, impact on transcripts, chromosomal location, and usefulness as urinary markers. Experimental Design: A microarray assay was utilized to analyze methylation in 56 samples. Inde- pendent validation was conducted in 63 samples by a PCR-based method and bisulfite sequencing. The methylation levels in 174 urine specimens were quantified. Transcript levels were analyzed using expression microarrays and pathways were analyzed using dedicated software. Results: Global methylation patterns were established within and outside CpG islands. We validated methylation of the eight tumor markers genes ZNF154 (P < 0.0001), HOXA9 (P < 0.0001), POU4F2 (P < 0.0001), EOMES (P ¼ 0.0005), ACOT11 (P ¼ 0.0001), PCDHGA12 (P ¼ 0.0001), CA3 (P ¼ 0.0002), and PTGDR (P ¼ 0.0110), the candidate marker of disease progression TBX4 (P < 0.04), and other genes with stage-specific methylation. The methylation of metachronous tumors was stable and targeted to certain pathways. The correlation to expression was not stringent. Chromosome 21 showed most differential methylation (P < 0.0001) and specifically hypomethylation of keratins, which together with keratin-like proteins were epigenetically regulated.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]