4D Exploration of Genetic Data for an Extended Range of Tunicates

Total Page:16

File Type:pdf, Size:1020Kb

4D Exploration of Genetic Data for an Extended Range of Tunicates ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates Justine Dardaillon, Delphine Dauga, Paul Simion, Emmanuel Faure, Takeshi Onuma, Melissa Debiasse, Alexandra Louis, Kazuhiro Nitta, Magali Naville, Lydia Besnardeau, et al. To cite this version: Justine Dardaillon, Delphine Dauga, Paul Simion, Emmanuel Faure, Takeshi Onuma, et al.. ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Research, Oxford University Press, 2019, 10.1093/nar/gkz955. hal-02415680 HAL Id: hal-02415680 https://hal.archives-ouvertes.fr/hal-02415680 Submitted on 18 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz955 ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates Justine Dardaillon1, Delphine Dauga 2, Paul Simion 3, Emmanuel Faure 4, Takeshi Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz955/5611675 by LIRMM user on 18 December 2019 A. Onuma 5, Melissa B. DeBiasse 6,7, Alexandra Louis 8, Kazuhiro R. Nitta 9, Magali Naville 10, Lydia Besnardeau11, Wendy Reeves12, Kai Wang13, Marie Fagotto14, Marion Gueroult-Bellone´ 2, Shigeki Fujiwara 15,Remi´ Dumollard 11, Michael Veeman 12, Jean-Nicolas Volff 10, Hugues Roest Crollius 8, Emmanuel Douzery 3, Joseph F. Ryan 6,7, Bradley Davidson16, Hiroki Nishida 5, Christelle Dantec 1,*,† and Patrick Lemaire 1,*,† 1CRBM, Universite´ de Montpellier, CNRS, Montpellier, France, 2Bioself Communication; 28 rue de la Bibliotheque,` F-13001 Marseille, France, 3ISEM, Universite´ de Montpellier, CNRS, IRD, EPHE, Montpellier, France, 4Laboratoire d’Informatique de Robotique et de Microelectronique´ de Montpellier (LIRMM), Universite´ de Montpellier, CNRS, Montpellier, France, 5Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan, 6Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA, 7Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA, 8DYOGEN, IBENS, Departement´ de Biologie, Ecole Normale Superieure,´ CNRS, Inserm, PSL Research University, F-75005 Paris, France, 9IBDM, Universite´ Aix-Marseille, CNRS, Marseille, France, 10Institut de Genomique´ Fonctionnelle de Lyon, Universite´ de Lyon, Ecole Normale Superieure´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS; 46 allee´ d’Italie, F-69364 Lyon, France, 11Laboratoire de Biologie du Developpement´ de Villefranche-sur-mer (LBDV), Sorbonne Universites,´ Universite´ Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France., 12Division of Biology, Kansas State University, Manhattan, KS 66506, USA, 13State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, 14Universitede´ Montpellier, Montpellier, France, 15Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi-shi, Kochi, Japan and 16Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA Received September 16, 2019; Revised October 08, 2019; Editorial Decision October 09, 2019; Accepted October 11, 2019 ABSTRACT other genetic elements, including repeated elements and cis-regulatory modules. Gene expression pro- ANISEED (https://www.aniseed.cnrs.fr)isthemain files for several thousand genes are formalized in model organism database for the worldwide com- both wild-type and experimentally-manipulated con- munity of scientists working on tunicates, the ver- ditions, using formal anatomical ontologies. These tebrate sister-group. Information provided for each data can be explored through three complementary species includes functionally-annotated gene and types of browsers, each offering a different view- transcript models with orthology relationships within point. A developmental browser summarizes the in- tunicates, and with echinoderms, cephalochordates formation in a gene- or territory-centric manner. and vertebrates. Beyond genes the system describes Advanced genomic browsers integrate the genetic *To whom correspondence should be addressed. Tel: +33 4 34 35 94 00; Email: [email protected] Correspondence may also be addressed to Christelle Dantec. Tel: +33 4 34 35 94 00; Email: [email protected] †The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last Authors. Present addresses: Paul Simion, Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Namur, Belgium. Kazuhiro R. Nitta, Juntendo University, Graduate School of Medicine, Diagnostics and Therapeutics of Intractable Diseases Intractable Disease Research Center, Tokyo, Japan. C The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 2 Nucleic Acids Research, 2019 features surrounding genes or gene sets within a phylogenies as a comparative framework to study the devel- species. A Genomicus synteny browser explores the opmental programs of different species; (iii) a multispecies conservation of local gene order across deuteros- genomic browser to visualize the position of genetic features tome. This new release covers an extended taxo- along chromosomes; (iv) a Genomicus synteny browser (25) nomic range of 14 species, including for the first time to analyse the evolution of gene order across tunicate and other chordate genomes. Care was taken during the devel- a non-ascidian species, the appendicularian Oiko- Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz955/5611675 by LIRMM user on 18 December 2019 opment of ANISEED that the tool remains generic and pleura dioica. Functional annotations, provided for adaptable with minimal effort to any developmental model each species, were enhanced through a combination organism. of manual curation of gene models and the develop- During the preparation of ANISEED 2019, we added ment of an improved orthology detection pipeline. Fi- three additional solitary or colonial ascidian species with nally, gene expression profiles and anatomical terri- recently sequenced genome: Molgula occulta, Corella in- tories can be explored in 4D online through the newly flata and Botryllus leachii and extended for the first time developed Morphonet morphogenetic browser. the system to a non-ascidian species, the appendicularian Oikopleura dioica. We significantly improved the functional annotation of genes, through the manual curation of gene INTRODUCTION model sets in some species and the refinement of our orthol- Tunicates are marine invertebrates with a key phylogenetic ogy assignment procedure, which now detects vertebrate or- position as the sister group of the vertebrates (1,2). Three thologs for a majority of genes from all ascidians species, major groups of tunicates have been classically described. including the main ascidian model species, Ciona robusta The sessile ascidians form the largest group with several (formerly referred to as Ciona intestinalis type A). We en- thousand species listed. Two additional groups of tuni- riched the genomics datasets related to the control of gene cates have a pelagic life-style and rapid molecular evolu- expression in existing and new species. Finally, we inter- tion rates, the thaliaceans and the appendicularians. Their faced the developmental browser of ANISEED 2019 to the phylogenetic position with respect to ascidians has long re- MORPHONET morphogenetic browser, allowing 4D ex- mained debated. Molecular phylogenies suggest that the ploration of gene expression profiles. fast-evolving appendicularians are the sister group of all other tunicates, and that thaliaceans form a monophyletic Extension of the taxonomic range covered group nested within ascidians (3,4) Tunicates studies have led to important discoveries in a In addition to the ten ANISEED 2017 species, three new variety of scientific fields. They illuminated the origin of ascidian species, for which genome and gene models were vertebrate features, including the neural crest (5) or the sec- recently made available, were added to the portal. The soli- ondary heart field (6,7). The simplicity of ascidian embryos tary stolidobranch Molgula occulta is so closely related to makes them ideal to decipher the regulatory networks con- M. oculata that hybrids between these two species can be trolling embryonic development (8–10) and their evolution
Recommended publications
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • Ecological Aspects of the Ascidian Community Along the Israeli Coasts
    Ecological aspects of the ascidian community along the Israeli coasts THESIS SUBMITTED FOR THE DEGREE “DOCTOR OF PHILOSOPHY” BY Noa Shenkar SUBMITTED TO THE SENATE OF TEL-AVIV UNIVERSITY February 2008 This work was carried out under the supervision of Prof. Yossi Loya This work is dedicated with enormous love to Dror & little Ido תודות Acknowledgments I would like to express my gratitude to many people who helped me during this research. לפרופ' יוסי לויה שזכיתי להיות תלמידתו ולימד אותי מלבד אקולוגיה וביולוגיה ימית גם דבר או שניים על איך להיות בן - אדם. לחברי הועדה המלווה: פרופ' הודי בניהו, פרופ' יאיר אחיטוב ופרופ' אלי גפן שתמכו וייעצו ודלתם תמיד היתה פתוחה בפני . לד"ר אסתי וינטר שלימדה אותי לראות את הטוב בכל דבר . לפרופ' לב פישלזון שהתמזל מזלי להיות שכנתו ולימד אותי מהי זואולוגיה. To my colleagues abroad: To Charlie & Gretchen Lambert for their enthusiasm and love to ascidians. To Patricia Mather (née Kott) for her advice and support. To Elsa Vàzquez Otero, Rosana Moreira da Rocha and Françoise Monniot for teaching me ascidian taxonomy with great love and care. To Xavier Turon for his constructive remarks and to Amy Driskell for helping me with the PCR game. לחברי מעבדתי שליוו אותי לאורך השנים ועזרו בכל עת, ובמיוחד לעומרי בורנשטיין, אלן דניאל, מיה ויזל, עידו מזרחי, רועי סגל, רן סולם ומיכה רוזנפלד. לחברי מעבדת בניהו, יעל זלדמן, מתי הלפרין, ענבל גינסבורג ועידו סלע שתמיד יצאו בשמחה למשימות דיגום איצטלנים מולחברי עבדתו של פרופ' מיכה אילן על החברה והעוגיות . לד"ר איציק בריקנר על החתכים ההיסטולוגים המופלאים, ורדה ווכסלר על הגרפיקה, נעמי פז על העריכה וההגהה, אלכס שלגמן על העזרה הלבבית עם האוספים, וענת גלזר מחברת החשמל.
    [Show full text]
  • Metabarcoding Analysis on European Coastal Samples Reveals New
    www.nature.com/scientificreports OPEN Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity Received: 8 November 2017 David López-Escardó1, Jordi Paps2, Colomban de Vargas3,4, Ramon Massana5, Accepted: 5 June 2018 Iñaki Ruiz-Trillo 1,6,7 & Javier del Campo1,5 Published: xx xx xxxx Although animals are among the best studied organisms, we still lack a full description of their diversity, especially for microscopic taxa. This is partly due to the time-consuming and costly nature of surveying animal diversity through morphological and molecular studies of individual taxa. A powerful alternative is the use of high-throughput environmental sequencing, providing molecular data from all organisms sampled. We here address the unknown diversity of animal phyla in marine environments using an extensive dataset designed to assess eukaryotic ribosomal diversity among European coastal locations. A multi-phylum assessment of marine animal diversity that includes water column and sediments, oxic and anoxic environments, and both DNA and RNA templates, revealed a high percentage of novel 18S rRNA sequences in most phyla, suggesting that marine environments have not yet been fully sampled at a molecular level. This novelty is especially high among Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a morphological perspective and abundant in benthic environments. We also identifed, based on molecular data, a potentially novel group of widespread tunicates. Moreover, we recovered a high number of reads for Ctenophora and Cnidaria in the smaller fractions suggesting their gametes might play a greater ecological role than previously suspected. Te animal kingdom is one of the best-studied branches of the tree of life1, with more than 1.5 million species described in around 35 diferent phyla2.
    [Show full text]
  • Tunicata 4 Alberto Stolfi and Federico D
    Tunicata 4 Alberto Stolfi and Federico D. Brown Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger. A. Stolfi Department of Biology , Center for Developmental Genetics, New York University , New York , NY , USA F. D. Brown (*) EvoDevo Laboratory, Departamento de Zoologia , Instituto de Biociências, Universidade de São Paulo , São Paulo , SP , Brazil Evolutionary Developmental Biology Laboratory, Department of Biological Sciences , Universidad de los Andes , Bogotá , Colombia Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM) , Escuela Superior Politécnica del Litoral (ESPOL) , San Pedro , Santa Elena , Ecuador e-mail: [email protected] A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia 135 DOI 10.1007/978-3-7091-1856-6_4, © Springer-Verlag Wien 2015 [email protected] 136 A. Stolfi and F.D. Brown Above all , perhaps , I am indebted to a decidedly the phylogenetic relationships between the three vegetative , often beautiful , and generally obscure classes and many orders and families have yet to group of marine animals , both for their intrinsic interest and for the enjoyment I have had in search- be satisfactorily settled. Appendicularia, ing for them . N. J. Berrill (1955) Thaliacea, and Ascidiacea remain broadly used in textbooks and scientifi c literature as the three classes of tunicates; however, recent molecular INTRODUCTION phylogenies have provided support for the mono- phyly of only Appendicularia and Thaliacea, but Tunicates are a group of marine fi lter-feeding not of Ascidiacea (Swalla et al. 2000 ; animals1 that have been traditionally divided into Tsagkogeorga et al. 2009 ; Wada 1998 ). A para- three classes: (1) Appendicularia, also known as phyletic Ascidiacea calls for a reevaluation of larvaceans because their free-swimming and tunicate relationships.
    [Show full text]
  • The Identification and Validity of Certain Species of Ascidians
    [ 159 ] The Identification and Validity of Certain Species of Ascidians. By N. J. Barrill, B.Sc., Department of Physiology, University of Leeds. With 6 Figures in the Text. CONTENTS. PAGE INTRODUCTION . 159 ]J{olgma manhattensis . 163 ]J{olgula citrina . 164 ]J{olgula complanata . 166 M olgula ocmata, ]J{. occmta . 166 ]J{olgma bleizi . 169 Ascidiella aspersa . 170 Polycarpa rustica . 172 Styelopsis gro8sularia . 172 LITERATURE. 174 INTRODUCTION. THERE has existed in the past, and. still, does exist, considerable con- fusion both in the question of a satisfactory basis for the classification of ascidians and that of the validity of many species. The principal orders and families are fairly stereotyped, and confusion and divergent opinion is mainly confined to the internal classification of the various families. These differences have .a'twofold origin, in that classifications have been constructed by various authors on three distinct bases, and that it is very difficult to distinguish between structures which are similar through relationship and those which are similar through convergent or parallel development. Further difficulty arises from the fact that authors describing a new species with a view to fitting it into one particular classification, have often given insufficient details for its accurate inclusion in another scheme. There is also divergent opinion as to the correct nomenclature that should be employed, but with that this paper is not concerned. Briefly, the bases used for classificatory purposes within the families have been the characters of the branchial sac, of the gonads, and, to a lesser degree, of development; that this last has not been used to the 160 N.
    [Show full text]
  • Peter FHL Manuscript
    Molgulid ascidians share a unique gene complex Peter X. Wu1, Daniel W. Seufert2, Billie J. Swalla1,3* BEACON Research Fellowship 2011 Summer 2011 1 Box 351800; 24 Kincaid Hall; Biology Department, University of Washington, Seattle, WA 98195-1800 2 Department of Zoology, Ohio Wesleyan University, Delaware, OH 43015 3 Station Biologique, BP° 74, 29682 Roscoff Cedex, France Keywords: Molgula oculata, Molgula occulta, Oikopleura dioica Correspondence to: Billie J. Swalla Box 351800 24 Kincaid Hall Biology Department University of Washington Seattle, WA 98195-1800 Phone: 206-616-9367 Fax: 206-616-2011 [email protected] Supporting grant information: National Science Foundation Cooperative Agreement No. DBI-0939454 BEACON: Evolution in Action Wu, PX 1 ABSTRACT Typical chordate features found in ascidian tadpole larvae have been evolutionarily lost several times independently within the Molgulidae family. While tailed molgulids retain a tail with muscle cells, a notochord, and a dorsal neural tube, the notochord and muscle cells have been lost within the tailless species. A locus containing an unusual gene arrangement of the Bobcat gene within the first intron of the Manx gene has been shown to be essential for the development of chordate features in molgulid tadpole larvae. Sequencing and closer examination of ascidian genomes show that there is a unique gene arrangement of SSNA1 upstream and adjacent to Manx and Bobcat within the Molgulidae which is not found in cionid ascidians; however, a similar arrangement of SSNA1 directly upstream of Bobcat was found in Oikopleura dioica supporting Appendicularia as a sister group to the Molgulidae. SSNA1 is expressed in tailed Molgula oculata gonads and not in tailless M.
    [Show full text]
  • Chordate Ancestry of the Neural Crest: New Insights from Ascidians William R
    Seminars in Cell & Developmental Biology 18 (2007) 481–491 Review Chordate ancestry of the neural crest: New insights from ascidians William R. Jeffery ∗ Department of Biology, University of Maryland, College Park, MD 20742, USA Available online 19 April 2007 Abstract This article reviews new insights from ascidians on the ancestry of vertebrate neural crest (NC) cells. Ascidians have neural crest-like cells (NCLC), which migrate from the dorsal midline, express some of the typical NC markers, and develop into body pigment cells. These characters suggest that primordial NC cells were already present in the common ancestor of the vertebrates and urochordates, which have been recently inferred as sister groups. The primitive role of NCLC may have been in pigment cell dispersal and development. Later, additional functions may have appeared in the vertebrate lineage, resulting in the evolution of definitive NC cells. © 2007 Elsevier Ltd. All rights reserved. Keywords: Neural crest; Neural crest-like cells; Vertebrates; Ascidians; Pigment cells Contents 1. Introduction: evolution of the neural crest.................................................................................. 481 2. Early searches for neural crest in invertebrate chordates ..................................................................... 482 3. Adultation and the complexity of ascidian larvae ........................................................................... 482 4. Migratory neural crest-like cells in Ecteinascidia ..........................................................................
    [Show full text]
  • Developmental Mode Influences Diversification in Ascidians
    Downloaded from rsbl.royalsocietypublishing.org on March 15, 2014 Developmental mode influences diversification in ascidians Max E. Maliska, Matthew W. Pennell and Billie J. Swalla Biol. Lett. 2013 9, 20130068, published 3 April 2013 Supplementary data "Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2013/03/28/rsbl.2013.0068.DC1.ht ml References This article cites 30 articles, 10 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/9/3/20130068.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections developmental biology (58 articles) evolution (736 articles) taxonomy and systematics (72 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions Downloaded from rsbl.royalsocietypublishing.org on March 15, 2014 Evolutionary biology Developmental mode influences diversification in ascidians rsbl.royalsocietypublishing.org Max E. Maliska1,2,3, Matthew W. Pennell3,4,5 and Billie J. Swalla1,2,3 1Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA 2Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA Research 3BEACON Center for Evolution in Action, Michigan State University, 1441 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA Cite this article: Maliska ME, Pennell MW, 4Institute for Bioinformatics and Computational Biology (IBEST), University of Idaho, 441B Life Science South, Swalla BJ. 2013 Developmental mode influ- Moscow, ID 83844, USA 5National Evolutionary Synthesis Center, 2024 W.
    [Show full text]
  • A Cis-Regulatory Change Underlying the Motor Neuron-Specific Loss of Terminal Selector Gene Expression in Immotile Tunicate Larvae
    bioRxiv preprint doi: https://doi.org/10.1101/567719; this version posted March 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lowe et al., March 01 2019 – preprint copy - BioRxiv A cis-regulatory change underlying the motor neuron-specific loss of terminal selector gene expression in immotile tunicate larvae Elijah K. Lowe1,2, Claudia Racioppi2,3, Nadine Peyriéras2,4,5, Filomena Ristoratore2,6, Lionel Christiaen2,3, Billie J. Swalla2,7,8, & Alberto Stolfi1,2* 1. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. 2. Station Biologique de Roscoff, Roscoff, France. 3. Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA. 4. UPS3611 Complex Systems Institute Paris Île-de-France (ISC-PIF), CNRS, Paris, France. 5. USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France. 6. Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy. 7. Department of Biology, University of Washington, Seattle, WA, USA. 8. Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA. * Corresponding author: [email protected] Abstract The evolutionary history of animal body plans cannot be fully reconstructed without considering the roles of both novelties and losses. Some of the more remarkable examples of massively parallel evolutionary losses in animals comes from many species in the tunicate genus Molgula that have independently lost the swimming larva and instead develop as tail-less, immotile larvae that bypass the period of swimming and dispersal observed in other tunicates, marine invertebrate chordates that alternate between motile larval and sessile adult life cycle stages.
    [Show full text]
  • Regulation and Evolution of Muscle Development in Tunicates Florian Razy‑Krajka* and Alberto Stolf*
    Razy‑Krajka and Stolf EvoDevo (2019) 10:13 https://doi.org/10.1186/s13227‑019‑0125‑6 EvoDevo REVIEW Open Access Regulation and evolution of muscle development in tunicates Florian Razy‑Krajka* and Alberto Stolf* Abstract For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specifcation, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implica‑ tions and questions raised by these fndings in the broader context of muscle evolution in chordates. Keywords: Muscle, Maternal determinants, Myoplasm, MRF, Cardiopharyngeal mesoderm, Tunicates, Ascidians, Neuromesodermal Introduction detailed review of what is known about muscle develop- Muscles are formed by cells that contract through actin– ment in the tunicates. myosin interactions. Tis common mechanism is per- Tunicates (Fig. 1) are the extant invertebrates most formed with deep variation according to muscle type, closely related to us [81]. Tey are the sister group to the within the same organism as well as across taxa [303, vertebrates, with whom they form a monophyletic group 307]. For instance, the human body contains several known as Olfactores [158]. Te tunicates are a large hundred distinct muscles, including several dozens in group of marine organisms, most of them sessile, though the neck and the head [47, 278]. In vertebrates, muscles many are pelagic. Te vast majority of the Tunicata are can be classifed into three major categories according to suspension flter feeders, though there are some carnivo- their structure regardless of their developmental and evo- rous deep sea tunicates [223].
    [Show full text]
  • Evolutionary Loss of Melanogenesis in the Tunicate Molgula Occulta Claudia Racioppi1,2,3, Maria Carmen Valoroso1,8, Ugo Coppola1, Elijah K
    Racioppi et al. EvoDevo (2017) 8:11 DOI 10.1186/s13227-017-0074-x EvoDevo RESEARCH Open Access Evolutionary loss of melanogenesis in the tunicate Molgula occulta Claudia Racioppi1,2,3, Maria Carmen Valoroso1,8, Ugo Coppola1, Elijah K. Lowe1,3,4,5, C. Titus Brown3,5,6, Billie J. Swalla3,4,5, Lionel Christiaen2,3, Alberto Stolf2,3,7* and Filomena Ristoratore1* Abstract Background: Analyzing close species with diverse developmental modes is instrumental for investigating the evolutionary signifcance of physiological, anatomical and behavioral features at a molecular level. Many examples of trait loss are known in metazoan populations living in dark environments. Tunicates are the closest living relatives of vertebrates and typically present a lifecycle with distinct motile larval and sessile adult stages. The nervous system of the motile larva contains melanized cells associated with geotactic and light-sensing organs. It has been suggested that these are homologous to vertebrate neural crest-derived melanocytes. Probably due to ecological adaptation to distinct habitats, several species of tunicates in the Molgulidae family have tailless (anural) larvae that fail to develop sensory organ-associated melanocytes. Here we studied the evolution of Tyrosinase family genes, indispensible for melanogenesis, in the anural, unpigmented Molgula occulta and in the tailed, pigmented Molgula oculata by using phylogenetic, developmental and molecular approaches. Results: We performed an evolutionary reconstruction of the tunicate Tyrosinase gene family: in particular, we found that M. oculata possesses genes predicted to encode one Tyrosinase (Tyr) and three Tyrosinase-related proteins (Tyrps) while M. occulta has only Tyr and Tyrp.a pseudogenes that are not likely to encode functional proteins.
    [Show full text]