Novel Analysis of Spatial and Temporal Patterns of Resource Use in a Group of Tephritid Flies of the Genus Anastrepha

Total Page:16

File Type:pdf, Size:1020Kb

Novel Analysis of Spatial and Temporal Patterns of Resource Use in a Group of Tephritid Flies of the Genus Anastrepha ECOLOGY AND POPULATION BIOLOGY Novel Analysis of Spatial and Temporal Patterns of Resource Use in a Group of Tephritid Flies of the Genus Anastrepha 1 2 3 4 JOHN SIVINSKI, MARTIN ALUJA, JAIME PIN˜ ERO, AND MARIO OJEDA Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, P.O. Box 14565, Gainesville, FL 32604 Ann. Entomol. Soc. Am. 97(3): 504Ð512 (2004) ABSTRACT The spatial and temporal patterns of oviposition-resource use of various Anastrepha spp. fruit ßies within the canopies of individual fruit trees were determined over periods of 4Ð6 yr in the state of Veracruz, Mexico. The ßies examined were Anastrepha obliqua (Macquart), Anastrepha striata Schiner, Anastrepha fracterculus (Wiedemann), and Anastrepha alveata Stone, and their respective hosts were Spondias mombin L. (Anacardiaceae), Psidium guajava L., Psidium sartorianum (Berg.) Ndzu (Myrtacaea), and Ximenia americana L. (Olacaceae). The canopies were divided into six sectors: three strata (vertical planes of low, middle, and high canopy) and an exterior and interior component of the various heights. All ripe fruits produced by each tree species were individually harvested, weighed, and maintained until all larvae had exited and pupated. Because of the commonly positive correlation between fruit size and infestation, ßy distributions were described using a novel technique, two-level hierarchal regression analysis, as deviations fromthe expected numbersof insects in a sector given the distributions of fruit weights within the canopy. Overall, there was a tendency for A. alveata to be more abundant in the lower portions of the tree, for A. striata to be more abundant in the upper, for A. obliqua to be less abundant in the upper, and for A. fraterculus to be uniformly distributed. The yearly densities of A. striata and A. fraterculus within the P. guajava tree were negatively correlated, and this seems to be due to annual changes in environment rather than to exploitive competition for oviposition resources. Along an altitudinal gradient (0Ð1,800 m), A. striata was more abundant than A. fraterculus at sea level and relatively less abundant at altitudes of 1000 mand higher. We suggest that habitat characteristics (oviposition-resource availability and quality, and microclimatic variables), intraspeciÞc competition, and the behaviors of natural enemies and frugivores are potentially im- portant interactive factors that inßuence the distribution of resource use to a different extent in each of the tephritid species. KEY WORDS resource use, spatial distribution, competition, habitat partitioning, altitudinal transect THERE ARE TWO FORMS of ecological complexity (Earn sequences that in turn inßuence land use, insecticide and Rohani 1999): complexity due to interactions use, and the conservation of biological diversity (Aluja among species (ecosystem complexity) and that 1999). which arises fromchanging patterns of abundance Dynamic patterns of resource use by herbivorous over space and time (dynamical complexity). Descrip- insects are inßuenced by variance in the distribution, tions of dynamical patterns of resource use are rela- availability, and quality of resources (Chew 1977). In tively rare because they often require detailed obser- fruit-infesting tephritids such as Anastrepha spp., high vations of habitat variance made over long periods. At variance in oviposition-resources on spatial and tem- the same time, they are critical for better understand- poral scales might lead to discontinuous ranges, ge- ing the distributions and abundances of organisms. In netic divergence among populations, and coarse- the case of Anastrepha spp. fruit ßies, distributions and grained patterns of abundance within habitats. In abundances can have considerable agricultural con- terms of individual insects, variance and unpredict- ability may result in the evolution of behavioral plas- 1 E-mail: [email protected]ß.edu. ticity, the capacity to monitor environmental changes, 2 Instituto de Ecologõ´a, A. C. Apartado Postal 63, 91000 Xalapa, and competitive adaptations such as host-marking Veracruz, Mexico. pheromones that help use occasional windfalls (Aver- 3 Department of Entomology, University of Massachusetts, Am- ill 1985, Aluja et al. 2000, Dõ´az-Fleischer et al. 2000, herst, MA 01003. Dõaz-Fleischer and Aluja 2004). The following are 4 Laboratorio de Investigacio´n y Asesorõ´a Estadõ´stica (LINAE), ´ Facultad de Estadõ´stica, Universidad Veracruzana. Apartado Postal among the speciÞc sources of resource variance con- 475, 91000 Xalapa, Veracruz, Mexico. fronting Anastrepha spp. fruit ßies. May 2004 SIVINSKI ET AL.: RESOURCE USE PATTERNS IN Anastrepha SPP. 505 First, there is the distribution of host fruits. Many basic knowledge of insectÐhost interactions and in- species, particularly those with broad host ranges, will teractions among competing species of fruit ßies. Þnd oviposition resources in disparate habitats such as From an agricultural perspective, it may help make patches of tropical evergreen or deciduous forests, better predictions of the potential range of invasive large monocrop orchards, and mixed orchards or back- pests and improve sampling regimes for management yard gardens. The distances among host patches can programs (Averill 1985). vary considerably as might the optimal foraging pat- In this long-termstudy, we have begun to describe terns that would best exploit the oviposition oppor- patterns of fruit ßy resource use by determining spatial tunities (Aluja and Prokopy 1992, Aluja and Birke and temporal variation in the distributions of larvae of 1993). On a smaller (micro) level, a ßy must deal with Anastrepha obliqua (Macquart), A. striata, A. frater- variance within the tree itself given that the distribu- culus, and Anastrepha alveata Stone within the cano- tions of fruit and favorable microhabitats within the pies of single representatives of their wild host trees in canopy may not be homogeneous. Uneven distribu- Veracruz, Mexico: Spondias mombin L. (Anacardi- tions of a number of frugivorous insects, including aceae), Psidium guajava L. and Psidium sartorianum adult tephritids and the immature parasitoids of Te- (Berg.) Ndzu. (Myrtaceae), and Ximenia americana phritidae, within canopies sometimes reßect this vari- (Olacaceae), respectively. In the process we employ ability (Strong and Levin 1979, Aluja and Birke 1993, a novel statistical method, the two-level hierarchal Sivinski et al. 1997, Aluja et al. 2000). Some of the regression model, to better ascertain the role that important components of microhabitat variance from fruiting phenology considered here to be fruit avail- an insectÕs perspective are temperature, solar radia- ability and fruit size considered here to be host quality tion, and relative humidity (Hedstro¨m1992). Similar play in determining spatial distributions. Studies were factors may also inßuence the distribution of fruits, carried out over 6 yr in the P. guajava tree, 5 yr in the and hence the distribution of ovipositing females and S. mombin and X. americana trees, and 4 yr in P. their offspring (Messina 1989). sartorianum trees. A. obliqua, A. striata, and to some Host availability generates the second type of re- extent A. fraterculus are considered of economic im- source variance. Typically, fruit ßy hosts have distinct portance in Mexico due to the damage they cause in fruiting seasons. The resource is only available for a mango, Mangifera indica L., and guava, P. guajava short period, although the degree of ephemerality (Herna´ndez-Ortõ´z and Aluja 1993, Aluja 1994). In con- varies greatly among tree species (Aluja and Birke trast, A. alveata attacks the fruit of a single wild tree 1993). Wild hosts are often more ephemeral than cul- species, X. americana, and is of no agricultural signif- tivated species, which have been selected to bear icance (Piedra et al.1993). In addition, the abundances fruits over an extended season (van Schaik et al. 1993). of A. striata and A. fraterculus in P. guajava along an Further temporal variance in host availability is added altitudinal transect (0Ð1,800 mabove sea level) were by the unpredictability of the fruiting season and determined, and the regional-scale patterns and their yearly differences in yield, which may be inßuenced environmental correlates were used to help interpret by climate (Herrera 1998). For example, the fruiting the within-canopy distributions of the ßies. of a highly seasonal fruit can be delayed by drought or low temperatures (Reuther 1973). Materials and Methods Finally, components of host quality, i.e., fruit size, color, and degree of ripeness, previous use by con- Study Sites. The study sites were in or near the speciÞcs and the concentration of deleterious allelo- villages of Tejerõ´a and Llano Grande in central Vera- chemicals, can all vary, some independently of the cruz State, Mexico. Tejerõ´a is located at 19Њ 22Ј N others (Dõ´az-Fleischer et al. 2000). Even though a fruit latitude and 96Њ 53Ј W longitude, at a mean altitude of might be of optimal quality based on some physical 1000 mabove sea level. Llano Grande is situated at 19 Њ character such as size, other factors such as stage of 22Ј N latitude and 96Њ 56Ј W longitude, and a mean ripeness or previous use could be detrimental to larval altitude of 950 m. Climates at both sites were semihot development (Fitt 1983). Host-marking pheromones, and humid (Soto 1986), and the environments were such as used by a number of Anastrepha spp., may act characterized by an abundance of wild
Recommended publications
  • Psidium" Redirects Here
    Guava 1 Guava This article is about the fruit. For other uses, see Guava (disambiguation). "Psidium" redirects here. For the thoroughbred racehorse, see Psidium (horse). Guava Apple Guava (Psidium guajava) Scientific classification Kingdom: Plantae (unranked): Angiosperms (unranked): Eudicots (unranked): Rosids Order: Myrtales Family: Myrtaceae Subfamily: Myrtoideae Tribe: Myrteae Genus: Psidium L. Species About 100, see text Synonyms • Calyptropsidium O.Berg • Corynemyrtus (Kiaersk.) Mattos • Cuiavus Trew • Episyzygium Suess. & A.Ludw. • Guajava Mill. • Guayaba Noronha • Mitropsidium Burret Guavas (singular guava, /ˈɡwɑː.və/) are plants in the Myrtle family (Myrtaceae) genus Psidium, which contains about 100 species of tropical shrubs and small trees. They are native to Mexico, Central America, and northern South America. Guavas are now cultivated and naturalized throughout the tropics and subtropics in Africa, South Asia, Southeast Asia, the Caribbean, subtropical regions of North America, Hawaii, New Zealand, Australia and Spain. Guava 2 Types The most frequently eaten species, and the one often simply referred to as "the guava", is the Apple Guava (Psidium guajava).Wikipedia:Citation needed. Guavas are typical Myrtoideae, with tough dark leaves that are opposite, simple, elliptic to ovate and 5–15 centimetres (2.0–5.9 in) long. The flowers are white, with five petals and numerous stamens. The genera Accara and Feijoa (= Acca, Pineapple Guava) were formerly included in Psidium.Wikipedia:Citation needed Apple Guava (Psidium guajava) flower Common names The term "guava" appears to derive from Arawak guayabo "guava tree", via the Spanish guayaba. It has been adapted in many European and Asian languages, having a similar form. Another term for guavas is pera, derived from pear.
    [Show full text]
  • Unifying Knowledge for Sustainability in the Western Hemisphere
    Inventorying and Monitoring of Tropical Dry Forests Tree Diversity in Jalisco, Mexico Using a Geographical Information System Efren Hernandez-Alvarez, Ph. Dr. Candidate, Department of Forest Biometrics, University of Freiburg, Germany Dr. Dieter R. Pelz, Professor and head of Department of Forest Biometrics, University of Freiburg, Germany Dr. Carlos Rodriguez Franco, International Affairs Specialist, USDA-ARS Office of International Research Programs, Beltsville, MD Abstract—Tropical dry forests in Mexico are an outstanding natural resource, due to the large surface area they cover. This ecosystem can be found from Baja California Norte to Chiapas on the eastern coast of the country. On the Gulf of Mexico side it grows from Tamaulipas to Yucatan. This is an ecosystem that is home to a wide diversity of plants, which include 114 tree species. These species lose their leaves for long periods of time during the year. This plant community prospers at altitudes varying from sea level up to 1700 meters, in a wide range of soil conditions. Studies regarding land attributes with full identification of tree species are scarce in Mexico. However, documenting the tree species composition of this ecosystem, and the environment conditions where it develops is good beginning to assess the diversity that can be found there. A geo- graphical information system overlapping 4 layers of information was applied to define ecological units as a basic element that combines a series of homogeneous biotic and environmental factors that define specific growing conditions for several plant species. These ecological units were sampled to document tree species diversity in a land track of 4662 ha, known as “Arroyo Cuenca la Quebrada” located at Tomatlan, Jalisco.
    [Show full text]
  • Volume Ii Tomo Ii Diagnosis Biotic Environmen
    Pöyry Tecnologia Ltda. Av. Alfredo Egídio de Souza Aranha, 100 Bloco B - 5° andar 04726-170 São Paulo - SP BRASIL Tel. +55 11 3472 6955 Fax +55 11 3472 6980 ENVIRONMENTAL IMPACT E-mail: [email protected] STUDY (EIA-RIMA) Date 19.10.2018 N° Reference 109000573-001-0000-E-1501 Page 1 LD Celulose S.A. Dissolving pulp mill in Indianópolis and Araguari, Minas Gerais VOLUME II – ENVIRONMENTAL DIAGNOSIS TOMO II – BIOTIC ENVIRONMENT Content Annex Distribution LD Celulose S.A. E PÖYRY - Orig. 19/10/18 –hbo 19/10/18 – bvv 19/10/18 – hfw 19/10/18 – hfw Para informação Rev. Data/Autor Data/Verificado Data/Aprovado Data/Autorizado Observações 109000573-001-0000-E-1501 2 SUMARY 8.3 Biotic Environment ................................................................................................................ 8 8.3.1 Objective .................................................................................................................... 8 8.3.2 Studied Area ............................................................................................................... 9 8.3.3 Regional Context ...................................................................................................... 10 8.3.4 Terrestrian Flora and Fauna....................................................................................... 15 8.3.5 Aquatic fauna .......................................................................................................... 167 8.3.6 Conservation Units (UC) and Priority Areas for Biodiversity Conservation (APCB) 219 8.3.7
    [Show full text]
  • (MYRTACEAE) De Venezuela Flavonoids Extracted from Psidium
    Rev. Fac. Agron. (LUZ). 2013, 30: 217-241 Flavonoides presentes en especies de Psidium (MYRTACEAE) de Venezuela Flavonoids extracted from Psidium species (MYRTACEAE) in Venezuela G. Rivero-Maldonado1, D. Pacheco1, L. M. Martín2, A. Sánchez1, M. Quirós3, J. Ortega4, C. Colmenares4 y B. Bracho4 1Universidad del Zulia. Facultad de Agronomía. Departamento de Botánica. Apartado 15205. Maracaibo, Zulia, 4005, Venezuela. 2Departamento de Genética, Universidad de Córdoba-España. 3Departamento Fitosanitario, Facultad de Agronomía-LUZ. 4Departamento de Estadística, Facultad de Agronomía-LUZ. Resumen Los estudios basados en la identificación de flavonoides, representan una importante herramienta para la obtención de caracteres útiles en tratamientos taxonómicos. Considerando que el género Psidium en Venezuela no ha recibido la debida atención en este sentido, y que dentro de la familia Myrtaceae es uno de los grupos con un alto número de representantes en el país, en este trabajo se planteó como objetivo determinar los principales flavonoides presentes en espe- cies de Psidium reportadas para Venezuela, con la finalidad de obtener datos útiles que permitan esclarecer, junto a otras fuentes de información, las relacio- nes taxonómicas dentro del mismo. Se evaluaron las especies: Psidium acutangulum, P. guajava, P. guineense, P. maribense, P. salutare, P. sartorianum y Calycolpus moritzianus, recolectadas en diversas localidades del país, cuyas hojas se sometieron a una hidrólisis ácida y posterior determinación empleando HPLC. Se identificaron los flavonoides miricetina, luteonina, quercetina, apigenina y kaempferol. La información obtenida se analizó a través de las técnicas multivariadas: Cluster y Componentes Principales. Los resultados determina- ron la formación de 5 grupos donde las especies de Psidium y C.
    [Show full text]
  • Leaf Morphology and Venation of Psidium Species from the Brazilian Savanna
    Revista Brasileira de Farmacognosia 27 (2017) 407–413 ww w.elsevier.com/locate/bjp Original Article Leaf morphology and venation of Psidium species from the Brazilian Savanna a a a b a,∗ Elaine F. Oliveira , Debborah G. Bezerra , Mirley L. Santos , Maria H. Rezende , Joelma A.M. Paula a Universidade Estadual de Goiás, Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis, GO, Brazil b Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil a b s t r a c t a r t i c l e i n f o Article history: The Brazilian Savanna biome has the largest plant diversity among savannas worldwide and is the Received 1 December 2016 predominant biome in Goiás state, Brazil. Among plant species previously catalogued in the Brazilian Accepted 6 March 2017 Savanna, the Myrtaceae family has received attention, as these plants show great economic potential for Available online 14 July 2017 its medicinal properties, food and ecological importance, highlighting in this context the Psidium genus. In order to contribute to the differentiation of problematic taxonomic groups, such as Myrtaceae, and to Keywords: quality control of its plant material, morphological and venation leaf studies of four species of Psidium “Arac¸ á” were performed. For this purpose, leaf samples of Psidium firmum O.Berg., P. myrsinites DC., P. laruot- Diaphanization teanum Cambes., and P. guineense Sw. were collected from Goiás State University, Anápolis Air Base, and Leaf venation Taxonomy Serra de Caldas Novas State Park and submitted to classical techniques for morphological and leaf vena- Quality control tion characterizations.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • Chemical Constituents of the Essential Oil from Leaves of Psidium Cattleianum Var. Cattleianum
    Vol. 7(13), pp. 783-789, 3 April, 2013 DOI: 10.5897/JMPR12.929 Journal of Medicinal Plants Research ISSN 1996-0875 ©2013 Academic Journals http://www.academicjournals.org/JMPR Full Length Research Paper Chemical constituents of the essential oil from leaves of Psidium cattleianum var. cattleianum Raju K. Chalannavar, Venugopala K. Narayanaswamy, Himansu Baijnath and Bharti Odhav* Department of Biotechnology and Food Technology, Durban University of Technology, Durban - 4001, South Africa Accepted 21 December, 2012 The essential oil obtained by hydrodistillation of dried leaves of Psidium cattleianum var. cattleianum was analysed by gas chromatography (GC) and combined gas chromatography-mass spectrometry (GC-MS). A total of seventy six compounds, representing 97.5% of the oil were identified. The major constituents of the essential oil were caryophyllene oxide (29.56%), alloaromadendrene oxide-(1) (6.82%), 12-oxabicyclo [9.1.0] dodeca-3,7-diene (5.85%) and 1H-cycloprop[e]azulene (3.49%). High concentration of caryophyllene oxide in the oil suggests its usefulness as natural preservative in food industry. The terpenic and ester compounds could contribute to the aroma of P. cattleianum var. cattleianum . Key words: Psidium cattleianum var. cattleianum , essential oil, caryophyllene oxide. INTRODUCTION The strawberry guava, Psidium cattleianum Sabine var. stems of the plant (Rocha et al., 2008). Thus, two cattleianum is a species native to Brazil (Fiaschi and botanical varieties can be considered according to Pirani, 2009; Souza et al., 2008). P. cattleianum var. Popenoe (1920); P. cattleianum (also named as P. cattleianum belongs to family Myrtaceae (myrtle family) cattleianum var. cattleianum ), which produces red fruits, which consists of at least 133 genera and more than and P.
    [Show full text]
  • Delmacia Goncalves De Macedo.Pdf
    UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO – UFRPE UNIVERSIDADE REGIONAL DO CARIRI – URCA UNIVERSIDADE ESTADUAL DA PARAÍBA – UEPB PROGRAMA DE PÓS-GRADUAÇÃO EM ETNOBIOLOGIA E CONSERVAÇÃO DA NATUREZA - PPGETNO ESTUDO QUÍMICO E ATIVIDADE ANTIFÚNGICA DOS ÓLEOS ESSENCIAIS DE DUAS ESPÉCIES DE Psidium L., EM FUNÇÃO DA SAZONALIDADE E EM DIFERENTES FASES FENOLÓGICAS. DELMACIA GONÇALVES DE MACÊDO RECIFE – PE - 2018 – DELMACIA GONÇALVES DE MACÊDO ESTUDO QUÍMICO E ATIVIDADE ANTIFÚNGICA DOS ÓLEOS ESSENCIAIS DE DUAS ESPÉCIES DE Psidium L., EM FUNÇÃO DA SAZONALIDADE E EM DIFERENTES FASES FENOLÓGICAS. Tese apresentada ao Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza em Associação entre a Universidade Federal Rural de Pernambuco, Universidade Estadual da Paraíba e Universidade Regional do Cariri como requisito parcial para obtenção do título de doutor em Etnobiologia e Conservação da Natureza. Orientador: Prof. Dr. Irwin Rose de Alencar Menezes/URCA RECIFECoorientadora: – PE Profa.- 2018 Dra. Marta Maria de Almeida Souza/URCA RECIFE – PE - 2018 – ii Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Centra, Recife-PE, Brasil M141e Macêdo, Delmacia Gonçalves de Estudo químico e atividade antifúngica dos óleos essenciais de duas espécies de Psidium L., em função da sazonalidade e em diferentes fases fenológicas / Delmacia Gonçalves de Macêdo. – 2018. 116 f. : il. Orientador: Irwin Rose de Alencar Menezes. Coorientadora: Marta Maria de Almeida Souza. Tese (Doutorado) – Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Recife, BR-PE, 2018. Inclui referências e anexo(s). 1. Fenologia 2. Óleos vegetais 3. Araçás 4. Essências e óleos essenciais 5. Leveduras I.
    [Show full text]
  • Methanol Extract from Psidium Sartorianum (Arrayán) Berries
    International Journal of Herbal Medicine 2016; 4(5): 30-35 E-ISSN: 2321-2187 P-ISSN: 2394-0514 IJHM 2016; 4(5): 30-35 Methanol extract from Psidium sartorianum (arrayán) Received: 07-07-2016 Accepted: 08-08-2016 berries induces in vitro damage on Taenia crassiceps WFU cysticerci Laura Aguilar-Vega Departamento de Microbiología y Parasitología, Facultad de Laura Aguilar-Vega, Sylvia Páz Díaz Camacho, Francisco Delgado Medicina, Universidad Nacional Autónoma de México, Ciudad Vargas, Kaethe Willms and Rimma Zurabian Universitaria, Cd. Mx., 04510, México. Abstract Taenia crassiceps is an asexually proliferating cestode, may give rise to a high number of cysts in the Sylvia Páz Díaz Camacho experimental conditions and become a suitable model organism for drug screening in the absence T. Unidad de Investigaciones en Salud Pública "Dra. Kaethe solium cysts, responsible for human and swine cysticercosis. Although there is no conclusive evidence on Willms", Facultad de Ciencias resistant cestodes, alternative treatments are relevant for the human and animal health. A methanol Químico Biológicas (FCQB), extract from Psidium sartorianum (O. Berg) Nied. Berries (AME) was used to evaluate anti-parasitic Universidad Autónoma de effect on T. crassiceps cysticerci. Metacestodes were exposed to 25, 50 or 100 mg/ml of AME for up to Sinaloa, Gral. A. Flores s/n, Col. 72 h. The tissue impairment at the tegumentary and subtegumentary levels was seen after 2.5 h of Centro, 80010 Culiacán, Sinaloa, treatment with 100 mg/ml or 24 h after when treated with 50 mg/ml of AME. Here we report denuded México. microtriches and blebbing on the surface of cysts.
    [Show full text]
  • Fruit Flies of the Genus Anastrepha (Diptera: Tephritidae)
    COMMUNITY AND ECOSYSTEM ECOLOGY Fruit Flies of the Genus Anastrepha (Diptera: Tephritidae) and Associated Native Parasitoids (Hymenoptera) in the Tropical Rainforest Biosphere Reserve of Montes Azules, Chiapas, Mexico MARTI´N ALUJA,1, 2 JUAN RULL,1 JOHN SIVINSKI,3 ALLEN L. NORRBOM,4 ROBERT A. WHARTON,5 ROGELIO MACI´AS-ORDO´ N˜ EZ,1 FRANCISCO DI´AZ-FLEISCHER,6 1 AND MAURILIO LO´ PEZ Environ. Entomol. 32(6): 1377Ð1385 (2003) ABSTRACT We report the results of a 2-yr survey that determined some of the host plant and parasitoid associations of Anastrepha fruit ßies (Diptera: Tephritidae) in the “Montes Azules” tropical rainforest biosphere reserve (State of Chiapas, Mexico). We collected a total of 57.38 kg of fruit representing 47 native species from 23 plant families. Of these, 13 plant species from eight plant families were found to be native hosts of 9 species of Anastrepha. The following Anastrepha host associations were observed: Bellucia pentamera Naudin (Melastomataceae) with A. coronilli Carrejo y Gonza´lez; Malmea gaumeri (Greenm.) Lundell (Annonaceae) with A. bahiensis Lima; Tabernamontana alba Mill. (Apocynaceae) with A. cordata Aldrich; Quararibea yunckeri Standl. (Bombacaceae) with A. crebra Stone; Ampelocera hottlei (Standl.) Standl. (Ulmaceae) with A. obliqua (Macquart) and A. fraterculus (Wiedemann); Zuelania guidonia Britton and Millsp. and Casearia tremula (Griseb.) Griseb. ex C. Wright (Flacourtaceae) with A. zuelaniae Stone; Psidium sartorianum (O. Berg.) Nied (Myrtaceae) with A. fraterculus; Psidium guajava L. and P. sartorianum (Myrtaceae) with A. striata Schiner; and Manilkara zapota (L.) Van Royen, Pouteria sp., Bumelia sebolana Lundell, and Calocarpum mammosum (L.) Pierre (Sapotaceae) with A. serpentina (Wiedemann).
    [Show full text]
  • Smithsonian Plant Collections, the Guianas 1991–1993 and 1995–2000, Bruce Hoffman
    Alexander, Hoffman Alexander, Smithsonian Institution Scholarly Press , Kelloff, and Funk smithsonian contributions to botany • number 101 Smithsonian Institution Scholarly Press Smithson ian Contributions to Botany Smithsonian Plant Collections, the Guianas • Number 101 1991–1993 and 1995–2000, Bruce Hoffman Sara N. Alexander, Bruce Hoffman, 2014 Carol L. Kelloff, and V. A. Funk SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION REQUIREMENTS FOR SMITHSONIAN SERIES PUBLICATION Emphasis upon publication as a means of “diffusing knowledge” was ALL MANUSCRIPTS ARE REVIEWED FOR ADHER- ART must not be embedded in the main text. expressed by the first Secretary of the Smithsonian. In his formal plan ENCE TO THE SISP MANUSCRIPT PREPARATION AND for the Institution, Joseph Henry outlined a program that included STYLE GUIDE FOR AUTHORS (available on the “Submis- Figures must be original and submitted as individual TIFF or EPS files. Resolution for art files must be at least 300 dpi the following statement: “It is proposed to publish a series of reports, sions” page at www.scholarlypress.si.edu). Manuscripts not for grayscale and color images and at least 1200 dpi for line giving an account of the new discoveries in science, and of the changes in compliance will be returned to the author. Manuscripts in- art. Electronic images should measure no more than 100% made from year to year in all branches of knowledge.” This theme of tended for publication in the Contributions Series are evalu- ated by a content review board and undergo substantive peer and no less than 75% of final size when published. JPG files basic research has been adhered to through the years by thousands of review.
    [Show full text]
  • Psidium (Myrtaceae)
    Rodriguésia 68(5): 1791-1805. 2017 http://rodriguesia.jbrj.gov.br DOI: 10.1590/2175-7860201768515 Flora of Espírito Santo: Psidium (Myrtaceae) Amélia C. Tuler1,3, Tatiana T. Carrijo2, Márcia F.S. Ferreria2 & Ariane L. Peixoto1 Abstract This study presents a floristic-taxonomic treatment of Psidium in the state of Espírito Santo, and is a result of fieldwork combined with analyses of herbarium specimens. Fourteen species of the genus were recognized in Espírito Santo state (P. brownianum, P. cattleianum, P. cauliflorum, P. guajava, P. guineense, P. longipetiolatum, P. myrtoides, P. oblongatum, P. oligospermum, P. ovale, P. rhombeum, P. rufum P. sartorianum, and Psidium sp.), accounting for about 34% of the species richness estimated for the genus in the Atlantic Rainforest biome. The species occur predominantly in lowland forests up to 700 meters above sea level. These areas are highly threatened due to urbanization of coastal areas and agricultural expansion in the state Espírito Santo. Therefore, the conservation of Psidium species in this state requires the creation of more lowland protected areas. Key words: Atlantic Rainforest, diversity, Myrteae, taxonomy. Resumo Este estudo apresenta o tratamento florístico-taxonômico para o gênero Psidium no estado do Espírito Santo, e resulta de trabalho de campo, combinado à análise de espécimes de herbário. Quatorze espécies do gênero foram reconhecidas no Espírito Santo (P. brownianum, P. cattleianum, P. cauliflorum, P. guajava, P. guineense, P. longipetiolatum, P. myrtoides, P. oblongatum, P. oligospermum, P. ovale, P. rhombeum, P. rufum P. sartorianum e Psidium sp.), representando cerca de 34% da riqueza de espécies estimada para o gênero na Floresta Atlântica.
    [Show full text]