60 Years of the Transistor: 1947 – 2007

Total Page:16

File Type:pdf, Size:1020Kb

60 Years of the Transistor: 1947 – 2007 60 YEARS OF THE TRANSISTOR: 1947 – 2007 2005 – Dual-core technology 1947 – When it comes to 2000 – The 42-million transistor debuts. If was introduced. helping jumpstart innovation 1976 – An operator in an early automobile speed increased similarly over 1960 – Sony introduces the rst 1982 – Within six years of its release, an and technology, no invention is bunnysuit shows how a 4-inch that same period, you could drive from New portable, transistorized TV, the estimated 15 million 286-based The Revolution Begins more important than the wafer is prepared for a positive York City to San Francisco in 13 seconds. transistor created 60 years ago TV8-301. It has a modest 5-inch acid spin. personal computers were installed at Bell Labs. screen and uses 23 silicon and around the world. germanium transistors. 1981 – The Intel® 8088 microprocessor was selected to Invented 60 years ago, the transistor is a key power the IBM PC. 1983 – Mobile communication building block of today’s digital world. changes forever when Motorola introduces the rst 2006 – The dual core Intel® Itanium® 2 1965 – Moore’s Law, which states that the Perhaps the most important invention of the commercial mobile phone – processor launches with the world’s most The Revolution Continues number of transistors on a chip doubles about the DynaTAC 800X – powered intricate product design to date, utilizing every two years, is born when Intel’s Gordon by transistors and costing a more than 1.72 billion transistors. 20th century, transistors are found in many Moore made a prediction about the 1972 – Intel’s rst microprocessor, mere $3,995. Intel continues to deliver on the promise semiconductor business that still holds true powered the Busicom calculator 1981 – IBM introduces the rst devices and are the building blocks of today. 1953 – The rst commercial device and paved the way for the personal computer with an Intel personal computer. of Moore’s Law with the introduction to make use of the transistor is put 8088 processor serving as the 2000 – Silicon Valley based company develops computer chips. Intel, the largest manufac- on the market – the Sonotone 1010 “brains” behind the computer. TiVo - a device that records TV programs on an 2007 – 45nm Intel debuts the Penryn chip – the biggest hearing aid. internal hard drive. change to transistors (all 820 million of them in our of powerful multi-core technologies, quad-core processors) in 40 years based on the company’s turer of computer chips, continues to innovate 45 nanometer transistor technology. More than 2,000 1993 – With the creation of the World 45nm transistors t across the width of a human hair. transforming the way we live, work and to help PCs and laptops become smaller, 1971 – Intel launches its rst Wide Web in 1990, the need for transistor microprocessor, the 4004, containing speed becomes greater than ever. faster, sleeker and more energy-ecient. just over 2,000 transistors. play once again. 2003 – Intel® Centrino® mobile Many new applications and inventions technology brought high performance, enhanced battery life, and integrated WLAN capability to thinner, lighter PCs. powered by transistors have impacted all of 1975 – The Altair 8800 1982 – Intel launches their new high microcomputer, based on the Intel® performance, 16-bit 80286 1993 – The World Wide Web our lives over the past 60 years. 1954 – The rst transistor radio, the Regency 8080 microprocessor, was the rst microprocessor featuring 134,000 debuts and Intel responds with TR-1, goes on the market for just $49.99. The 1971 – Busicom introduces the successful home or personal transistors. its Pentium® processor, boasting 2007 – In the second half of 2007, Intel began production of the next generation Intel® Core™2 and radio contains just four transistors. rst single-chip, pocket-size computer. speeds of 66 and 60 MHz 3.1 calculator, the LE-120A "HANDY," million transistors. Xeon processor families based on 45-nanometer which uses a MOSTEK MK6010 (nm) Hi-k metal gate silicon technology. integrated circuit. 1947 1950 1960 1970 1980 1990 2000 2007 Moore’s Law In 1965, Intel co-founder Gordon Moore predicted that the number of transistors on a chip would double about every two years. Since then, Moore’s Law has fueled a technology revolution as Intel has exponentially increased the number of transistors integrated into its processors for greater performance and energy eciency. Quad-Core Intel® Xeon® processor (Penryn) Intel® 4004 processor Intel® 8008 processor Intel® 8080 processor Intel® 8086 processor Intel® 8088 processor Intel® 286 processor Intel386™ processor Intel486™ processor Intel® Pentium® processor Intel® Pentium® Pro processor Intel® Pentium® II processor Intel® Pentium® III processor Intel® Pentium® 4 processor Intel® Pentium® M processor Intel® Itanium® 2 processor Intel® Pentium® D processor Intel® Core™ 2 Duo processor Dual-Core Intel® Itanium® 2 processor 9000 series Quad-Core Intel® Xeon® processor Dual-Core Intel® Xeon® processor (Penryn) Introduced 1971 Introduced 1972 Introduced 1974 Introduced 1978 Introduced 1979 Introduced 1982 Introduced 1985 Introduced 1989 Introduced 1993 Introduced 1995 Intel® Pentium II Xeon® processor Intel® Pentium® III Xeon® processor Introduced 2000 Introduced - 2002 Introduced 2002 Introduced 2005 Intel® Core™2 Extreme processor Introduced 2006 Quad-Core Intel® Core™2 Extreme processor Note: Number of transistors is an approximate number. Quad-Core Intel® Core™2 Extreme processor (Penryn) Initial clock speed Initial clock speed Initial clock speed Initial clock speed Initial clock speed Initial clock speed Initial clock speed Initial clock speed Initial clock speed Initial clock speed Introduced 1997 Introduced 1999 Intel® Xeon® processor Initial Clock Speed Initial clock speed Initial clock speed Dual-Core Intel® Xeon® processor Initial clock speed Introduced 2006 Introduced 2007 Initial clock speed Initial clock speed Introduced 2001 Introduced 2006 Intel® Core™2 Quad processors Initial clock speed Initial clock speed Initial clock speed Introduced 2007 108 KHz 500-800 KHz 2 MHz 5 MHz 5 MHz 6 MHz 16 MHz 25 MHz 66 MHz 200 MHz 1.7 GHz 1 GHz 3.2 GHz 1.66 GHz Initial clock speed Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors 300 MHz 500 MHz Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors Number of transistors GHz 1.5 GHz 2.93 GHz >Number 3 of transistors Number of transistors Number of transistors 2.66 GHz 2,300 3,500 4,500 29,000 29,000 134,000 275,000 1,200,000 3,100,000 5,500,000 55,000,000 220,000,000 291,000,000 1,720,000,000 Number of transistors Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology 7,500,000 9,500,000 Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing technology Manufacturing Technology Manufacturing technology Manufacturing technology 42,000,000 291,000,000 820,000,000 Manufacturing technology 582,000,000 Manufacturing technology 10μ 10μ 6μ 3μ 3μ 1.5μ 1.5μ 1μ 0.8μ 0.6μ Manufacturing technology 90nm 0.13μ 65nm 90nm 0.25μ 0.18μ Manufacturing technology 45nm 0.18μ 65nm 65nm 45nm The groundbreaking Intel® 4004 The Intel® 8008 processor was The Intel® 8080 processor made The Intel® 8086 processor was the A pivotal sale to IBM's new personal The Intel® 286 was the rst The Intel386™ processor could run multiple The Intel486™ introduced the integrated The Intel® Pentium® processor, executing The Pentium® Pro processor delivered The Intel® Pentium® II processor’s signicant The Intel® Pentium® III processor executed The Intel® Pentium® 4 processor The Intel® Pentium® M processor, the Intel® The Intel® Itanium® 2 processor is the successor The Intel® Pentium® D processor features the Intel® Core™2 Duo processor optimizes Dual-Core Intel® Itanium® 2 processor 9000 series The unprecedented performance of the Intel® Intel’s next generation Intel® Core™2 processor processor was introduced with twice as powerful as the Intel® video games and home rst 16 bit processor and delivered computer division made the Intel® Intel processor that could software programs at once and featured oating point unit. This generation of 112 million commands per second, allowed more performance than previous performance improvement over previous Internet Streaming SIMD Extensions, ushers in the advent of the 855 chipset family, and the Intel® of the rst Itanium processor. rst desktop duel-core design with two mobile microarchitecture of the Intel® outperforms the earlier, single-core version of the Core™2 Quad processor is made possible by each family, codenamed "Penryn", contains the same computing power 4004 processor. computers possible. about ten times the performance 8088 processor the brains of IBM's run all the software written 275,000 transistors—more than 100 times computers really allowed users to go from a computers to more easily incorporate "real generation processors through an Intel-Architecture processors was based on the extended the concept of processor nanotechnology age. PRO/Wireless 2100 network connection are The architecture is based on Explicitly Parallel complete processor cores, that each run at Pentium® M processor and enhanced it Itanium 2 processors. With more than 1.7 billion of the four complete execution cores delivering industry-leading microarchitecture as ENIAC. of its predecessors. new hit product--the IBM PC. for its predecessor. as many as the original Intel® 4004. command level computer into point and world" data such as speech, sound, innovation called Dynamic Execution. seamless combination of the P6 identication and utilized multiple the three components of Intel® Centrino® Instruction Computing (EPIC). It is theoretically the same speed, in one physical package. with many microarchitecture innovations.
Recommended publications
  • Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance
    White Paper Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance Ofri Wechsler Intel Fellow, Mobility Group Director, Mobility Microprocessor Architecture Intel Corporation White Paper Inside Intel®Core™ Microarchitecture Introduction Introduction 2 The Intel® Core™ microarchitecture is a new foundation for Intel®Core™ Microarchitecture Design Goals 3 Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art multi-core optimized Delivering Energy-Efficient Performance 4 and power-efficient microarchitecture is designed to deliver Intel®Core™ Microarchitecture Innovations 5 increased performance and performance-per-watt—thus increasing Intel® Wide Dynamic Execution 6 overall energy efficiency. This new microarchitecture extends the energy efficient philosophy first delivered in Intel's mobile Intel® Intelligent Power Capability 8 microarchitecture found in the Intel® Pentium® M processor, and Intel® Advanced Smart Cache 8 greatly enhances it with many new and leading edge microar- Intel® Smart Memory Access 9 chitectural innovations as well as existing Intel NetBurst® microarchitecture features. What’s more, it incorporates many Intel® Advanced Digital Media Boost 10 new and significant innovations designed to optimize the Intel®Core™ Microarchitecture and Software 11 power, performance, and scalability of multi-core processors. Summary 12 The Intel Core microarchitecture shows Intel’s continued Learn More 12 innovation by delivering both greater energy efficiency Author Biographies 12 and compute capability required for the new workloads and usage models now making their way across computing. With its higher performance and low power, the new Intel Core microarchitecture will be the basis for many new solutions and form factors. In the home, these include higher performing, ultra-quiet, sleek and low-power computer designs, and new advances in more sophisticated, user-friendly entertainment systems.
    [Show full text]
  • Microcode Revision Guidance August 31, 2019 MCU Recommendations
    microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment.
    [Show full text]
  • POWER-AWARE MICROARCHITECTURE: Design and Modeling Challenges for Next-Generation Microprocessors
    POWER-AWARE MICROARCHITECTURE: Design and Modeling Challenges for Next-Generation Microprocessors THE ABILITY TO ESTIMATE POWER CONSUMPTION DURING EARLY-STAGE DEFINITION AND TRADE-OFF STUDIES IS A KEY NEW METHODOLOGY ENHANCEMENT. OPPORTUNITIES FOR SAVING POWER CAN BE EXPOSED VIA MICROARCHITECTURE-LEVEL MODELING, PARTICULARLY THROUGH CLOCK- GATING AND DYNAMIC ADAPTATION. Power dissipation limits have Thus far, most of the work done in the area David M. Brooks emerged as a major constraint in the design of high-level power estimation has been focused of microprocessors. At the low end of the per- at the register-transfer-level (RTL) description Pradip Bose formance spectrum, namely in the world of in the processor design flow. Only recently have handheld and portable devices or systems, we seen a surge of interest in estimating power Stanley E. Schuster power has always dominated over perfor- at the microarchitecture definition stage, and mance (execution time) as the primary design specific work on power-efficient microarchi- Hans Jacobson issue. Battery life and system cost constraints tecture design has been reported.2-8 drive the design team to consider power over Here, we describe the approach of using Prabhakar N. Kudva performance in such a scenario. energy-enabled performance simulators in Increasingly, however, power is also a key early design. We examine some of the emerg- Alper Buyuktosunoglu design issue in the workstation and server mar- ing paradigms in processor design and com- kets (see Gowan et al.)1 In this high-end arena ment on their inherent power-performance John-David Wellman the increasing microarchitectural complexities, characteristics. clock frequencies, and die sizes push the chip- Victor Zyuban level—and hence the system-level—power Power-performance efficiency consumption to such levels that traditionally See the “Power-performance fundamentals” Manish Gupta air-cooled multiprocessor server boxes may box.
    [Show full text]
  • Asrock G41C-VS Motherboard, a Reliable Motherboard Produced Under Asrock’S Consistently Stringent Quality Control
    G41C-VS User Manual Version 1.0 Published October 2009 Copyright©2009 ASRock INC. All rights reserved. 1 Copyright Notice: No part of this manual may be reproduced, transcribed, transmitted, or translated in any language, in any form or by any means, except duplication of documentation by the purchaser for backup purpose, without written consent of ASRock Inc. Products and corporate names appearing in this manual may or may not be regis- tered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to the owners’ benefit, without intent to infringe. Disclaimer: Specifications and information contained in this manual are furnished for informa- tional use only and subject to change without notice, and should not be constructed as a commitment by ASRock. ASRock assumes no responsibility for any errors or omissions that may appear in this manual. With respect to the contents of this manual, ASRock does not provide warranty of any kind, either expressed or implied, including but not limited to the implied warran- ties or conditions of merchantability or fitness for a particular purpose. In no event shall ASRock, its directors, officers, employees, or agents be liable for any indirect, special, incidental, or consequential damages (including damages for loss of profits, loss of business, loss of data, interruption of business and the like), even if ASRock has been advised of the possibility of such damages arising from any defect or error in the manual or product. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
    [Show full text]
  • The Intel Microprocessors: Architecture, Programming and Interfacing Introduction to the Microprocessor and Computer
    Microprocessors (0630371) Fall 2010/2011 – Lecture Notes # 1 The Intel Microprocessors: Architecture, Programming and Interfacing Introduction to the Microprocessor and computer Outline of the Lecture Evolution of programming languages. Microcomputer Architecture. Instruction Execution Cycle. Evolution of programming languages: Machine language - the programmer had to remember the machine codes for various operations, and had to remember the locations of the data in the main memory like: 0101 0011 0111… Assembly Language - an instruction is an easy –to- remember form called a mnemonic code . Example: Assembly Language Machine Language Load 100100 ADD 100101 SUB 100011 We need a program called an assembler that translates the assembly language instructions into machine language. High-level languages Fortran, Cobol, Pascal, C++, C# and java. We need a compiler to translate instructions written in high-level languages into machine code. Microprocessor-based system (Micro computer) Architecture Data Bus, I/O bus Memory Storage I/O I/O Registers Unit Device Device Central Processing Unit #1 #2 (CPU ) ALU CU Clock Control Unit Address Bus The figure shows the main components of a microprocessor-based system: CPU- Central Processing Unit , where calculations and logic operations are done. CPU contains registers , a high-frequency clock , a control unit ( CU ) and an arithmetic logic unit ( ALU ). o Clock : synchronizes the internal operations of the CPU with other system components using clock pulsing at a constant rate (the basic unit of time for machine instructions is a machine cycle or clock cycle) One cycle A machine instruction requires at least one clock cycle some instruction require 50 clocks. o Control Unit (CU) - generate the needed control signals to coordinate the sequencing of steps involved in executing machine instructions: (fetches data and instructions and decodes addresses for the ALU).
    [Show full text]
  • Toshiba Hardware Portfolio – Microsoft Support by Family
    Date created: 6/17/2020 Toshiba Hardware Portfolio – Microsoft Support by Family Windows 10 Windows 10 Windows 10 Toshiba Windows 10 Toshiba IoT IoT Enterprise Intel Platform Machine Intel Processor Model IoT Enterprise Family Enterprise LTSC 2019 Type LTSB 2015 LTSB 2016 Core i3 9100TE 777 TCx™ 700 4900 Core i5 9500T 787 9th Gen Core Core i7 9700T 797 (Coffee Lake Not Supported Refresh) Core i3 9100TE 371 TCx™ 300 4810 Core i5 9500T 381 Core i7 9700T 391 8th Gen Core TCx™ 300 4810 361 Celeron 4900T (Coffee Lake) TCx™ 700 4900 767 107 Available now and Core i7 7600U 117 supported until 137 Not Supported Jan 9, 2029 105 Core i5 7300U 115 7th Gen Core 135 TCx™ 800 6200 Available (Kaby Lake) 103 now and Core i3 7100U 113 supported until 133 Oct 13, 2026 10C Celeron 3965U 11C 13C N/A 4750 AMD GX-218GL D10 SoC Family Basics Celeron J1900 4818 T10 (Bay Trail) Quad Not Supported 6th Gen Core 145 TCxWave™ 6140 Core i5 6300U (Skylake/Q170) 155 Date created: 6/17/2020 14C Celeron 3955U 15C SoC Family Celeron J1900 A3R (Bay Trail) Quad Core i5 4950S 786 Available Core i3 4330 C86 now and TCx™ 700 4900 Celeron G1820 supported until 746 Oct 14, 2025 4th Gen Core Celeron G1820TE (Haswell/Q87) C46 Core i5 4570TE 380 TCx™ 300 4810 Core i3 4330TE 370 Celeron G1820TE 360 3rd Gen Core + TCxWave ™ 6140 Core i3 3217UE 120 2nd Gen PCH SurePOS (IvyBridge CPU + 4852 Core i5 3550S 580 CougarPoint PCH) 500 Toshiba Toshiba Limited TCxWave ™ 6140 Celeron 847E 100 Limited Support SurePOS Celeron G540 785 Support 2nd Gen Core 4900 700 Core i3 2120 C85 (SandyBridge/Q67)
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • IEEE Spectrum: 25 Microchip
    IEEE Spectrum: 25 Microchips That Shook the World http://www.spectrum.ieee.org/print/8747 Sponsored By Select Font Size: A A A 25 Microchips That Shook the World By Brian R. Santo This is part of IEEE Spectrum 's Special Report: 25 Microchips That Shook the World . In microchip design, as in life, small things sometimes add up to big things. Dream up a clever microcircuit, get it sculpted in a sliver of silicon, and your little creation may unleash a technological revolution. It happened with the Intel 8088 microprocessor. And the Mostek MK4096 4-kilobit DRAM. And the Texas Instruments TMS32010 digital signal processor. Among the many great chips that have emerged from fabs during the half-century reign of the integrated circuit, a small group stands out. Their designs proved so cutting-edge, so out of the box, so ahead of their time, that we are left groping for more technology clichés to describe them. Suffice it to say that they gave us the technology that made our brief, otherwise tedious existence in this universe worth living. We’ve compiled here a list of 25 ICs that we think deserve the best spot on the mantelpiece of the house that Jack Kilby and Robert Noyce built. Some have become enduring objects of worship among the chiperati: the Signetics 555 timer, for example. Others, such as the Fairchild 741 operational amplifier, became textbook design examples. Some, like Microchip Technology’s PIC microcontrollers, have sold billions, and are still doing so. A precious few, like Toshiba’s flash memory, created whole new markets.
    [Show full text]
  • Unit 8 : Microprocessor Architecture
    Unit 8 : Microprocessor Architecture Lesson 1 : Microcomputer Structure 1.1. Learning Objectives On completion of this lesson you will be able to : ♦ draw the block diagram of a simple computer ♦ understand the function of different units of a microcomputer ♦ learn the basic operation of microcomputer bus system. 1.2. Digital Computer A digital computer is a multipurpose, programmable machine that reads A digital computer is a binary instructions from its memory, accepts binary data as input and multipurpose, programmable processes data according to those instructions, and provides results as machine. output. 1.3. Basic Computer System Organization Every computer contains five essential parts or units. They are Basic computer system organization. i. the arithmetic logic unit (ALU) ii. the control unit iii. the memory unit iv. the input unit v. the output unit. 1.3.1. The Arithmetic and Logic Unit (ALU) The arithmetic and logic unit (ALU) is that part of the computer that The arithmetic and logic actually performs arithmetic and logical operations on data. All other unit (ALU) is that part of elements of the computer system - control unit, register, memory, I/O - the computer that actually are there mainly to bring data into the ALU to process and then to take performs arithmetic and the results back out. logical operations on data. An arithmetic and logic unit and, indeed, all electronic components in the computer are based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations. Data are presented to the ALU in registers. These registers are temporary storage locations within the CPU that are connected by signal paths of the ALU.
    [Show full text]
  • Hardware Architecture
    Hardware Architecture Components Computing Infrastructure Components Servers Clients LAN & WLAN Internet Connectivity Computation Software Storage Backup Integration is the Key ! Security Data Network Management Computer Today’s Computer Computer Model: Von Neumann Architecture Computer Model Input: keyboard, mouse, scanner, punch cards Processing: CPU executes the computer program Output: monitor, printer, fax machine Storage: hard drive, optical media, diskettes, magnetic tape Von Neumann architecture - Wiki Article (15 min YouTube Video) Components Computer Components Components Computer Components CPU Memory Hard Disk Mother Board CD/DVD Drives Adaptors Power Supply Display Keyboard Mouse Network Interface I/O ports CPU CPU CPU – Central Processing Unit (Microprocessor) consists of three parts: Control Unit • Execute programs/instructions: the machine language • Move data from one memory location to another • Communicate between other parts of a PC Arithmetic Logic Unit • Arithmetic operations: add, subtract, multiply, divide • Logic operations: and, or, xor • Floating point operations: real number manipulation Registers CPU Processor Architecture See How the CPU Works In One Lesson (20 min YouTube Video) CPU CPU CPU speed is influenced by several factors: Chip Manufacturing Technology: nm (2002: 130 nm, 2004: 90nm, 2006: 65 nm, 2008: 45nm, 2010:32nm, Latest is 22nm) Clock speed: Gigahertz (Typical : 2 – 3 GHz, Maximum 5.5 GHz) Front Side Bus: MHz (Typical: 1333MHz , 1666MHz) Word size : 32-bit or 64-bit word sizes Cache: Level 1 (64 KB per core), Level 2 (256 KB per core) caches on die. Now Level 3 (2 MB to 8 MB shared) cache also on die Instruction set size: X86 (CISC), RISC Microarchitecture: CPU Internal Architecture (Ivy Bridge, Haswell) Single Core/Multi Core Multi Threading Hyper Threading vs.
    [Show full text]
  • MOSTEK 1980 CIRCUITS and SYSTEMS PRODUCT GUIDE Mostek Reserves the Right to Make Changes in Specifications at Any Time and Without Notice
    MOSTEK 1980 CIRCUITS AND SYSTEMS PRODUCT GUIDE Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believedto be accurate and reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Mostek. The "PRELIMINARY" designation on a Mostek data sheet indicates that the product is not characterized. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. Mostek Corporation or an authorized sales representative should be consulted for current information before using this product. No responsibility is assumed by Mostek for its use; nor for any infringements of patents and trademarks or other rights ofthird parties resulting from its use. No license is granted under any patents, patent rights, or trademarks of Mostek. Mostek reserves the right to make changes in specifications at anytime and without notice. PRINTED IN USA April 1980 Publication Number Trade Marks Registered® STD No 01009 Copyright © 1980 Mostek Corporation (All rights reserved) II ~~~~~~~;;;;' Table of Contents '~~~~~~;;;;; Table of Contents ................................................... 111 Numerical Index ...................................................VIII Alphabetical Index . ................................................. x Mostek Profile
    [Show full text]
  • HOW FAST? the Current Intel® Core™ Processor Has 43,000,000% More Transistors Than the 4004 Processor
    40yrs of Intel® microprocessor innovation Following Moore’s Law the whole way Intel co-founder Gordon Moore once made a famous prediction that transistor The world’s first microprocessor count for computer chips would —the Intel® 4004—was “born” in 1971, double every two years. 10 years before the first PC came along. Using Moore’s Law as a guiding principle, Intel has provided ever-increasing functionality, performance and energy efficiency to its products. Just think: What if the world had followed this golden rule the last 40 years? HOW FAST? The current Intel® Core™ processor has 43,000,000% more transistors than the 4004 processor. If a village with a 1971 population of 100 had grown as quickly, it would now be by far the largest city in the world. War and Peace? Wait a second. The 4004 processor executed 92,000 instructions per second, while today’s Intel® Core™ i7 processor can run 92 billion. If your typing had accelerated at that rate, you’d be able to type Tolstoy’s classic in just over 1 second. 0101010101010101… You would need 25,000 years to turn a light switch on and off 1.5 trillion times, but today’s processors can do that in less than a second. A PENNY SAVED… When released in 1981, the first well- equipped IBM PC cost about $11,250 in inflation-adjusted 2011 dollars. Today, much more powerful PCs are available in the $500 range (or even less). Fly me to the moon If space travel had come down in price as much as transistors have since 1971, the Apollo 11 mission, which cost around $355 million in 1969, would cost about as much as a latte.
    [Show full text]