Purification and Characterization of Choline Oxidase from Arthrobacter Globiformis

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Characterization of Choline Oxidase from Arthrobacter Globiformis J. Biochem. 82, 1741-1749 (1977) Purification and Characterization of Choline Oxidase from Arthrobacter globiformis Shigeru IKUTA, Shigeyuki IMAMURA, Hideo MISAKI, and Yoshifumi HORIUTI Research Laboratory, Toyo Jozo Co., Ltd., Mifuku, Ohito-cho, Tagata-gun, Shizuoka 410-23 Received for publication, June 7, 1977 Choline oxidase was purified from the cells of Arthrobacter globiformis by fractionations with acetone and ammonium sulfate, and column chromatographies on DEAE-cellulose and on Sephadex G-200. The purified enzyme preparation appeared homogeneous on disc gel electrophoresis. The enzyme was a flavoprotein having a molecular weight of approx. 83,000 (gel filtration) or approx. 71,000 (sodium dodecyl sulfate-polyacrylamide disc gel electro phoresis) and an isoelectric point (pl) around pH 4.5. Identification of the reaction products showed that the enzyme catalyzed the following reactions: choline+02betaine aldehyde+ H202, betaine aldehyde+02+H2O-betaine+H202. The enzyme was highly specific for choline and betaine aldehyde (relative reaction veloc ities: choline, 100%; betaine aldehyde, 46%; N,N-dimethylaminoethanol, 5.2%; triethanol amine, 2.6%; diethanolamine, 0.8%; monoethanolamine, N-methylaminoethanol, methanol, ethanol, propanol, formaldehyde, acetaldehyde, and propionaldehyde, 0%). Its Km values were 1.2 mM for choline and 8.7 mM for betaine aldehyde. The optimum pH for the enzymic reaction was around pH 7.5. In a previous report from this laboratory (1), the existence of choline oxidase was discussed in relation MATERIALS AND METHODS to the oxidative pathway of choline to betaine found in A. globiformis cells. The enzyme ap Culture of the Bacterium-Cells of A. glo peared to catalyze the oxidations of both choline biformis were grown aerobically in culture medium and betaine aldehyde coupled with H202 generation for 40 h, as described previously (1). and oxygen consumption. The present paper Assay-H202-generating activity, betaine reports on the purification and characterization of aldehyde-forming activity and oxygen-consumption this choline oxidase. were determined as described previously (1). Identification and Estimation of Betaine in the Incubation Mixture-The reaction mixture for the production of betaine contained 20 mM Tris-HC1 Abbreviations: pI, isoelectric point; SDS, sodium buffer (pH 8), 1.5 mM 4-aminoantipyrine, 2.1 mM dodecyl sulfate. phenol, 30 ƒÊmol of choline chloride, 40 units of Vol. 82, No. 6, 1977 1741 1742 S. IKUTA, S. IMAMURA, H. MISAKI, and Y. HORIUTI peroxidase, and 200 units of choline oxidase in a Co., Kyoto) at room temperature (25•Ž). final volume of 100 ml. The reaction was carried Materials-Choline chloride, betaine, 4-amino- out for 80 min at 37•Ž and stopped by adding antipyrine, phenol, 2,4-dinitrophenylhydrazine, sufficient conc. HC1 to give a final pH of 1.0. The monoethanolamine, diethanolamine, triethanol amount of betaine formed was determined by the amine, N-methylethanolamine, formaldehyde, method of Barabanov et al. (2) with some modi acetaldehyde, and propionaldehyde were obtained fications as follows. To the mixture, 5 g of char from Wako Pure Chemical Industries Co., Osaka. coal, previously washed with 0.1 N HC1, were N,N-dimethylethanolamine was from Tokyo added to remove the quinoneimine dye formed. Kasei Organic Chemicals Co., Tokyo, and perox The mixture was filtered, and the filtrate concen idase and Coomassie Brilliant Blue R were from trated to 5 ml with a rotary evaporator at 40•Ž. Sigma Chemical Co., St. Louis. Sephadex G-200 A portion (0.5 ml) of the concentrated solution and DEAE-cellulose were products of Pharmacia was mixed with I ml of reineckate solution: the Fine Chemicals, Uppsala, and Brown Co., Berlin, reineckate solution was freshly prepared by dis respectively. The reference proteins used for solving 1.5 g of the monohydrate in 100 ml of molecular weight determinations were aldolase, distilled water, adjusting the pH to 1.0 with conc. chymotrypsinogen A, ovalbumin, bovine serum HC1, and filtering the mixture. After addition of albumin, RNA polymerase, and trypsin inhibitor reineckate, the mixture was stood for 30 min at from Boehringer Mannheim GmbH, Mannheim. room temperature (25•Ž), and the resulting pre cipitate was collected by centrifugation (7,000•~g, RESULTS 5 min) and washed twice with 2 ml of ethyl ether. The washed precipitate was dissolved in 2.5 ml of Purification of Choline Oxidase from the Cells distilled water, and the absorbance of the solution -The bacterial cells were harvested from 2 liters at 525 nm was measured. 'The amount of betaine of culture medium and washed with 10 mM phos- was calculated from a standard curve obtained phate-2 mM EDTA-0.1 % KC1 buffer (pH 7) with authentic betaine. (EDTA-KCI-P1 buffer) by centrifugation. The Determination of Protein-Protein concen washed cells were suspended in 400 ml of the same trations were determined by the method of Lowry buffer containing 0.05 % lysozyme, and the sus et al. (3) with bovine serum albumin as a standard. pension incubated for 30 min at 37•Ž with stirring. I soelectrie Focusing-Isoelectric focusing was The resulting lyzed cell suspension was centrifuged carried out at 5•Ž for 40th With Ampholine carrier (7,000•~?, 20 min) to remove cell debris, and the ampholytes giving a pH gradient of 3.5 to 10 in a supernatant was mixed with 10 ml of 5 % protamine 110ml electrofocusing column, according to the sulfate solution (pH 7). The precipitate formed method of Vesterberg (4). was removed by centrifugation, and the clear Polyacrylamide Disc Gel Electrophoresis- supernatant mixed with an equal volume of cold Polyacrylamide disc gel electophoresis was carried acetone, stood for 20 min at 25•Ž and centrifuged out in 50 mM Tris-glycine buffer (pH 8.3) at a (7,000•~g, 10 min). The resulting supernatant was constant current of 2 mA per, column (5•~80 mM) mixed with acetone to 75 % (v/v), and the mixture for 150 min at 15•Ž, as described by Davis (5). stood for 20 min at 20•Ž and then centrifuged Disc gel electophoresis in the presence of sodium (7,000•~g, 10 min). The precipitate was dissolved dodecyl sulfate (SDS) was performed by the method in 50 ml of EDTA-KCI-P1 buffer and fractionated of Weber et al. (6) in 0.1 m phosphate buffer (pH by adding a saturated solution of ammonium 7.2) containing 0.1 % SDS on 5 % polyacrylamide sulfate (pH 8); the fraction which precipitated between 40% and 60% saturation was collected gel with 0.14% N,N•Œ-methylenebisacrylamide. Electrophoresis was carried 'out at 8 mA per by centrifugation (12,000•~g, 15 min) and dissolved column and at 25•Ž for 4 h. The gel was stained in 20 ml of EDTA-KCI-P1 buffer. The solution with Coomassie Brilliant Blue R (6). was desalted on a Sephadex G-25 column, mixed Absorption Spectrum-The absorption spec with acetone to 60% (v/v) and centrifuged (7,000•~g trum was measured with a Shimadzu double- , 10 min). The resulting supernatant was beam spectrophotometer UV-210 A (Shimadzu mixed with acetone to 75 % and the mixture stood J. Biochem. PURIFICATION AND CHARACTERIZATION OF CHOLINE OXIDASE 1743 for 20 min at 20•Ž. The precipitate formed was x g, 10 min). The precipitate was dissolved in collected by centrifugation (7,000•~g, 10 min) and 2 ml of EDTA-KC1-P1 buffer, and the solution dissolved in 2 ml of the buffer. This solution was rechromatographed on a column of DEAF-cellu- applied to a column of DEAE-cellulose (Fig. 1). lose in a similar manner to that described above The column was washed with 60 ml of EDTA- (Fig. 2). The fractions containing most of the KC1-Pi buffer containing 0.2 M KC1 and then activity (Nos. 59-75) were combined and again eluted with a linear gradient of KC1 (0.2-0.5 M) in subjected to acetone precipitation in the way the same buffer. Fractions showing the enzymic described above. The precipitate was dissolved in activity (Nos. 59-76) were combined, mixed with 2 ml of EDTA-KC1-Pi buffer, and chromato 2 volumes of cold acetone and centrifuged (7,000 graphed on a Sephadex G-200 column (Fig. 3). Fig. 1. Column chromatography on DEAE-cellulose. The enzyme solution (2 ml) after acetone fractionation (60-75%) was applied to a DEAE-cellulose column (2 •~ 15 cm) previously equilibrated with 10 mM phosphate buffer (pH 7) containing 2 mM EDTA and 0.1% KC1 (EDTA-KCI-Pr buffer). The column was washed with 60 ml of the same buffer containing 0.2 M KC1 and then eluted with 500 ml of a linear gradient of 0.2 to 0.5 M KC1 in the same buffer at a flow rate of about 30 ml per h, and fractions of 6 ml were collected. All procedures were carried out at 20•Ž. Other experimental conditions are described in the text. Fig. 2. Column chromatography on DEAE-cellulose. The enzyme solution (2 ml) from the first DEAF-cellulose column was fractionated with acetone and then applied to a DEAE- cellulose column (2•~15 cm). Other experimental conditions were the same as for Fig. 1. Vol. 82, No. 6, 1977 1744 S. IKUTA, S. IMAMURA, H. MISAKI, and Y. HORIUTI The fractions constituting the enzyme peak (Nos. dicates that the enzyme has a typical flavo-protein 46-54) were collected and lyophilized. The puri spectrum. The flavo-protein enzyme is easily fication procedure is summarized in Table I. The reduced by choline, the substrate, or by sodium lyophilized powder, having a specific activity of hydrosulfite as also shown in the absorption 12.5 units per mg protein, gave a single protein spectra: reduction is reversible.
Recommended publications
  • The Role of Genetic Variation in Predisposition to Alcohol-Related Chronic Pancreatitis
    The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Marianne Lucy Johnstone April 2015 The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis 2015 Abstract Background Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main causative agent. However, only a small proportion of alcoholics develop chronic pancreatitis. Genetic polymorphism may affect pancreatitis risk. Aim To determine the factors required to classify a chronic pancreatic population and identify genetic variations that may explain why only some alcoholics develop chronic pancreatitis. Methods The most appropriate method of diagnosing CP was assessed using a systematic review. Genetics of different populations of alcohol-related chronic pancreatitics (ACP) were explored using four different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. Results EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93).
    [Show full text]
  • Enzyme DHRS7
    Toward the identification of a function of the “orphan” enzyme DHRS7 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Selene Araya, aus Lugano, Tessin Basel, 2018 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) und Prof. Dr. Michael Arand (Korreferent) Basel, den 26.6.2018 ________________________ Dekan Prof. Dr. Martin Spiess I. List of Abbreviations 3α/βAdiol 3α/β-Androstanediol (5α-Androstane-3α/β,17β-diol) 3α/βHSD 3α/β-hydroxysteroid dehydrogenase 17β-HSD 17β-Hydroxysteroid Dehydrogenase 17αOHProg 17α-Hydroxyprogesterone 20α/βOHProg 20α/β-Hydroxyprogesterone 17α,20α/βdiOHProg 20α/βdihydroxyprogesterone ADT Androgen deprivation therapy ANOVA Analysis of variance AR Androgen Receptor AKR Aldo-Keto Reductase ATCC American Type Culture Collection CAM Cell Adhesion Molecule CYP Cytochrome P450 CBR1 Carbonyl reductase 1 CRPC Castration resistant prostate cancer Ct-value Cycle threshold-value DHRS7 (B/C) Dehydrogenase/Reductase Short Chain Dehydrogenase Family Member 7 (B/C) DHEA Dehydroepiandrosterone DHP Dehydroprogesterone DHT 5α-Dihydrotestosterone DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DTT Dithiothreitol E1 Estrone E2 Estradiol ECM Extracellular Membrane EDTA Ethylenediaminetetraacetic acid EMT Epithelial-mesenchymal transition ER Endoplasmic Reticulum ERα/β Estrogen Receptor α/β FBS Fetal Bovine Serum 3 FDR False discovery rate FGF Fibroblast growth factor HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid HMDB Human Metabolome Database HPLC High Performance Liquid Chromatography HSD Hydroxysteroid Dehydrogenase IC50 Half-Maximal Inhibitory Concentration LNCaP Lymph node carcinoma of the prostate mRNA Messenger Ribonucleic Acid n.d.
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • W W W .Bio Visio N .Co M New Products Added in 2020
    New products added in 2020 Please find below a list of all the products added to our portfolio in the year 2020. Assay Kits Product Name Cat. No. Size Product Name Cat. No. Size N-Acetylcysteine Assay Kit (F) K2044 100 assays Human GAPDH Activity Assay Kit II K2047 100 assays Adeno-Associated Virus qPCR Quantification Kit K1473 100 Rxns Human GAPDH Inhibitor Screening Kit (C) K2043 100 assays 20 Preps, Adenovirus Purification Kit K1459 Hydroxyurea Colorimetric Assay Kit K2046 100 assays 100 Preps Iodide Colorimetric Assay Kit K2037 100 assays Aldehyde Dehydrogenase 2 Inhibitor Screening Kit (F) K2011 100 assays Laccase Activity Assay Kit (C) K2038 100 assays Aldehyde Dehydrogenase 3A1 Inhibitor Screening Kit (F) K2060 100 assays 20 Preps, Lentivirus and Retrovirus Purification Kit K1458 Alkaline Phosphatase Staining Kit K2035 50 assays 100 Preps Alpha-Mannosidase Activity Assay Kit (F) K2041 100 assays Instant Lentivirus Detection Card K1470 10 tests, 20 tests Beta-Mannosidase Activity Assay Kit (F) K2045 100 assays Lentivirus qPCR Quantification Kit K1471 100 Rxns 50 Preps, Buccal Swab DNA Purification Kit K1466 Maleimide Activated KLH-Peptide Conjugation Kit K2039 5 columns 250 Preps Methionine Adenosyltransferase Activity Assay Kit (C) K2033 100 assays CD38 Activity Assay Kit (F) K2042 100 assays miRNA Extraction Kit K1456 50 Preps EZCell™ CFDA SE Cell Tracer Kit K2057 200 assays MMP-13 Inhibitor Screening Kit (F) K2067 100 assays Choline Oxidase Activity Assay Kit (F) K2052 100 assays Mycoplasma PCR Detection Kit K1476 100 Rxns Coronavirus
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Comparative Enzymology and Cell Origin of Rat Hepatomas II
    The Comparative Enzymology and Cell Origin of Rat Hepatomas II. Glutamate Dehydrogenase, Choline Oxidase, and Glucose-6-phosphatase* HENRY C. PITOT~ (McArdle Memorial Laboratory, The Medical School, University of Wisconsin, Madison, Wis.) SUMMARY The activities of glucose-6-phosphatase, glutamate dehydrogcnase, and choline ox[- dase were determined in some or all of ten rat hepatomas, including the Novikoff, Dunning L-C18, McCoy MDAB, and the Morris 3683, 39524A, and 51~3 hepatomas, together with primary hepatomas produced by feeding ethionine or 3%nethyl-4- dimethylaminoazobenzene, and transplanted hepatomas derived from the primary tumors induced with ethionine. Of these neoplasms, only the Morris hepatoma 51~3, the primary and transplanted ethionine-induced hepatomas, and one of the 3'-methyl-4-dimethylaminoazobenzene- induced tumors possessed significant glucose-6-phosphatase activity. These same tu- mors in addition to the Dunning L-C18 hepatoma had demonstrable glutamate dehydro- genase activity, whereas the other neoplasms tested failed to show significant activity of this enzyme. With the exception of the primary dye-induced neoplasm, which was not tested, only those neoplasms having significant glucose-6-phosphatase activities showed any choline oxidase activity. Of those neoplasms tested for tryptophan peroxidase activity only the Morris hepa- toma 51~3, the primary ethionine-induced hepatoma, and some of the Dunning L-C18 hepatomas had any demonstrable activity of this enzyme. In contrast to most of the enzymatic activities reported here, the threonine dehydrase activity of the Morris hepatoma 51r was of the order of 40 times the level of this enzyme in the livers of animals bearing this tumor.
    [Show full text]
  • Western Blot Sandwich ELISA Immunohistochemistry
    $$ 250 - 150 - 100 - 75 - 50 - 37 - Western Blot 25 - 20 - 15 - 10 - 1.4 1.2 1 0.8 0.6 OD 450 0.4 Sandwich ELISA 0.2 0 0.01 0.1 1 10 100 1000 Recombinant Protein Concentration(mg/ml) Immunohistochemistry Immunofluorescence 1 2 3 250 - 150 - 100 - 75 - 50 - Immunoprecipitation 37 - 25 - 20 - 15 - 100 80 60 % of Max 40 Flow Cytometry 20 0 3 4 5 0 102 10 10 10 www.abnova.com June 2013 (Fourth Edition) 37 38 53 Cat. Num. Product Name Cat. Num. Product Name MAB5411 A1/A2 monoclonal antibody, clone Z2A MAB3882 Adenovirus type 6 monoclonal antibody, clone 143 MAB0794 A1BG monoclonal antibody, clone 54B12 H00000126-D01 ADH1C MaxPab rabbit polyclonal antibody (D01) H00000002-D01 A2M MaxPab rabbit polyclonal antibody (D01) H00000127-D01 ADH4 MaxPab rabbit polyclonal antibody (D01) MAB0759 A2M monoclonal antibody, clone 3D1 H00000131-D01 ADH7 MaxPab rabbit polyclonal antibody (D01) MAB0758 A2M monoclonal antibody, clone 9A3 PAB0005 ADIPOQ polyclonal antibody H00051166-D01 AADAT MaxPab rabbit polyclonal antibody (D01) PAB0006 Adipoq polyclonal antibody H00000016-D01 AARS MaxPab rabbit polyclonal antibody (D01) PAB5030 ADIPOQ polyclonal antibody MAB8772 ABCA1 monoclonal antibody, clone AB.H10 PAB5031 ADIPOQ polyclonal antibody MAB8291 ABCA1 monoclonal antibody, clone AB1.G6 PAB5069 Adipoq polyclonal antibody MAB3345 ABCB1 monoclonal antibody, clone MRK16 PAB5070 Adipoq polyclonal antibody MAB3389 ABCC1 monoclonal antibody, clone QCRL-2 PAB5124 Adipoq polyclonal antibody MAB5157 ABCC1 monoclonal antibody, clone QCRL-3 PAB9125 ADIPOQ polyclonal antibody
    [Show full text]
  • Metabolic Targets of Coenzyme Q10 in Mitochondria
    antioxidants Review Metabolic Targets of Coenzyme Q10 in Mitochondria Agustín Hidalgo-Gutiérrez 1,2,*, Pilar González-García 1,2, María Elena Díaz-Casado 1,2, Eliana Barriocanal-Casado 1,2, Sergio López-Herrador 1,2, Catarina M. Quinzii 3 and Luis C. López 1,2,* 1 Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; [email protected] (P.G.-G.); [email protected] (M.E.D.-C.); [email protected] (E.B.-C.); [email protected] (S.L.-H.) 2 Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain 3 Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; [email protected] * Correspondence: [email protected] (A.H.-G.); [email protected] (L.C.L.); Tel.: +34-958-241-000 (ext. 20197) (L.C.L.) Abstract: Coenzyme Q10 (CoQ10) is classically viewed as an important endogenous antioxidant and key component of the mitochondrial respiratory chain. For this second function, CoQ molecules seem to be dynamically segmented in a pool attached and engulfed by the super-complexes I + III, and a free pool available for complex II or any other mitochondrial enzyme that uses CoQ as a cofactor. This CoQ-free pool is, therefore, used by enzymes that link the mitochondrial respiratory chain to other pathways, such as the pyrimidine de novo biosynthesis, fatty acid β-oxidation and amino acid catabolism, glycine metabolism, proline, glyoxylate and arginine metabolism, and sulfide oxidation Citation: Hidalgo-Gutiérrez, A.; metabolism. Some of these mitochondrial pathways are also connected to metabolic pathways González-García, P.; Díaz-Casado, in other compartments of the cell and, consequently, CoQ could indirectly modulate metabolic M.E.; Barriocanal-Casado, E.; López-Herrador, S.; Quinzii, C.M.; pathways located outside the mitochondria.
    [Show full text]
  • Microrna-Mediated Metabolic Reprograming in Renal Cancer
    cancers Article MicroRNA-Mediated Metabolic Reprograming in Renal Cancer Joanna Bogusławska 1 , Piotr Popławski 1, Saleh Alseekh 2,3, Marta Koblowska 4,5 , 4,5 1 1, 1 Roksana Iwanicka-Nowicka , Beata Rybicka , Hanna K˛edzierska y, Katarzyna Głuchowska , Karolina Hanusek 1, Zbigniew Ta´nski 6, Alisdair R. Fernie 2,3 and Agnieszka Piekiełko-Witkowska 1,* 1 Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; [email protected] (J.B.); [email protected] (P.P.); [email protected] (B.R.); [email protected] (H.K.); [email protected] (K.G.); [email protected] (K.H.) 2 Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; [email protected] (S.A.); [email protected] (A.R.F.) 3 Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria 4 Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; [email protected] (M.K.); [email protected] (R.I.-N.) 5 Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland 6 Masovian Specialist Hospital in Ostroleka, 07-410 Ostroleka, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-5693810 Present affiliation of HK: Laboratory of Experimental Medicine, Centre of New Technologies, University of y Warsaw, 02-097 Warsaw, Poland. Received: 25 October 2019; Accepted: 15 November 2019; Published: 20 November 2019 Abstract: Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC).
    [Show full text]
  • Physiology and Biochemistry of Aromatic Hydrocarbon-Degrading Bacteria That Use Chlorate And/Or Nitrate As Electron Acceptor
    Invitation for the public defense of my thesis Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic and biochemistry Physiology bacteria that use chlorate and/or nitrate as electron acceptor as electron nitrate and/or use chlorate that bacteria Physiology and biochemistry Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic hydrocarbon- degrading bacteria that bacteria that use chlorate and/or nitrate as electron acceptor use chlorate and/or nitrate as electron acceptor The public defense of my thesis will take place in the Aula of Wageningen University (Generall Faulkesweg 1, Wageningen) on December 18 2013 at 4:00 pm. This defense is followed by a reception in Café Carré (Vijzelstraat 2, Wageningen). Margreet J. Oosterkamp J. Margreet Paranimphs Ton van Gelder ([email protected]) Aura Widjaja Margreet J. Oosterkamp ([email protected]) Marjet Oosterkamp (911 W Springfield Ave Apt 19, Urbana, IL 61801, USA; [email protected]) Omslag met flap_MJOosterkamp.indd 1 25-11-2013 5:58:31 Physiology and biochemistry of aromatic hydrocarbon-degrading bacteria that use chlorate and/or nitrate as electron acceptor Margreet J. Oosterkamp Thesis-MJOosterkamp.indd 1 25-11-2013 6:42:09 Thesis committee Thesis supervisor Prof. dr. ir. A. J. M. Stams Personal Chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisors Dr. C. M. Plugge Assistant Professor at the Laboratory of Microbiology Wageningen University Dr. P. J. Schaap Assistant Professor at the Laboratory of Systems and Synthetic Biology Wageningen University Other members Prof. dr. L. Dijkhuizen, University of Groningen Prof. dr. H. J. Laanbroek, University of Utrecht Prof.
    [Show full text]
  • Inactivation of Choline Oxidase by Irreversible Inhibitors Or Storage Conditions
    Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 8-3-2006 Inactivation of Choline Oxidase by Irreversible Inhibitors or Storage Conditions Jane Vu Hoang [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Hoang, Jane Vu, "Inactivation of Choline Oxidase by Irreversible Inhibitors or Storage Conditions." Thesis, Georgia State University, 2006. https://scholarworks.gsu.edu/chemistry_theses/4 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. INACTIVATION OF CHOLINE OXIDASE BY IRREVERSIBLE INHIBITORS OR STORAGE CONDITIONS by JANE V. HOANG Under the Direction of Giovanni Gadda ABSTRACT Choline oxidase from Arthrobacter globiformis is a flavin-dependent enzyme that catalyzes the oxidation of choline to betaine aldehyde through two sequential hydride-transfer steps. The study of this enzyme is of importance to the understanding of glycine betaine biosynthesis found in pathogenic bacterial or economic relevant crop plants as a response to temperature and salt stress in adverse environment. In this study, chemical modification of choline oxidase using two irreversible inhibitors, tetranitromethane and phenylhydrazine, was performed in order to gain insights into the active site structure of the enzyme. Choline oxidase can also be inactivated irreversibly by freezing in 20 mM sodium phosphate and 20 mM sodium pyrophosphate at pH 6 and -20 oC. The results showed that enzyme inactivation was due to a localized conformational change associated with the ionization of a group in close proximity to the flavin cofactor and led to a complete lost of catalytic activity.
    [Show full text]