News on IEC 61850 and Related Standards

Total Page:16

File Type:pdf, Size:1020Kb

News on IEC 61850 and Related Standards News on IEC 61850 and related Standards Teilen Missbrauch melden Nächstes Blog» Blog erstellen Anmelden News on IEC 61850 and related Standards Daily news concerning the standards IEC 61850, IEC 61400-25, IEC 61970 (CIM), IEC 60870-5, ... Monday, February 13, 2012 Subscribe To IEC 61850 News Smart Grid Last Mile Infrastructure Posts 20 experts from 15 companies have drafted an architecture for “A All Comments Standardized and Flexible IPv6 Architecture for Field Area Networks”. The “paper is intended to provide a synthetic and holistic view of open Blog Archive standards Internet Protocol version 6 (IPv6) based architecture for Smart Grid Last Mile Infrastructures in support of a number of advanced ▼ 2012 (28) Smart Grid ▼ February (13) applications (meter readout, demand-response, telemetry, and grid monitoring and automation) and its benefit as a true Multi-Services Smart Grid Last Mile platform. … provide an efficient, flexible, secure, and multi-service Infrastructure network based on open standards.” IEC 61850 on every Pole? IEC TC 57 standards like CIM, IEC 61850, and IEC 610870, as well as DNP3, IEEE 1888, and Modbus are understood as crucial application Ethernet for Real-Time standards. Applications – IEEE Symposi... Click HERE for the above architecture. IEC 60870-6 TASE.2 What is IEEE 1888? A new IEEE project … (ICCP) - New Editions Standard for Ubiquitous Green Community Control Network Load-Shedding by Police Protocol and SMS Click HERE for some background information Italian Norm about to Click HERE for the PAR Require IEC 61850 for Click HERE to visit the project website. almost... I hope that the experts involved in the project IEEE 1888 will rely on standards like CIM, IEC 61850, and IEC 610870, … Hope that the IEC 61850 Training energy automation market is smarter than the industrial automation Courses in Frankfurt market: keeping the number of protocol solutions very low!! The and Denver... industrial automation domain has a lot of headaches with the proliferation of the many many protocols (100+)!! Modeling Circuit Breakers for Single and Three Posted by Karlheinz Schwarz at 7:31 AM 0 comments Pha... Labels: CIM, Cisco, communication, fieldbus, IEC 60870-6, IEC 61850, Smart Grid, Long-Term Solutions for smart metering, utilities The Transition of Energy S... Saturday, February 11, 2012 Wind and Solar Gas – A Challenging Storage IEC 61850 on every Pole? Option Pole mounted power distribution equipment and communication could be IEEE Standards for free found all over in big cities like the one shown in the following picture I download took in Seoul: U.S. System Integrator opened Test Facility for IE... http://blog.iec61850.com/[13.02.2012 18:24:19] News on IEC 61850 and related Standards Power Quality Information modeled in IEC 61850 ► January (15) ► 2011 (159) ► 2010 (153) ► 2009 (162) ► 2008 (82) Contributors Michael Schwarz Karlheinz Schwarz In the future you may see many pole mounted boxes that function as routers supporting the hybrid grids (power, gas, heat, …), traffic control, … and may other applications. Several companies are offering the needed communication infrastructure that connects many of the millions of devices. One of these comprehensive solutions is the “Cisco Connected Grid – Deliver More Value from Your Operations Over a Single, Intelligent, Secure Platform”. A key element in this platform is IEC 61850. Click HERE for a presentation on “Cisco Connected Grid” [pdf, 25 pages] Posted by Karlheinz Schwarz at 12:15 AM 1 comments Labels: CIM, Cisco, IEC 61850, power distribution, power systems, routers Friday, February 10, 2012 Ethernet for Real-Time Applications – IEEE Symposium in Munich On January 17, 2012 TUEV SUED (Munich, Germany) held a symposium on real-time Ethernet. Ethernet is not fit for real-time – that is what has been said from the very beginning. But: time and technology has changed. “Deterministic Ethernet & Unified Networking - Never bet against Ethernet …”, this is the opening statement of one of the 11 presentations of the symposium. Ethernet seems to be THE backbone of all automation systems in the near future. The 11 presentations can be downloaded: 1. Opening by TÜV SÜD 2. IEEE 802.1 AVB standards status (audio video bridging, Broadcom) 3. Real-time networks and preemption (Cisco) 4. Latency Scenarios of Bridged Networks (Deggendorf University) 5. Real-time Ethernet Requirements for Automation Applications (iniT) 6. Ultra Low Latency Traffic Class @ Industry (Siemens) 7. Adaptive Scheduling of Streams in RT (Czech TU Prague) 8. AVB and Fault Tolerant Networking (Belden/Hirschmann) – Ethernet everywhere! 9. Robustness Requirement in Industry and Energy (ZHAW, CH) http://blog.iec61850.com/[13.02.2012 18:24:19] News on IEC 61850 and related Standards 10. Deterministic Ethernet & Unified Networking (TTTech) 11. IEEE 1588v2 Time Synchronization in Energy Automation Applications – Case Studies from China (RuggedCom) – Huge substation with more than 160 Ethernet Switches! When I was about to do my diploma thesis at Siemens in Karlsruhe in 1981, my topic was to do some practical analysis of Ethernet. Due to the high cost of two (2) Ethernet MAUs (40.000 DM / 20.000 Euro) it was decided not to purchase the hardware – people did not believe that Ethernet would be an option at all … and forever. Many experts believed in Token Passing. I did not agree (I was still a student). So, I decided to look for an answer of making shared Ethernet deterministic … it ended up in a patent Siemens got. More to come … in China and all over. Ethernet and IEC 61850 (based on Ethernet) are providing real standard solutions. Posted by Karlheinz Schwarz at 11:09 PM 0 comments Labels: Ethernet, Ethernet switches, IEC 61850, IEEE 1588, IEEE 802, real-time Thursday, February 9, 2012 IEC 60870-6 TASE.2 (ICCP) - New Editions IEC TC 57 has published three Committee Drafts (CD) that are intended to provide new editions of the popular standards for control center to control center communication. IEC 60870 defines a mechanism for exchanging time-critical data between control centres. It defines a standardized method of using the ISO 9506 Manufacturing Message Specification (MMS) services to implement the exchange of data. Closing date for comments: 2012-05-04 57/1213/CD IEC 60870-6-503 Ed.3: Telecontrol equipment and systems - Part 6- 503: Telecontrol protocols compatible with ISO standards and ITU-T recommendations - TASE.2 Services and protocol 57/1214/CD IEC 60870-6-702 Ed.2: Telecontrol equipment and systems - Part 6- 702: Telecontrol protocols compatible with ISO standards and ITU-T recommendations - Functional profile for providing the TASE.2 application service in end systems 57/1215/CD IEC 60870-6-802 Ed.3: Telecontrol equipment and systems - Part 6- 802: Telecontrol protocols compatible with ISO standards and ITU-T recommendations - TASE.2 Object models Contact your National Committee for a copy. Posted by Karlheinz Schwarz at 11:50 PM 0 comments Labels: IEC 60870-6, iso 9506, MMS, TASE.2, TASE.2 ICCP Load-Shedding by Police and SMS The German TV channel ZDF showed yesterday how businesses in Nice http://blog.iec61850.com/[13.02.2012 18:24:19] News on IEC 61850 and related Standards (France) shed loads: by policeman coming by … and by SMS messages. Click HERE for a video [in German only, at ZDF.de] Posted by Karlheinz Schwarz at 11:30 PM 0 comments Labels: load shedding, power outage, power systems Tuesday, February 7, 2012 Italian Norm about to Require IEC 61850 for almost all PV Inverters The CEI (Comitato Elettrotecnico Italiano) has published in December 2011 a norm that strongly proposes to use IEC 61850 to connect PV inverters (>1kV and >6 kW) to external systems (grid operator, …): CEI 0-21 “Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica”. “Reference technical rules for the connection of active and passive users to the LV electrical Utilities” Click HERE for the press release and link to the norm provided by CEI [pdf, Italian]. Click HERE for a up-to-date presentation presenting the background and needs for … and for standard communications in low voltage (LV) power systems. The document IEC 61850-90-7 “IEC 61850 object models for inverters in distributed energy resources (DER) systems” is about to published in a few months. This document is a perfect fit for the needs of PV inverters. IEC TC 57 WG 17 has met in San Diego (CA) last week. The final draft paper is expected to be available in a few weeks. Posted by Karlheinz Schwarz at 11:11 AM 0 comments Labels: DER, distribution automation, IEC 61850, IEC 61850-90-7, inverters, photo voltaic, PV IEC 61850 Training Courses in Frankfurt and Denver (CO) Are you looking to tap the experience of training almost 3.000 experts all over? Here are a few public events in Germany and U.S. that provide a wide range of experience and knowledge presented by Karlheinz Schwarz. Understanding the basics of standard series IEC 61850 and IEC 61400- 25 will help you to get smoothly to systems that are based on interoperable devices. Frankfurt (Germany), 09.-11. May 2012 Frankfurt (Germany), 17.-19. October 2012 3 day IEC 61850/61400-25 Seminar/Hands-on Training (NettedAutomation) with with several embedded Controller Development Kits (Linux, RTOS, ...), Starter Kit (Windows DDL), and several other demo software http://blog.iec61850.com/[13.02.2012 18:24:19] News on IEC 61850 and related Standards Denver, CO, (USA), Remote Conference, 18.-19. September 2012 2 day Seminar (NettedAutomation) on Power System Communication covering IEC 61850, IEC 61400-25, DNP3, NIST Interoperability Roadmap, Smart Grids, ... Posted by Karlheinz Schwarz at 10:51 AM 0 comments Labels: hands-on Training, IEC 61400-25, IEC 61850, seminar, stack, starter kit, Training Monday, February 6, 2012 Modeling Circuit Breakers for Single and Three Phases Models for switchgear are defined in IEC 61850-7-4 Edition 2.
Recommended publications
  • State-Of-The-Art Artificial Intelligence Techniques for Distributed Smart
    electronics Review State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review Syed Saqib Ali and Bong Jun Choi * School of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-820-0923 Received: 12 May 2020; Accepted: 10 June 2020; Published: 22 June 2020 Abstract: The power system worldwide is going through a revolutionary transformation due to the integration with various distributed components, including advanced metering infrastructure, communication infrastructure, distributed energy resources, and electric vehicles, to improve the reliability, energy efficiency, management, and security of the future power system. These components are becoming more tightly integrated with IoT. They are expected to generate a vast amount of data to support various applications in the smart grid, such as distributed energy management, generation forecasting, grid health monitoring, fault detection, home energy management, etc. With these new components and information, artificial intelligence techniques can be applied to automate and further improve the performance of the smart grid. In this paper, we provide a comprehensive review of the state-of-the-art artificial intelligence techniques to support various applications in a distributed smart grid. In particular, we discuss how artificial techniques are applied to support the integration of renewable energy resources, the integration of energy storage systems, demand response, management of the grid and home energy, and security. As the smart grid involves various actors, such as energy produces, markets, and consumers, we also discuss how artificial intelligence and market liberalization can potentially help to increase the overall social welfare of the grid.
    [Show full text]
  • Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations
    Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Report of Working Group P6 of the Power System Communications and Cybersecurity Committee of the Power and Energy Society of IEEE September 12, 2017 1 IEEE PES Power System Communications and Cybersecurity Committee (PSCCC) Working Group P6, Configuring Ethernet Communications Equipment for Substation Protection and Control Applications, has existed during the course of report development as Working Group H12 of the IEEE PES Power System Relaying Committee (PSRC). The WG designation changed as a result of a recent IEEE PES Technical Committee reorganization. The membership of H12 and P6 at time of approval voting is as follows: Eric A. Udren, Chair Benton Vandiver, Vice Chair Jay Anderson Galina Antonova Alex Apostolov Philip Beaumont Robert Beresh Christoph Brunner Fernando Calero Christopher Chelmecki Thomas Dahlin Bill Dickerson Michael Dood Herbert Falk Didier Giarratano Roman Graf Christopher Huntley Anthony Johnson Marc LaCroix Deepak Maragal Aaron Martin Roger E. Ray Veselin Skendzic Charles Sufana John T. Tengdin 2 IEEE PES PSCCC P6 Report, September 2017 Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Table of Contents 1. Introduction ...................................................................................... 10 2. Ethernet for protection and control .................................................. 10 3. Overview of Ethernet message
    [Show full text]
  • A Survey of Smart Grid Architectures, Applications, Benefits and Standardization
    A survey of smart grid architectures, applications, benefits and standardization This is the Accepted version of the following publication Nafi, NS, Ahmed, Khandakar, Gregory, MA and Datta, M (2016) A survey of smart grid architectures, applications, benefits and standardization. Journal of Network and Computer Applications, 76. 23 - 36. ISSN 1084-8045 The publisher’s official version can be found at http://www.sciencedirect.com/science/article/pii/S1084804516302314 Note that access to this version may require subscription. Downloaded from VU Research Repository https://vuir.vu.edu.au/32688/ Author’s Accepted Manuscript A Survey of Smart Grid Architectures, Applications, Benefits and Standardization Nazmus S. Nafi, Khandakar Ahmed, Mark A. Gregory, Manoj Datta www.elsevier.com/locate/jnca PII: S1084-8045(16)30231-4 DOI: http://dx.doi.org/10.1016/j.jnca.2016.10.003 Reference: YJNCA1730 To appear in: Journal of Network and Computer Applications Received date: 11 June 2016 Revised date: 22 August 2016 Accepted date: 4 October 2016 Cite this article as: Nazmus S. Nafi, Khandakar Ahmed, Mark A. Gregory and Manoj Datta, A Survey of Smart Grid Architectures, Applications, Benefits and Standardization, Journal of Network and Computer Applications, http://dx.doi.org/10.1016/j.jnca.2016.10.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • Sicherheit Und Datenschutz Im Smart Grid
    Sicherheit und Datenschutz im Smart Grid Bachelor-Thesis im Studiengang Medieninformatik vorgelegt von Kristian Antic Matrikelnummer: 20177 am 8. März 2012 an der Hochschule der Medien Stuttgart Erstprüfer: Prof. Dr. Joachim Charzinski Zweitprüfer: Christoph Lindenmüller Bearbeitungszeitraum: 08. Dezember 2011 bis 8. März 2012 Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich (mit Ausnahme dieser Erklärung) als solches kenntlich gemacht.1 Ort, Datum Unterschrift 1Riekert: Eine Dokumentvorlage für Diplomarbeiten und andere wissenschaftliche Arbeiten (2002), [83], S. 42. Kurzfassung Der vermehrte Einsatz von erneuerbaren Energien, welche nicht ständig verfügbar und nur begrenzt speicherbar sind, erschweren die Steuerung der Stromnetze. Zur Anpassung der Energieerzeugung an den tatsächlichen Bedarf werden Smart Grids („intelligente Stromnetze“) aufgebaut, die eine Steuerung des Energieverbrauchs in Abhängigkeit von der Verfügbarkeit ermöglichen. Die bereits vorhandenen Stromnetzte werden hierzu um Kommunikationsnetze erweitert. Smart Meter („intelligente Stromzähler“) die beim Verbraucher eingesetzt werden, senden über die Kommunikationsnetze Messdaten zyklisch an die jeweiligen Stromnetzbetreiber. In Zukunft soll auch eine Steuerung von Haushaltsgeräten möglich werden. Daraus ergeben sich neue Herausforderungen in Bezug auf Sicherheit und Datenschutz. Die hier vorliegende Arbeit bietet eine kurze Einführung in die Grundlagen zum Thema Smart Grid. Es wird eine Referenzarchitektur definiert und die einzelnen Bestandteile des Smart Grids werden vorgestellt. Eine Auseinandersetzung mit den rechtlichen und regulatorischen Rahmenbedingungen sowie ein Überblick über den Stand der Entwicklungen intelligenter Stromnetze, insbesondere der Verbreitung von Smart Metern, vervollständigt die Grundlagen. Zusätzlich werden wesentliche Aspekte von Sicherheit und Datenschutz angesprochen.
    [Show full text]
  • Review of Energy Management System Approaches in Microgrids
    energies Review Review of Energy Management System Approaches in Microgrids Amrutha Raju Battula 1 , Sandeep Vuddanti 1 and Surender Reddy Salkuti 2,* 1 Department of Electrical Engineering, National Institute of Technology Andhra Pradesh (NIT-AP), Tadepalligudem, Andhra Pradesh 534101, India; [email protected] (A.R.B.); [email protected] (S.V.) 2 Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Korea * Correspondence: [email protected]; Tel.: +82-10-9674-1985 Abstract: To sustain the complexity of growing demand, the conventional grid (CG) is incorporated with communication technology like advanced metering with sensors, demand response (DR), energy storage systems (ESS), and inclusion of electric vehicles (EV). In order to maintain local area energy balance and reliability, microgrids (MG) are proposed. Microgrids are low or medium voltage distribution systems with a resilient operation, that control the exchange of power between the main grid, locally distributed generators (DGs), and consumers using intelligent energy management techniques. This paper gives a brief introduction to microgrids, their operations, and further, a review of different energy management approaches. In a microgrid control strategy, an energy management system (EMS) is the key component to maintain the balance between energy resources (CG, DG, ESS, and EVs) and loads available while contributing the profit to utility. This article classifies the methodologies used for EMS based on the structure, control, and technique used. The untapped areas which have scope for investigation are also mentioned. Keywords: renewable energy sources; microgrid; energy management system; communication technologies; microgrid standards Citation: Battula, A.R.; Vuddanti, S.; Salkuti, S.R.
    [Show full text]
  • Review of Smart Grid Standards for Testing and Certification Landscape Analysis
    NIST Technical Note 2042 Review of Smart Grid Standards for Testing and Certification Landscape Analysis Eugene Y. Song Cuong Nguyen Avi Gopstein This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2042 NIST Technical Note 2042 Review of Smart Grid Standards for Testing and Certification Landscape Analysis Eugene Y. Song Cuong Nguyen Avi Gopstein Smart Grid and Cyber-Physical Systems Program Office Engineering Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2042 April 2019 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Technical Note 2042 Natl. Inst. Stand. Technol. Tech. Note 2042, 76 pages (April 2019) CODEN: NTNOEF This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2042 Disclaimers Certain commercial entities, equipment, or materials may be identified in this document to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.
    [Show full text]
  • Overview of Broadband Powerline Communications
    January 23, 2015 Overview of broadband powerline communications Jean-Philippe Faure, CEO Progilon Senior consultant at Panasonic System Networks Director Technology Standards at HD-PLC Alliance Biography of Mr Jean-Philippe Faure Founder and CEO of Progilon, consultancy company operating in the Power Line Communications sector since 1994 IEEE activities ! Founding Chair of the IEEE P1901 working group, representing Panasonic (since 2005) ! Member of the IEEE-SA Standards Board (since 2011) ! Chair of the IEEE ComSoc PLC Standards Committee (since 2012) ! Member of the IEEE ComSoc Standards Development Board (since 2010) Other activities ! Founding Chair of the IEC-CISPR group on EMC for BPL (2005-2010) ! Member of CENELEC and ETSI committees ! Consultant for the European Commission: evaluator and reviewer of R&D projects ! Leading positions in collaborative R&D projects 2 Agenda Powerline Communications ! IEEE Standards ! Smart applications (courtesy of the HD-PLC Alliance www.hd-plc.org) 3 Agenda Powerline Communications ! IEEE Standards ! Smart applications (courtesy of the HD-PLC Alliance www.hd-plc.org) 4 5 IEEE PLC Standards Committee Implementation IEEE 2030 : Guide for Smart Grid IEEE 1909.1 : Recommended Interoperability Practice for Smart Grid Communication Equipment Pioneer Standard Applications IEEE 1901 IEEE 1901.2 : Low Frequency/ Narrow Band Broadband over Power PLC for Smart Grid Applications Line MAC/PHY Layers Wide scope Integration •" In-home •" Access IEEE 1905.1 : Convergent Digital Home •" Smart Grid Network for Heterogeneous
    [Show full text]
  • Interoperability Strategic Vision: Enabling an Interactive Grid DRAFT
    Interoperability Strategic Vision: Enabling an Interactive Grid DRAFT April 2017 SE Widergren M Martin MR Knight B Nordman RB Melton A Khandekar D Narang K Hardy PNNL-26338 DRAFT PNNL-26338 DRAFT Interoperability Strategic Vision: Enabling an Interactive Grid SE Widergren1 M Martin2 MR Knight1 B Nordman3 RB Melton1 A Khandekar3 D Narang2 K Hardy4 April 2017 An Interim Deliverable for Review 1 Pacific Northwest National Laboratory 2 National Renewable Energy Laboratory 3 Lawrence Berkeley National Laboratory 4 Argonne National Laboratory PNNL-26338 Executive Summary The purpose of this Interoperability Strategic Vision document is to promote a common understanding of the meaning and characteristics VALUE OF of interoperability and to promote a strategy to advance the state of INTEROPERABILITY interoperability as applied to integration challenges facing grid modernization. This includes addressing the quality of integrating Reduces the cost and effort for devices and systems and the discipline to improve the process of system integration successfully integrating these components as business models and Improves grid performance and information technology improve over time. Stated succinctly, efficiency interoperability is “the ability of two or more systems or components to exchange information and to use the information that has been Facilitates more comprehensive grid security and cybersecurity exchanged.”1 Reasons to invest effort in addressing interoperability practices issues are reflected in the sidebar.2 Increases customer choice and Interoperability has important economic consequences. Systems that participation integrate simply and predictably have lower equipment costs and Establishes industry-wide best lower transactions costs, higher productivity through automation, practices more conversion of data and information into insight, higher competition between technology suppliers, and increased technology Is a catalyst of innovation and application innovation.
    [Show full text]
  • TÍTULO TODO EM LETRAS MAIÚSCULAS NO ESTILO <TITULO>
    Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 1, N. 1, 2013. MODELAGEM DE COMANDOS DE SINCRONIZAÇÃO DNP3 EM REDE P2P POR INTERFACE IEEE 802.15.4 1 1 2 2 LUCAS A. RAMALHO , AÍLTON A. SHINODA , VALTEMIR E. NASCIMENTO , RUY DE OLIVEIRA , ED’WILSON T. 2 FERREIRA 1. Programa de Pós-Graduação em Engenharia Elétrica, Departamento Engenharia Elétrica, Universi- dade Estadual Paulista “Júlio Mesquita Filho” – Campus Ilha Solteira Avenida Brasil, 56, Bairro: Centro, 15385-000 - Ilha Solteira, SP E-mails: [email protected]; [email protected]. 2. Grupo de Pesquisa em Redes e Segurança, Departamento de Área de Informática, Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso – Campus Cuiabá Rua Professora Zulmira Canavarros, 93, Bairro: Centro, 78005-200 - Cuiabá, MT E-mails: valtemir.nascimento, edwilson.ferreira, [email protected] Abstract The Smart Grid concept establishes that, in addition to power flow, the utility has a two-way data flow in all sectors of the grid including the consumers facilities. By the system data monitoring, the failure control can be accomplished with great- er speed and efficiency. To achieve such a speed, rendering Smart Grid applications viable, the requirements of safety, reliability and low latency of data flow are essential. Considering a high latency communication between the control center to the last mile applications, the control and synchronization of the Smart Meter devices should not be reliable only for administrator hands, al- lowing be realized automatically. So, palliative actions, taken in an independent way by the network, may reduce the need for human intervention in the management.
    [Show full text]
  • A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution
    energies Review A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution Lilia Tightiz , Hyosik Yang * and Mohammad Jalil Piran Department of Computer Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea; [email protected] (L.T.); [email protected] (M.J.P.) * Correspondence: [email protected]; Tel.: +82-02-3408-3840 Received: 12 March 2020; Accepted: 23 April 2020; Published: 4 May 2020 Abstract: Micro-grid (MG) deployment has dramatically become more popular with the high penetration of renewable energy resources (RER). This trend brings with it the merits of independent power grid clean energy resource-based systems, and simultaneously the demerits of an unstable grid due to the intermittent nature of RER. Control and monitoring of MG through robust and ubiquitous communication system infrastructure is the solution to overcoming this intermittency. There has been an increasing focus in recent years on using wireless communication technologies as a prominent candidate in holistic proposal for the micro-grid management system (MGMS). The MGMS has been developed using the multi-agent system (MAS), multi-micro-grid (multi-MG), Internet of things (IoT) integration, and cloud concepts requiring new communication specifications, which can be satisfied by next-generation wireless technologies. There is, however, a lack of comprehensive corresponding investigation into management levels of MG interaction requirements and applied communication technologies, as well as a roadmap for wireless communication deployment, especially for the next generation. In this paper, we investigate communication technology applications in the MG and focus on their classification in a way that determines standard gaps when applying wireless for MG control levels.
    [Show full text]
  • An Overview of the Technology Trends Driving Smart Cities
    Smart Cities: An Overview of the Technology Trends Driving Smart Cities Rodger Lea March 2017 This work is licensed under a Creative Commons Attribution‐NonCommercial 3.0 United States License. Technology trend papers aim to highlight key technologies that are shaping the world around us and impacting the daily working life of IEEE Members. They offer a high‐level overview of a technology area and sufficient information for IEEE Members to be aware of upcoming technologies. This paper is a part of the series and focused on smart cities highlighting several key technology trends driving their growth. Background According to the United Nations Population Fund, in 2014, 54% of the world’s population lived in urban areas, approximately 3.3 billion people. By 2030, roughly 66%, or 5 billion people will live in urban areas1. This not only represents a massive challenge in how we build and manage cities but a significant opportunity to improve the lives of billions of people. Rising to that challenge, engineers worldwide are turning to new technology ‐ such as the Cyber Physical Systems, 5G and data analytics ‐ searching for new approaches and solutions that will improve city transportation, water and waste management, energy usage, and a host of other infrastructure issues that underpin the operation of cities and the lifestyle of urban citizens. There are many definitions for smart cities, ranging from those that focus exclusively on the infrastructure to those that focus more on enabling citizens and communities to act smarter. While no one definition suits all cities, a useful definition2 we use in this series is from the ITU: A smart sustainable city is an innovative city that uses information and communication technologies (ICTs) and other means to improve quality of life, efficiency of urban operation and services, and competitiveness, while ensuring that it meets the needs of present and future generations with respect to economic, social and environmental aspects.
    [Show full text]
  • Deliverable D6.1
    I Platone PLATform for Operation of distribution NEtworks I D6.1 v1.0 Report on the most relevant standards The project PLATform for Operation of distribution NEtworks (Platone) receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no 864300. Deliverable D6.1 Project name Platone Contractual delivery date: 29.02.2020 Actual delivery date: 14.05.2020 Main responsible: Panagiotis Pediaditis, NTUA Work package: WP6 – Standardization, Interoperability and Data handling Security: P Nature: R Version: V1.0 Total number of pages: 55 Abstract This deliverable provides a first analysis of the standards ecosystem around Platone. It describes protocols and standards utilized in the smart grid technology already defined by Institute of Electrical and Electronic Engineering (IEEE), the International and Electrotechnical Commission (IEC), and the International Organization for Standardization (ISO) which could potentially be used in the Platone project. The document analyses the standardization ecosystem of Smart Grids and identifies technological areas relevant to the solutions proposed in Platone’s three demonstrations that are the main part of the project, including cybersecurity and blockchain. The objective of this document is to provide broader context in the domain of relevant standards for Platone implementation. Keyword list Blockchain, standards, platform, interoperability, electricity market Disclaimer All information provided reflects the status of the Platone project at the time of writing and may be subject to change. All information reflects only the author’s view and the Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information contained in this deliverable.
    [Show full text]