State-Of-The-Art Artificial Intelligence Techniques for Distributed Smart
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LIFE and Climate Change Mitigation
LIFE and Climate change mitigation LIFE Environment Environment & Climate Action LIFE ENVIRONMENT | LIFE AND CLIMATE CHANGE MITIGATION EUROPEAN COMMISSION ENVIRONMENT DIRECTORATE-GENERAL LIFE (“The Financial Instrument for the Environment”) is a programme launched by the European Commission and coordinated by the Environment Directorate-General (LIFE Units - E.3. and E.4.). The contents of the publication “LIFE and Climate change mitigation” do not necessarily reflect the opinions of the institutions of the European Union. Authors: Gabriella Camarsa (Environment expert), Justin Toland, Tim Hudson, Stephen Nottingham, Wendy Jones, Jon Eldridge, Morwenna Severon (ASTRALE GEIE-AEIDL), Chris Rose, Jan Sliva (ASTRALE GEIE-AEIDL), Hans Joosten (Ernst-Moritz-Arndt-Universitaet Greifswald, Germany), Christophe Thévignot (ASTRALE GEIE- AEIDL, Communications Team Coordinator). Managing Editor: Hervé Martin (European Commission, Environ- ment DG, LIFE E.4). LIFE Focus series coordination: Simon Goss (LIFE Communications Coordinator), Valerie O’Brien (Environment DG, Publications Coordinator). Technical assistance: Agnese Roccato, Pekka Hännin- en, Pavlos Doikos, Katja Lähdesmäki, Inga Racinska, Claudia Pfirrmann, Aixa Sopena (ASTRALE GEIE). The following people also worked on this issue: Adriana Galunic (DG Climate Action, Policy Officer - Climate Finance and Deforestation), Mette Quinn (DG Climate Action, Deputy Head of Unit - Climate Finance and Deforestation), Artur Runge-Metzger (DG Climate Action, Director of International and Climate Strategy Direc- torate) Trees Robijns (Policy Officer, BirdLife Europe), Antonia Andúgar Miñarro (Senior Policy Advisor, Copa- Cogeca), Izabela Madalinska, Santiago Urquijo-Zamora (Environment DG, LIFE Environment Unit). Production: Monique Braem (ASTRALE GEIE-AEIDL). Graphic design: Daniel Renders, Anita Cortés (ASTRALE GEIE-AEIDL). Photos database: Sophie Brynart (ASTRALE GEIE-AEIDL). Acknowledgements: Thanks to all LIFE project beneficiaries who contributed comments, photos and other useful material for this report. -
Intelligent Energy – Written Evidence (BAT0038)
Intelligent Energy – Written evidence (BAT0038) Introduction Intelligent Energy is a world leading fuel cell engineering company based in Loughborough, Leicestershire, focused on the development, manufacture and commercialisation of its hydrogen fuel cell products, for customers in the automotive, aerospace, warehousing, telecoms and drone sectors. Our technology is ready for the here and now. What our submission to this Committee’s inquiry wants to convey is the UK’s unique position with respect to zero emission Fuel Cell (FC) technology and the wider industry. We are of the belief that the UK is currently adequately funding Research & Development spending through BEIS initiatives, such as the Advanced Propulsion Centre (APC) and the Aerospace Technology Institute (ATI). In addition, we believe the UK Government has been successful at encouraging low-cost hydrogen production as well as investment in Carbon Capture and Storage technology (CCS). However, there are a number of areas where the UK is currently behind on. Firstly, more should be done to accept and encourage fuel cell technology employed in electrified powertrain vehicles for passenger use. In addition, the UK Government should more readily demonstrate how much it values UK companies that have developed this technology and should support them accordingly. Finally, we hope to convey with our response four key points: 1. Hydrogen fuel cell technology is well established, both in the UK and across the world. It is not a development technology, it is technology ready for the here and now. 2. The top-level total cost of ownership of fuel cells favours this technology over batteries, especially given the logistical challenges that battery technology faces if it were to be rolled out extensively (lithium mining and recycling, and the lack of a second National Grid to power them to name just two). -
Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations
Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Report of Working Group P6 of the Power System Communications and Cybersecurity Committee of the Power and Energy Society of IEEE September 12, 2017 1 IEEE PES Power System Communications and Cybersecurity Committee (PSCCC) Working Group P6, Configuring Ethernet Communications Equipment for Substation Protection and Control Applications, has existed during the course of report development as Working Group H12 of the IEEE PES Power System Relaying Committee (PSRC). The WG designation changed as a result of a recent IEEE PES Technical Committee reorganization. The membership of H12 and P6 at time of approval voting is as follows: Eric A. Udren, Chair Benton Vandiver, Vice Chair Jay Anderson Galina Antonova Alex Apostolov Philip Beaumont Robert Beresh Christoph Brunner Fernando Calero Christopher Chelmecki Thomas Dahlin Bill Dickerson Michael Dood Herbert Falk Didier Giarratano Roman Graf Christopher Huntley Anthony Johnson Marc LaCroix Deepak Maragal Aaron Martin Roger E. Ray Veselin Skendzic Charles Sufana John T. Tengdin 2 IEEE PES PSCCC P6 Report, September 2017 Application of Ethernet Networking Devices Used for Protection and Control Applications in Electric Power Substations Table of Contents 1. Introduction ...................................................................................... 10 2. Ethernet for protection and control .................................................. 10 3. Overview of Ethernet message -
Connecting Threads to Create a Roadmap to an Intelligent Energy Future
Connecting Threads to Create a Roadmap to an Intelligent Energy Future Paul Centolella, Chair NIST Smart Grid Advisory Committee This memo encourages the National Institute of Standards and Technology, working with the U.S. Department Energy and other stakeholders, to consider the impacts of significant power system challenges and technological changes and how to bring together different research threads to develop a forward-looking response. It summarizes a topic that the Advisory Committee may wish to consider in a future meeting. Background: The Challenges Converging forces will fundamentally change the power system over the next five to ten years. The power system itself faces simultaneous challenges to: • Remain affordable; • Maintain reliability for an economy that has grown increasingly dependent on electricity; • Become resilient with respect to severe weather impacts and to other disruptive events; • Defend, deter, and recover from continuously evolving cyber-physical security threats; and • Transition to an environmentally sustainable, low greenhouse gas energy system that integrates variable renewable resources and supports the electrification of transportation and other energy uses. Individually any of these would be significant challenges. However, the industry must simultaneously remain affordable, improve reliability, and meet higher resilience, security, or environmental requirements. Public concern related to resilience and climate change mitigation have produced policy responses and increased adoption of distributed and renewable energy resources and electric vehicles. As a result: • The combination of declining technology costs, reliability and environmental concerns, and state policies are expected to support continued growth in the deployment of distributed energy resources.1 Annual capacity additions of distributed generation and storage could increase by 70% by 2024.2 As much as 50 GW of new distributed generating capacity could be added by 2030.3 1 Federal Energy Regulatory Commission Staff. -
Guidebook How to Develop a Sustainable Energy Action Plan (SEAP) in South Mediterranean Cities
Guidebook How to develop a Sustainable Energy Action Plan (SEAP) in South Mediterranean Cities Yamina Saheb Albana Kona Isabella Maschio Sandor Szabo 2014 Report EUR 27016 EN European Commission Joint Research Centre Institute for Energy and Transport Contact information Address: Joint Research Centre, TP-450 Via Enrico Fermi 2749, 21027 Ispra, Italy E-mail: [email protected] Tel.: +39 0332 78 9299 https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. This document replaces ''Guidebook how to develop a Sustainable Energy Action Plan (SEAP) in South Mediterranean Cities'' with ISBN 978-92-79-39654-0 and PUBSY request JRC 90143. The corrections made in the new document are the replacement of the picture used in the cover page. All images © European Union 2014 JRC 93697 EUR 27016 EN ISBN 978-92-79-44693-1 ISSN 1831-9424 doi:10.2790/392701 Luxembourg: Publications Office of the European Union, 2014 © European Union, 2014 Reproduction is authorised provided the source is acknowledged. Abstract This guidebook is adapted to the South Mediterranean context from the Joint Research Centre’s (JRC) guidebook "How to develop a Sustainable Energy Action Plan", developed in 2010 to support the implementation of the Covenant of Mayors (CoM) initiative in European cities. -
A Survey of Smart Grid Architectures, Applications, Benefits and Standardization
A survey of smart grid architectures, applications, benefits and standardization This is the Accepted version of the following publication Nafi, NS, Ahmed, Khandakar, Gregory, MA and Datta, M (2016) A survey of smart grid architectures, applications, benefits and standardization. Journal of Network and Computer Applications, 76. 23 - 36. ISSN 1084-8045 The publisher’s official version can be found at http://www.sciencedirect.com/science/article/pii/S1084804516302314 Note that access to this version may require subscription. Downloaded from VU Research Repository https://vuir.vu.edu.au/32688/ Author’s Accepted Manuscript A Survey of Smart Grid Architectures, Applications, Benefits and Standardization Nazmus S. Nafi, Khandakar Ahmed, Mark A. Gregory, Manoj Datta www.elsevier.com/locate/jnca PII: S1084-8045(16)30231-4 DOI: http://dx.doi.org/10.1016/j.jnca.2016.10.003 Reference: YJNCA1730 To appear in: Journal of Network and Computer Applications Received date: 11 June 2016 Revised date: 22 August 2016 Accepted date: 4 October 2016 Cite this article as: Nazmus S. Nafi, Khandakar Ahmed, Mark A. Gregory and Manoj Datta, A Survey of Smart Grid Architectures, Applications, Benefits and Standardization, Journal of Network and Computer Applications, http://dx.doi.org/10.1016/j.jnca.2016.10.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. -
The Intelligent Energy System for Tomorrow
Risø DTU paper for WEC Montreal 2010, 12 – 16 September 2010 The intelligent energy system for tomorrow Hans Larsen, Poul Erik Morthorst, Henrik Bindslev and Leif Sønderberg Petersen, Risø National Laboratory for Sustainable Energy, the Technical University of Denmark Summary In a future energy system non-fossil fuels have taken the lead, end-use technologies are highly efficient and closely interlinked to supply through intelligent energy systems. Climate change issues, security of supply and economic development need to be pursued concurrently. This call for flexible and intelligent energy system infrastructures that: • Effectively accommodate large amounts of fluctuating renewable energy and let the end-user interact with the supply through advanced ICT. • The second important characteristic is intelligent integration of the entire transport sector. • The third key area is advanced energy storage facilities in the system and the introduction of super-grids. The changing global energy scene The global economy has over the last years faced a number of changes and challenges with the financial crisis, which have significant impacts on almost all countries. At the time of writing this report it is still too early to analyze the full consequences of the crisis and fully grasp the potential impacts, but the attendant issues and their possible solutions are emerging. The crisis comes after a decade of unprecedented economic growth in many countries including most of the major economies. Globalization and free market economy have been dominant -
Climate Change
Climate Change Training module developed under the Energy Charter Secretariat Knowledge Centre May 2013 A warming world The Berkeley Earth Surface Temperature Study has created a preliminary merged data set by combining 1.6 billion temperature reports from 16 preexisting data archives. The analysis shows that the rise in average world land temperature globe is approximately 1.5 degrees C in the past 250 years, and about 0.9 degrees in the past 50 years. The Climate is Changing Events like: • Heat waves; • Forest fires; • Floods; • Super storms. Are more frequent. Need for mitigation measures by limiting CO2 emissions! Global Warming Can be attributed to the rise in Greenhouse Gases due to human activities, namely: • Fossil fuel consumption • Deforestation • If temperature rise by up to 2°C relative to pre-industrial times =>significant negative impacts on ecosystems and water resources; • If the increase were more than 2°C => it could exceed the adaptive capacity of many systems. Alarming news is that the world is quickly heading towards a 2°C! Impacts of Climate Change Climate Change creates a threat to: – Biodiversity; – Soil; – Land Use; – Crop Yields and Food Provisions; – Marine and Coastal Environment; – Water Resources and Freshwater Quality; – Air Quality; – Human Health; – Socio-economic conditions. Mitigation is essential Urgent action against Climate Change is needed, for example on: – Energy Efficiency – Renewable energies – Low-emission solutions Let’s start by the supply… New Energy Paradigm Training module developed under the Energy Charter Secretariat Knowledge Centre Parting View Suspended in space and backdropped by the blackness of space and the jewel-like blue of Earth sits the International Space Station. -
Sicherheit Und Datenschutz Im Smart Grid
Sicherheit und Datenschutz im Smart Grid Bachelor-Thesis im Studiengang Medieninformatik vorgelegt von Kristian Antic Matrikelnummer: 20177 am 8. März 2012 an der Hochschule der Medien Stuttgart Erstprüfer: Prof. Dr. Joachim Charzinski Zweitprüfer: Christoph Lindenmüller Bearbeitungszeitraum: 08. Dezember 2011 bis 8. März 2012 Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich (mit Ausnahme dieser Erklärung) als solches kenntlich gemacht.1 Ort, Datum Unterschrift 1Riekert: Eine Dokumentvorlage für Diplomarbeiten und andere wissenschaftliche Arbeiten (2002), [83], S. 42. Kurzfassung Der vermehrte Einsatz von erneuerbaren Energien, welche nicht ständig verfügbar und nur begrenzt speicherbar sind, erschweren die Steuerung der Stromnetze. Zur Anpassung der Energieerzeugung an den tatsächlichen Bedarf werden Smart Grids („intelligente Stromnetze“) aufgebaut, die eine Steuerung des Energieverbrauchs in Abhängigkeit von der Verfügbarkeit ermöglichen. Die bereits vorhandenen Stromnetzte werden hierzu um Kommunikationsnetze erweitert. Smart Meter („intelligente Stromzähler“) die beim Verbraucher eingesetzt werden, senden über die Kommunikationsnetze Messdaten zyklisch an die jeweiligen Stromnetzbetreiber. In Zukunft soll auch eine Steuerung von Haushaltsgeräten möglich werden. Daraus ergeben sich neue Herausforderungen in Bezug auf Sicherheit und Datenschutz. Die hier vorliegende Arbeit bietet eine kurze Einführung in die Grundlagen zum Thema Smart Grid. Es wird eine Referenzarchitektur definiert und die einzelnen Bestandteile des Smart Grids werden vorgestellt. Eine Auseinandersetzung mit den rechtlichen und regulatorischen Rahmenbedingungen sowie ein Überblick über den Stand der Entwicklungen intelligenter Stromnetze, insbesondere der Verbreitung von Smart Metern, vervollständigt die Grundlagen. Zusätzlich werden wesentliche Aspekte von Sicherheit und Datenschutz angesprochen. -
Intelligent Energy Europe Implemented in Partnership with UNEP, IH&RA, EREC and ADEME
Tourism and Renewable Energy Initiatives World Tourism Organization (UNWTO) IRENA- CYPRUS EVENT ON RENEWABLE ENERGY APPLICATIONS FOR ISLAND TOURISM 29-30 May 2014 Paphos, Cyprus World Tourism Organization (UNWTO) - a specialized agency of the United Nations (UN) and the leading international organization in the field of tourism. It serves as a global forum for tourism policy issues and a practical source of tourism know-how. - plays a central and decisive role in promoting the development of responsible, sustainable and universally accessible tourism, paying particular attention to the interests of developing countries. - intergovernmental organization with membership includes 162 countries and territories and over 420 Affiliate Members representing the private sector, educational institutions, tourism associations and local tourism authorities. - encourages the implementation of the Global Code of Ethics for Tourism, with a view to ensuring that member countries, tourist destinations and businesses maximize the positive economic, social and cultural effects of tourism and fully reap its benefits, while minimizing its negative social and environmental impacts. - committed to the United Nations Millennium Development Goals, geared toward reducing poverty and fostering sustainable development. www2.unwto.org/en/content/who-we-are-0 UNWTO’s Mandate The promotion of responsible, sustainable and universally accessible tourism. “The fundamental aim of the Organization shall be the promotion and development of tourism with a view to contributing to economic development, international understanding, peace and prosperity” - UNWTO Statutes Why Tourism matters today Program for Energy Efficiency in Thai Hotels (PEEK) UNWTO Program for Energy Efficiency, Thailand (PEEK) 2008-2011 . Pilot interventions in energy efficiency and renewable energy measures . Reduce GHG emissions Outcomes of PEEK . -
Energy Storage and Optimisation
ENERGY STORAGE AND OPTIMISATION Read more at storage.wartsila.com ENERGY OPTIMISED As the world moves towards 100% renewables, energy providers are motivated to harness the potential of clean energy, including energy storage and intermittent energy sources such as solar, wind and hydro power. At Wärtsilä, energy storage plays a key role in our vision towards a 100% renewable grid. OPTIMISING ENERGY FOR A SMARTER, SAFER, MORE RELIABLE GRID. 2 WE’RE UNLOCKING THE WAY TO AN OPTIMISED TOWARDS A 100% RENEWABLE ENERGY RENEWABLE ENERGY FUTURE FUTURE. Wärtsilä Energy Storage & Optimisation (ES&O) is leading the introduction of disruptive, game-changing products and technologies to the global power industry. We’re integrating energy solutions that build a resilient, intelligent and flexible energy infrastructure. By integrating renewables, energy management technology and storage with traditional energy resources, we reinvent clean energy production from the largest and most complex grids to the most remote and essential islanded grids. SMART TECHNOLOGY Hybrid energy with sophisticated software Spanning grid-scale, hybrid and island microgrid solutions, an intelligent software is at the heart of our GEMS energy management platform, enabling customers to tap into the full potential of their resources. GEMS software enables intelligent energy applications that deliver a true “renewables as baseload” solution that is not only climate-friendly, increases resilience and efficiencies, but can also be supported by existing grid infrastructure. TOTAL FLEXIBILITY Leading global energy storage optimiser Combined with the deep global resources and expertise, we seamlessly integrate traditional and renewable power sources, provide visibility into critical energy systems and optimise multiple generation assets, all while delivering unsurpassed reliability, flexibility and safety to energy operators around the world. -
Review of Energy Management System Approaches in Microgrids
energies Review Review of Energy Management System Approaches in Microgrids Amrutha Raju Battula 1 , Sandeep Vuddanti 1 and Surender Reddy Salkuti 2,* 1 Department of Electrical Engineering, National Institute of Technology Andhra Pradesh (NIT-AP), Tadepalligudem, Andhra Pradesh 534101, India; [email protected] (A.R.B.); [email protected] (S.V.) 2 Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Korea * Correspondence: [email protected]; Tel.: +82-10-9674-1985 Abstract: To sustain the complexity of growing demand, the conventional grid (CG) is incorporated with communication technology like advanced metering with sensors, demand response (DR), energy storage systems (ESS), and inclusion of electric vehicles (EV). In order to maintain local area energy balance and reliability, microgrids (MG) are proposed. Microgrids are low or medium voltage distribution systems with a resilient operation, that control the exchange of power between the main grid, locally distributed generators (DGs), and consumers using intelligent energy management techniques. This paper gives a brief introduction to microgrids, their operations, and further, a review of different energy management approaches. In a microgrid control strategy, an energy management system (EMS) is the key component to maintain the balance between energy resources (CG, DG, ESS, and EVs) and loads available while contributing the profit to utility. This article classifies the methodologies used for EMS based on the structure, control, and technique used. The untapped areas which have scope for investigation are also mentioned. Keywords: renewable energy sources; microgrid; energy management system; communication technologies; microgrid standards Citation: Battula, A.R.; Vuddanti, S.; Salkuti, S.R.