Energy and COVID-19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dressing for the Times: Fashion in Tang Dynasty China (618-907)
Dressing for the Times: Fashion in Tang Dynasty China (618-907) BuYun Chen Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 © 2013 BuYun Chen All rights reserved ABSTRACT Dressing for the Times: Fashion in Tang Dynasty China (618-907) BuYun Chen During the Tang dynasty, an increased capacity for change created a new value system predicated on the accumulation of wealth and the obsolescence of things that is best understood as fashion. Increased wealth among Tang elites was paralleled by a greater investment in clothes, which imbued clothes with new meaning. Intellectuals, who viewed heightened commercial activity and social mobility as symptomatic of an unstable society, found such profound changes in the vestimentary landscape unsettling. For them, a range of troubling developments, including crisis in the central government, deep suspicion of the newly empowered military and professional class, and anxiety about waste and obsolescence were all subsumed under the trope of fashionable dressing. The clamor of these intellectuals about the widespread desire to be “current” reveals the significant space fashion inhabited in the empire – a space that was repeatedly gendered female. This dissertation considers fashion as a system of social practices that is governed by material relations – a system that is also embroiled in the politics of the gendered self and the body. I demonstrate that this notion of fashion is the best way to understand the process through which competition for status and self-identification among elites gradually broke away from the imperial court and its system of official ranks. -
Experiments on Ice Spikes and a Simple Growth Model
Journal of Glaciology, Vo l. 50, No.170, 2004 Experiments on ice spikes and a simple growth model Lesley HILL,1 Edward LOZOWSKI,1 Russell D. SAMPSON2 1Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada E-mail: [email protected] 2Physical Sciences Department, Eastern Connecticut State University,Willimantic, Connecticut 06226, U.S.A. ABSTRACT. Ice-spike observations in nature have sparked much interest in the scientific and non-scientific communities alike, yet most research performed thus far has been largely qualitative.We have conducted a quantitative, systematic laboratory investi- gation in order to assess theories explaining ice-spike growth and to determine the condi- tions conducive to it.We observed ice-spike growth using time-lapse digital photography, using two water types in two different containers. We observed that ice spikes occurred much more frequently in distilled water than in tap water. Digital images were analyzed to determine the growth rate of the ice spikes.Water temperature was recorded through- out the freezing process, and the cooling rate was used to estimate a bulk heat transfer coefficient. Finally, a simple model, based on mass conservation, was derived and was found to give useful predictions of ice-spike growth rate. INTRODUCTION Nevertheless, little systematic research has been performed to determine, quantitatively, the conditions necessary for Ice spikes have puzzled observers for decades. Published the development of ice spikes, or the details of their growth reports and theories go back to Dorsey (1921) and Bally (Mason and Maybank, 1960; Wascher, 1991; Maeno and (1933). Since then, numerous reported observations have others,1994).The companion paper in this issue (Libbrecht appeared (Bell, 1959; Hayward, 1966; Krauz and others, and Lui, 2004) is one of few attempts to document the 1967;Thain,1985; Loebeck,1986;Whiddet,1986; Nishiyama, growth conditions of ice spikes in the laboratory. -
Adaptive Fuzzy Pid Controller's Application in Constant Pressure Water Supply System
2010 2nd International Conference on Information Science and Engineering (ICISE 2010) Hangzhou, China 4-6 December 2010 Pages 1-774 IEEE Catalog Number: CFP1076H-PRT ISBN: 978-1-4244-7616-9 1 / 10 TABLE OF CONTENTS ADAPTIVE FUZZY PID CONTROLLER'S APPLICATION IN CONSTANT PRESSURE WATER SUPPLY SYSTEM..............................................................................................................................................................................................................1 Xiao Zhi-Huai, Cao Yu ZengBing APPLICATION OF OPC INTERFACE TECHNOLOGY IN SHEARER REMOTE MONITORING SYSTEM ...............................5 Ke Niu, Zhongbin Wang, Jun Liu, Wenchuan Zhu PASSIVITY-BASED CONTROL STRATEGIES OF DOUBLY FED INDUCTION WIND POWER GENERATOR SYSTEMS.................................................................................................................................................................................9 Qian Ping, Xu Bing EXECUTIVE CONTROL OF MULTI-CHANNEL OPERATION IN SEISMIC DATA PROCESSING SYSTEM..........................14 Li Tao, Hu Guangmin, Zhao Taiyin, Li Lei URBAN VEGETATION COVERAGE INFORMATION EXTRACTION BASED ON IMPROVED LINEAR SPECTRAL MIXTURE MODE.....................................................................................................................................................................18 GUO Zhi-qiang, PENG Dao-li, WU Jian, GUO Zhi-qiang ECOLOGICAL RISKS ASSESSMENTS OF HEAVY METAL CONTAMINATIONS IN THE YANCHENG RED-CROWN CRANE NATIONAL NATURE RESERVE BY SUPPORT -
State-Of-The-Art Artificial Intelligence Techniques for Distributed Smart
electronics Review State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review Syed Saqib Ali and Bong Jun Choi * School of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-820-0923 Received: 12 May 2020; Accepted: 10 June 2020; Published: 22 June 2020 Abstract: The power system worldwide is going through a revolutionary transformation due to the integration with various distributed components, including advanced metering infrastructure, communication infrastructure, distributed energy resources, and electric vehicles, to improve the reliability, energy efficiency, management, and security of the future power system. These components are becoming more tightly integrated with IoT. They are expected to generate a vast amount of data to support various applications in the smart grid, such as distributed energy management, generation forecasting, grid health monitoring, fault detection, home energy management, etc. With these new components and information, artificial intelligence techniques can be applied to automate and further improve the performance of the smart grid. In this paper, we provide a comprehensive review of the state-of-the-art artificial intelligence techniques to support various applications in a distributed smart grid. In particular, we discuss how artificial techniques are applied to support the integration of renewable energy resources, the integration of energy storage systems, demand response, management of the grid and home energy, and security. As the smart grid involves various actors, such as energy produces, markets, and consumers, we also discuss how artificial intelligence and market liberalization can potentially help to increase the overall social welfare of the grid. -
Safety Manual for Fieldwork in the Arctic 3Nd Edition, January 2018
Safety Manual for Fieldwork in the Arctic 3nd edition, January 2018 Editors: Mette Maribo Høgsbro Morten Rasch Susanne Tang Editorial Committee: Morten Rasch, Department of Geoscience and Natural Resource Management, University of Copenhagen (Chairman) Jørgen Peder Steffensen, Niels Bohr Institute, University of Copenhagen Kirsten Christoffersen, Department of Biology, University of Copenhagen Morten Meldgaard, Natural History Museum of Denmark Peter Stougaard, Department of Plants and Environmental Sciences, University of Copenhagen Susanne Tang, Faculty of Science, University of Copenhagen Mette Maribo Høgsbro, Faculty of Science, University of Copenhagen This safety manual is widely based upon information taken more or less directly from safety manuals pro- duced by other institutions, i.e., University Centre in Svalbard (UNIS), Greenland Institute of Natural Re- sources, Aarhus University, the Geological Survey of Denmark and Greenland (GEUS) and The East Green- land Ice-core Project (EGRIP) UCPH. However, all information has been quality controlled by University of Copenhagen staff, and any errors that might occur in the manual are therefore the sole responsibility of the University of Copenhagen. Front page picture: Morten Rasch Publisher: Faculty of Science, University of Copenhagen Photo: Morten Rasch Photo: Morten Preface Safety is important for all types of arctic fieldwork. Fieldwork in remote arctic areas with extreme climate and extreme physical settings require close attention to safety. This manual pertains to all arctic fieldwork associated with research projects and tasks commissioned or managed by the Faculty of Science at the University of Copenhagen (SCIENCE). The manual consist of an introductory section including a more general introduction to safety considera- tions of relevance to all arctic fieldwork. -
P020110307527551165137.Pdf
CONTENT 1.MESSAGE FROM DIRECTOR …………………………………………………………………………………………………………………………………………………… 03 2.ORGANIZATION STRUCTURE …………………………………………………………………………………………………………………………………………………… 05 3.HIGHLIGHTS OF ACHIEVEMENTS …………………………………………………………………………………………………………………………………………… 06 Coexistence of Conserve and Research----“The Germplasm Bank of Wild Species ” services biodiversity protection and socio-economic development ………………………………………………………………………………………………………………………………………………… 06 The Structure, Activity and New Drug Pre-Clinical Research of Monoterpene Indole Alkaloids ………………………………………… 09 Anti-Cancer Constituents in the Herb Medicine-Shengma (Cimicifuga L) ……………………………………………………………………………… 10 Floristic Study on the Seed Plants of Yaoshan Mountain in Northeast Yunnan …………………………………………………………………… 11 Higher Fungi Resources and Chemical Composition in Alpine and Sub-alpine Regions in Southwest China ……………………… 12 Research Progress on Natural Tobacco Mosaic Virus (TMV) Inhibitors…………………………………………………………………………………… 13 Predicting Global Change through Reconstruction Research of Paleoclimate………………………………………………………………………… 14 Chemical Composition of a traditional Chinese medicine-Swertia mileensis……………………………………………………………………………… 15 Mountain Ecosystem Research has Made New Progress ………………………………………………………………………………………………………… 16 Plant Cyclic Peptide has Made Important Progress ………………………………………………………………………………………………………………… 17 Progresses in Computational Chemistry Research ………………………………………………………………………………………………………………… 18 New Progress in the Total Synthesis of Natural Products ……………………………………………………………………………………………………… -
Dr. Christian
In Union County THE The Leading And MoU Widdy Circuited WeeMy Entered as Seetsnd Class Mutter WESTFIELD, NEW JERSEY, THtfaSDAY, JUNE 28, 1956 iYEAR—No. 42 "nut Office. Wemflvld. N. J. Award Diplomas ic Service To Note Churches Begin * First Day Enrollment At Park Regulations Union1 Summe° r Playfields Reaches 1950To 71 Seniors ?ndence Day Here At Holy Trinity Set By Council Services Sunday Opening day at the Westfield i dren protected against injury for Playgrounds found a record total iLth~e -:~i.eight-weei ..,„,,ik, „,.„„,.„„program, . Special Prizes, of registrants ready for a summer As advertised all the Mental Health Drive Congregationalism, of fun. More than 1,950 children grounds, the costume parade is to Presentations Won Ordinance Would Baptists Continue were present at. the nine local be the special day this week. Rib- By Many Graduates Hits $498 in Boro playfields, Jefferson School play- bons and honorable mention pins 50-Year Program will be awarded ID winning con- MOUNTAINSIDE — Roy G. Close Tamaques ground had the day's high total testants. Following this event, The Rev. John L. Flanagan an- Daniels, local chairman of the 19W with over 325 children handing preparations will begin for the big nounced graduates and honors and SftBli Beginning Sunday at 9:30 a.m.,the ground leadart the'r printed Mental Health fund drive conduct- jjgjjjj] and continuing through July and "Wheels On Parade Day" July 3. the Kt. Rev. Mpnsignor Henry 3. ed during the month of May, hits10 p.m. to 7 ajn. registration forma. Close behind Decorated bikes, wagons, carri- Watterson made the awards to the announced that at present $4H8 August, the First Baptist and the was Roosevelt, 318; Lincoln, 312; ! in Mindowas- First Congregational Churches will ages, scooters and tricycles will 71 graduates of Holy Trinity High has been contributed by Mountain- An ordinance which rtgulftttl , the obser-, unite in a union summer ministry. -
LIFE and Climate Change Mitigation
LIFE and Climate change mitigation LIFE Environment Environment & Climate Action LIFE ENVIRONMENT | LIFE AND CLIMATE CHANGE MITIGATION EUROPEAN COMMISSION ENVIRONMENT DIRECTORATE-GENERAL LIFE (“The Financial Instrument for the Environment”) is a programme launched by the European Commission and coordinated by the Environment Directorate-General (LIFE Units - E.3. and E.4.). The contents of the publication “LIFE and Climate change mitigation” do not necessarily reflect the opinions of the institutions of the European Union. Authors: Gabriella Camarsa (Environment expert), Justin Toland, Tim Hudson, Stephen Nottingham, Wendy Jones, Jon Eldridge, Morwenna Severon (ASTRALE GEIE-AEIDL), Chris Rose, Jan Sliva (ASTRALE GEIE-AEIDL), Hans Joosten (Ernst-Moritz-Arndt-Universitaet Greifswald, Germany), Christophe Thévignot (ASTRALE GEIE- AEIDL, Communications Team Coordinator). Managing Editor: Hervé Martin (European Commission, Environ- ment DG, LIFE E.4). LIFE Focus series coordination: Simon Goss (LIFE Communications Coordinator), Valerie O’Brien (Environment DG, Publications Coordinator). Technical assistance: Agnese Roccato, Pekka Hännin- en, Pavlos Doikos, Katja Lähdesmäki, Inga Racinska, Claudia Pfirrmann, Aixa Sopena (ASTRALE GEIE). The following people also worked on this issue: Adriana Galunic (DG Climate Action, Policy Officer - Climate Finance and Deforestation), Mette Quinn (DG Climate Action, Deputy Head of Unit - Climate Finance and Deforestation), Artur Runge-Metzger (DG Climate Action, Director of International and Climate Strategy Direc- torate) Trees Robijns (Policy Officer, BirdLife Europe), Antonia Andúgar Miñarro (Senior Policy Advisor, Copa- Cogeca), Izabela Madalinska, Santiago Urquijo-Zamora (Environment DG, LIFE Environment Unit). Production: Monique Braem (ASTRALE GEIE-AEIDL). Graphic design: Daniel Renders, Anita Cortés (ASTRALE GEIE-AEIDL). Photos database: Sophie Brynart (ASTRALE GEIE-AEIDL). Acknowledgements: Thanks to all LIFE project beneficiaries who contributed comments, photos and other useful material for this report. -
Intelligent Energy – Written Evidence (BAT0038)
Intelligent Energy – Written evidence (BAT0038) Introduction Intelligent Energy is a world leading fuel cell engineering company based in Loughborough, Leicestershire, focused on the development, manufacture and commercialisation of its hydrogen fuel cell products, for customers in the automotive, aerospace, warehousing, telecoms and drone sectors. Our technology is ready for the here and now. What our submission to this Committee’s inquiry wants to convey is the UK’s unique position with respect to zero emission Fuel Cell (FC) technology and the wider industry. We are of the belief that the UK is currently adequately funding Research & Development spending through BEIS initiatives, such as the Advanced Propulsion Centre (APC) and the Aerospace Technology Institute (ATI). In addition, we believe the UK Government has been successful at encouraging low-cost hydrogen production as well as investment in Carbon Capture and Storage technology (CCS). However, there are a number of areas where the UK is currently behind on. Firstly, more should be done to accept and encourage fuel cell technology employed in electrified powertrain vehicles for passenger use. In addition, the UK Government should more readily demonstrate how much it values UK companies that have developed this technology and should support them accordingly. Finally, we hope to convey with our response four key points: 1. Hydrogen fuel cell technology is well established, both in the UK and across the world. It is not a development technology, it is technology ready for the here and now. 2. The top-level total cost of ownership of fuel cells favours this technology over batteries, especially given the logistical challenges that battery technology faces if it were to be rolled out extensively (lithium mining and recycling, and the lack of a second National Grid to power them to name just two). -
Connecting Threads to Create a Roadmap to an Intelligent Energy Future
Connecting Threads to Create a Roadmap to an Intelligent Energy Future Paul Centolella, Chair NIST Smart Grid Advisory Committee This memo encourages the National Institute of Standards and Technology, working with the U.S. Department Energy and other stakeholders, to consider the impacts of significant power system challenges and technological changes and how to bring together different research threads to develop a forward-looking response. It summarizes a topic that the Advisory Committee may wish to consider in a future meeting. Background: The Challenges Converging forces will fundamentally change the power system over the next five to ten years. The power system itself faces simultaneous challenges to: • Remain affordable; • Maintain reliability for an economy that has grown increasingly dependent on electricity; • Become resilient with respect to severe weather impacts and to other disruptive events; • Defend, deter, and recover from continuously evolving cyber-physical security threats; and • Transition to an environmentally sustainable, low greenhouse gas energy system that integrates variable renewable resources and supports the electrification of transportation and other energy uses. Individually any of these would be significant challenges. However, the industry must simultaneously remain affordable, improve reliability, and meet higher resilience, security, or environmental requirements. Public concern related to resilience and climate change mitigation have produced policy responses and increased adoption of distributed and renewable energy resources and electric vehicles. As a result: • The combination of declining technology costs, reliability and environmental concerns, and state policies are expected to support continued growth in the deployment of distributed energy resources.1 Annual capacity additions of distributed generation and storage could increase by 70% by 2024.2 As much as 50 GW of new distributed generating capacity could be added by 2030.3 1 Federal Energy Regulatory Commission Staff. -
Guidebook How to Develop a Sustainable Energy Action Plan (SEAP) in South Mediterranean Cities
Guidebook How to develop a Sustainable Energy Action Plan (SEAP) in South Mediterranean Cities Yamina Saheb Albana Kona Isabella Maschio Sandor Szabo 2014 Report EUR 27016 EN European Commission Joint Research Centre Institute for Energy and Transport Contact information Address: Joint Research Centre, TP-450 Via Enrico Fermi 2749, 21027 Ispra, Italy E-mail: [email protected] Tel.: +39 0332 78 9299 https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. This document replaces ''Guidebook how to develop a Sustainable Energy Action Plan (SEAP) in South Mediterranean Cities'' with ISBN 978-92-79-39654-0 and PUBSY request JRC 90143. The corrections made in the new document are the replacement of the picture used in the cover page. All images © European Union 2014 JRC 93697 EUR 27016 EN ISBN 978-92-79-44693-1 ISSN 1831-9424 doi:10.2790/392701 Luxembourg: Publications Office of the European Union, 2014 © European Union, 2014 Reproduction is authorised provided the source is acknowledged. Abstract This guidebook is adapted to the South Mediterranean context from the Joint Research Centre’s (JRC) guidebook "How to develop a Sustainable Energy Action Plan", developed in 2010 to support the implementation of the Covenant of Mayors (CoM) initiative in European cities. -
Chengdu, China 15
2013 International Conference on Communications, Circuits and Systems (ICCCAS 2013) Chengdu, China 15 - 17 November 2013 Volume 1 Pages 1-438 IEEE Catalog Number: CFP13807-POD ISBN: 978-1-4799-3052-4 1/2 Contents of Proceedings of ICCCAS 2013 Volume I Track 01. Wireless Communication Symposium (WCS) Scope TPC Co-Chairs: Co-Chairs: Gang Feng (University of Electronic Science and Technology of China) Ming Xiao (Royal Institute of Technology) Chau Yuen (Singapore University of Technology and Design) #SP_01_01 Link Quality Based EDCA MAC Protocol for WAVE Vehicular Networks 1 Lidong Zhu, Kwan L. Yeung National Key Laboratory of Science and Technology on Communications, UESTC, Chengdu, China #SP_01_02 Modeling and Analysis of Opportunistic Spectrum Sharing with Considering Access Strategy 7 Wanbin Tang, Jing Zhou, Jingdong Yu, Yanfeng Han, Shaoqian Li National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China Chengdu, 611731, China #SP_01_03 Sensing Efficiency in Cognitive Radio Networks 12 Wenjiong Zhou, Jun Wang and Shaoqian Li National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China (UESTC) Chengdu, 611731, China #SP_01_04 Effective Capacity of a Secondary User without Channel Side Informatuon in Nakagami Fading Channels 17 Wenjiong Zhou, Jun Wang and Shaoqian Li National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China (UESTC)Chengdu, 611731