Nushreen Jeenally Albion Fisheries Research Centre Mauritius

Total Page:16

File Type:pdf, Size:1020Kb

Nushreen Jeenally Albion Fisheries Research Centre Mauritius Regional Workshop on Monitoring and Management Strategies for Benthic HABs Status of fish toxicity project in Mauritius Nushreen Jeenally Albion Fisheries Research Centre Mauritius Musée océanographique - Monaco, 9th to 12th April Country profile Land Area 1,864 Sq. Km The EEZ of Mauritius has a Capital Port Louis reasonable stock of various fish, including pelagic and demersal Population 1.26 million species. Fisheries resources GDP per Capita USD 9,904.6 (2017 exploited include the island- estimate) based artisanal fisheries (lagoon Seafood industry 1.5% of national and offlagoon), Fish Aggregating GDP Devices (FADs) fishery (off- Exclusive 2.3 million Km² Economic Zone (including approx. lagoon), the offshore demersal 400,000 Km² jointly fishery of the banks of the managed with the Mascarene Plateau and the Seychelles) Chagos Archipelago, and the Coastline of 250 km Mauritius tuna fishery in the Western Coral reef 150 km Indian Ocean (industrial fisheries). Currency Mauritian Rupees 1 USD = MUR 36 Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Ministry of Ocean Economy, Marine Resources, Fisheries and Shipping VISION To be an economic pillar with due regard to sustainability of aquatic resources and social development for the benefit of all stakeholders. MISSION To provide an enabling environment for the promotion of sustainable development of the fisheries sector and to ensure continued economic growth and social development within the framework of good governance. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Albion Fisheries Research Center (AFRC) The AFRC carries out the research, development and management functions of the Ministry of Ocean Economy, Marine Resources, Fisheries and Shipping - constructed and equipped with Japanese assistance in three phases between 1981 to 1995. Projects are implemented through 5 divisions namely: Aquaculture, Marine Science, Marine Conservation, Marine Resources and Laboratories. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April AFRC Laboratories The Laboratories Division at the Albion Fisheries Research Centre (AFRC) comprises the Fish Toxicity, Marine Chemistry and Marine Microbiology laboratories. The marine chemistry and marine microbiology laboratories have been accredited to MS ISO/IEC 17025:2005 standard by the Mauritius Accreditation Service (MAURITAS). Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Fish Toxicity Laboratory 1. Monitoring of Harmful Marine Microalgae 2. Testing of toxic fishes for ciguatoxins Grand Baie Trou aux Biches Albion Blue Le Bay Morne Sites around Mauritius for HAB monitoring Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Identification and enumeration of Harmful Marine Microalgae 11 species of benthic dinoflagellates belonging to genera Gambierdiscus, Prorocentrum, Ostreopsis, Coolia and Amphidinum were observed in the lagoon of Mauritius. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Harmful marine Microalgae monitoring 2015 - 2017 14000 High level of 12000 Ostreopsis Sp and prorocentrum sp. 10000 throughout the past years. 8000 Macroalgae: Padina 6000 gymnospora., Sargassum sp., 4000 Ulva sp., Halymenia Numberof cell per 100g of macroalgae durvillaei, 2000 Turbinaria sp. 0 Albion Le Grand Blue Bay Trou Aux Albion Le Grand Blue Bay Trou Aux Albion Le Grand Blue BayTrou Aux Morne Bay Biches Morne Bay Biches Morne Bay Biches 2015 2016 2017 Sites monitored / Years Amphidinum sp. Coolia sp. Gambierdiscus sp. Ostreopsis sp. Prorocentrum sp. Synophysis sp. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Fish Toxicity Project Ongoing project at the AFRC since 1991. Mongoose Bioassay :- • Mongooses trapped in the wild are acclimated to laboratory conditions and are fed on a normal diet. • After acclimation period of 10 days to 2 weeks, mongooses are fed on suspected fish specimens for 3 days. • Animals are observed for any signs of intoxication which vary depending on the severity of the intoxication. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Symptoms and toxicity score in mongoose bioassay Toxicity Score Description of visible symptoms 0 (Non Toxic) No symptoms after 3 days 1 (Mildly toxic) Slight weakness and flexion of fore limbs 2 (Mildly toxic) Slight motor ataxia 3 (Moderately toxic) Moderate motor ataxia and partial paralysis of limbs 4 (Highly toxic) Acute ataxia with limited movement 5 (Very toxic) Death Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Mouse Bioassay • Mongoose bioassay was replaced by mouse bioassay in1996. • Ciguatoxin is extracted from 100g tissue sample with acetone, followed by diethyl ether and finally with hexane and assayed by intraperitoneal injection into 2 (20 ± 2g) test mice. • Control mice would receive tween-60/1% sterile. • Weight, time of injection, quantity of extract injected, signs of intoxication and time of death are recorded. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Mouse toxicity (symptoms) assay scoring Toxicity Score Description of visible symptoms 0 (Non Toxic) No ill effect 1 (Very low toxicity) 15-60 min; muscle contraction in lower back area (flexion), increased respiration, immobile (inactive), recovery. 2 (Mildly toxic) Muscle contraction in lower back area, piloerection, recovery after 2-3 hours. 3 (Moderately toxic) Muscle contraction in lower back area, paralysis in extremities, rapid and irregular breathing, immobile, close eyes, piloerection, recovery 12-24 hours 4 (Highly toxic) Muscle contraction in lower back area, paralysis in extremities, rapid and irregular breathing, immobile, close eyes, piloerection, death within 24hours 5 (Very toxic) Muscle contraction in lower back area, paralysis in extremities, rapid and irregular breathing, immobile, close eyes, piloerection, death within 6hours Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Name of fish 2014 2015 2016 2017 Lutjanus sebae (Bourgeois) 12 2 0 0 Species of fish (1 not toxic) tested for Lutjanus bohar (vara vara) 1 6 0 0 (1 not toxic) toxicity Plectropomus sp. Headless and 5 0 0 0 gutted unidentified (sliced, frozen/cooked) 3 4 2 5 (1 sample not toxic) Plectropomus laevis 6 0 0 0 Variola Louti (Croissant Queue Jaune) 9 5 1 0 Plectropomus punctatus (Merou 5 2 0 0 Pointille) Aethaloperra rogaa 2 0 0 0 (Not toxic) Carangoides fuluoguttatus 0 1 0 Lutjanus gibbus 0 0 1 0 Sphyraena barracuda 0 0 2 0 Filleted of dried fish, sample 0 0 5 2 unidentifiable TOTAL 43 20 11 7 Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Types Seafood poisoning in Mauritius Other types of seafood poisoning which are most likely encountered in Mauritius (Halstead and Cox, 1973): • Clupeoid fish poisoning (Harengula ovalis - patchy distribution , rare occasions) • Scombroid fish poisoning (tuna, tuna-like species) • Pufferfish poisoning (tetrodotoxins in ovary, skin, liver, intestine of porcupine fish and pufferfish) • Hallucinogenic fish poisoning (Siganus sp.) • Crab carpillus maculatus, the echinoderm Echinotrix sp., turtle eretmochelys imbricata. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Types of seafood Symptoms poisoning Clupeoid fish poisoning Nausea, vomiting, diarrhoea, abdominal pain, nervousness, numbness, tingling, muscular cramps, respiratory distress. Scombroid fish poisoning Nausea, vomiting, diarrhoea, abdominal pain, skin allergy (intense itching), headache, dizziness, cardiac palpitation, burning of throat, respiratory distress. Puffer fish poisoning Extreme weakness, skin disorders, muscular paralysis, respiratory distress, loss of motor coordination, hyper salivation, tingling, numbness. Hallucinogenic fish Muscular weakness, dizziness, loss of equilibrium, poisoning constriction of chest, burning of throat, nightmares. Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th April Incidences of fish toxicity in Mauritius Year Cases 1601 As sailors of the fleet led by Dutch Admiral Harmansen took ill after consuming fish caught off Le Morne (Poison Cape) (Halstead and Cox, 1973) 1967 Crab poisoning – Carpillus maculatus – fatal case in Mahebourg 1748 Worst outbreaks of ciguatera recoded took place near Rodrigues (1500 fatal cases due to consumption of serranidae) Between April 2 incidences of ciguatera: 1999 and March (a) Unidentified serranid caught in lagoon of Mauritius (6-7 people) 2000 (b) Variola Louti from Rodrigues (8 people – 1 death, other showed acute symptoms of ciguatera) Regional Workshop on Monitoring and Management Strategies for Benthic HABs/ MOW Musée océanographique - Monaco, 9th to 12th
Recommended publications
  • Copyrighted Material
    Index INDEX Note: page numbers in italics refer to fi gures, those in bold refer to tables and boxes. abducens nerve 55 activity cycles 499–522 inhibition 485 absorption effi ciency 72 annual patterns 515, 516, 517–22 interactions 485–6 abyssal zone 393 circadian rhythms 505 prey 445 Acanthaster planci (Crown-of-Thorns Starfi sh) diel patterns 499, 500, 501–2, 503–4, reduction 484 579 504–7 aggressive mimicry 428, 432–3 Acanthocybium (Wahoo) 15 light-induced 499, 500, 501–2, 503–4, aggressive resemblance 425–6 Acanthodii 178, 179 505 aglomerular 52 Acanthomorpha 284–8, 289 lunar patterns 507–9 agnathans Acanthopterygii 291–325 seasonal 509–15 gills 59, 60 Atherinomorpha 293–6 semilunar patterns 507–9 osmoregulation 101, 102 characteristics 291–2 supra-annual patterns 515, 516, 517–22 phylogeny 202 distribution 349, 350 tidal patterns 506–7 ventilation 59, 60 jaws 291 see also migration see also hagfi shes; lampreys Mugilomorpha 292–3, 294 adaptive response 106 agnathous fi shes see jawless fi shes pelagic 405 adaptive zones 534 agonistic interactions 83–4, 485–8 Percomorpha 296–325 adenohypophysis 91, 92 chemically mediated 484 pharyngeal jaws 291 adenosine triphosphate (ATP) 57 sound production 461–2 phylogeny 292, 293, 294 adipose fi n 35 visual 479 spines 449, 450 adrenocorticotropic hormone (ACTH) 92 agricultural chemicals 605 Acanthothoraciformes 177 adrianichthyids 295 air breathing 60, 61–2, 62–4 acanthurids 318–19 adult fi shes 153, 154, 155–7 ammonia production 64, 100–1 Acanthuroidei 12, 318–19 death 156–7 amphibious 60 Acanthurus bahianus
    [Show full text]
  • Anal Fin Deformity in the Longfin Trevally, Carangoides Armatus (Rüppell, 1830) Collected from Nayband, Persian Gulf
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 25, No. 3, 169-172, September 2013 Received: July 5, 2013 ISSN: 1225-8598 (Print), 2288-3371 (Online) Revised: August 14, 2013 Accepted: September 8, 2013 Anal Fin Deformity in the Longfin Trevally, Carangoides armatus (Rüppell, 1830) Collected from Nayband, Persian Gulf By Laith Jawad*, Zahra Sadighzadeh1, Ali Salarpouri2 and Seyed Aghouzbeni3 Manukau, Auckland, New Zealand. 1Marine Biology Department, Faculty of Marine Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran 2Persian Gulf and Oman Sea Ecological Research Institute, Bandar Abbas, Iran 3Offshore Fisheries Research Center, Chabahar, Iran ABSTRACT A malformation of the anal fin in longfin trevally, Carangoides armatus, is described and compared with normal specimens. The fish specimen is clearly shown anal fin deformity with missing of 3 spines and 6 rays. The remaining eleven anal fin rays are shorter than those in the normal specimen. The causative factors of this anomaly were discussed. Key words : Carangoides armatus, pelvic fin, malformation, X-ray image, Iran INTRODUCTION specimen of the trevally, C. armatus caught in coastal Iranian waters of the Persian Gulf. Morphological abnormalities in fish in general and skeletal anomalies in particular have been widely describ- ed and reviewed since the comprehensive survey of fish MATERIALS AND METHODS anomalies by Dawson (1964, 1971) (Tutman et al., 2000; Al-Mamry et al., 2010; Jawad and Al-Mamry, 2011, One specimen of C. armatus showing complete defor- 2012). Because of high incidence in polluted wild areas, mation of the anal fin (TL 354 mm, SL 265 mm, Weight the fish anomalies are used as indicators of water pollu- 588 g) were obtained by fishermen around 5-8 km away tion (Bengtsson, 1979).
    [Show full text]
  • ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides Chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن
    A study on some biological aspects of longnose trevally (Carangoides chrysophrys) in Hormozgan waters Item Type monograph Authors Kamali, Easa; Valinasab, T.; Dehghani, R.; Behzadi, S.; Darvishi, M.; Foroughfard, H. Publisher Iranian Fisheries Science Research Institute Download date 10/10/2021 04:51:55 Link to Item http://hdl.handle.net/1834/40061 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه اﻛﻮﻟﻮژي ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن ﻋﻨﻮان: ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﻣﺠﺮي: ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﺷﻤﺎره ﺛﺒﺖ 49023 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر- ﭘﮋوﻫﺸﻜﺪه اﻛﻮﻟﻮژي ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن ﻋﻨﻮان ﭘﺮوژه : ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز (Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﺷﻤﺎره ﻣﺼﻮب ﭘﺮوژه : 2-75-12-92155 ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎرﻧﺪه/ ﻧﮕﺎرﻧﺪﮔﺎن : ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎر(ان) : ﺳﻴﺎﻣﻚ ﺑﻬﺰادي ،ﻣﺤﻤﺪ دروﻳﺸﻲ، ﺣﺠﺖ اﷲ ﻓﺮوﻏﻲ ﻓﺮد، ﺗﻮرج وﻟﻲﻧﺴﺐ، رﺿﺎ دﻫﻘﺎﻧﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎور(ان) : - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ(ان) : - ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﺗﺎرﻳﺦ ﺷﺮوع : 92/10/1 ﻣﺪت اﺟﺮا : 1 ﺳﺎل و 6 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل 1395 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ . ﻧﻘﻞ ﻣﻄﺎﻟﺐ ، ﺗﺼﺎوﻳﺮ ، ﺟﺪاول ، ﻣﻨﺤﻨﻲ ﻫﺎ و ﻧﻤﻮدارﻫﺎ ﺑﺎ ذﻛﺮ ﻣﺄﺧﺬ ﺑﻼﻣﺎﻧﻊ اﺳﺖ . «ﺳﻮاﺑﻖ ﻃﺮح ﻳﺎ ﭘﺮوژه و ﻣﺠﺮي ﻣﺴﺌﻮل / ﻣﺠﺮي» ﭘﺮوژه : ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﻛﺪ ﻣﺼﻮب : 2-75-12-92155 ﺷﻤﺎره ﺛﺒﺖ (ﻓﺮوﺳﺖ) : 49023 ﺗﺎرﻳﺦ : 94/12/28 ﺑﺎ ﻣﺴﺌﻮﻟﻴﺖ اﺟﺮاﻳﻲ ﺟﻨﺎب آﻗﺎي ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ داراي ﻣﺪرك ﺗﺤﺼﻴﻠﻲ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ در رﺷﺘﻪ ﺑﻴﻮﻟﻮژي ﻣﺎﻫﻴﺎن درﻳﺎ ﻣﻲﺑﺎﺷﺪ.
    [Show full text]
  • Morphological and Karyotypic Differentiation in Caranx Lugubris (Perciformes: Carangidae) in the St. Peter and St. Paul Archipelago, Mid-Atlantic Ridge
    Helgol Mar Res (2014) 68:17–25 DOI 10.1007/s10152-013-0365-0 ORIGINAL ARTICLE Morphological and karyotypic differentiation in Caranx lugubris (Perciformes: Carangidae) in the St. Peter and St. Paul Archipelago, mid-Atlantic Ridge Uedson Pereira Jacobina • Pablo Ariel Martinez • Marcelo de Bello Cioffi • Jose´ Garcia Jr. • Luiz Antonio Carlos Bertollo • Wagner Franco Molina Received: 21 December 2012 / Revised: 16 June 2013 / Accepted: 5 July 2013 / Published online: 24 July 2013 Ó Springer-Verlag Berlin Heidelberg and AWI 2013 Abstract Isolated oceanic islands constitute interesting Introduction model systems for the study of colonization processes, as several climatic and oceanographic phenomena have played Ichthyofauna on the St. Peter and St. Paul Archipelago an important role in the history of the marine ichthyofauna. (SPSPA) is of great biological interest, due to its degree The present study describes the presence of two morpho- of geographic isolation. The region is a remote point, far types of Caranx lugubris, in the St. Peter and St. Paul from the South American (&1,100 km) and African Archipelago located in the mid-Atlantic. Morphotypes were (&1,824 km) continents, with a high level of endemic fish compared in regard to their morphological and cytogenetic species (Edwards and Lubbock 1983). This small archi- patterns, using C-banding, Ag-NORs, staining with CMA3/ pelago is made up of four larger islands (Belmonte, St. DAPI fluorochromes and chromosome mapping by dual- Paul, St. Peter and Bara˜o de Teffe´), in addition to 11 color FISH analysis with 5S rDNA and 18S rDNA probes. smaller rocky points. The combined action of the South We found differences in chromosome patterns and marked Equatorial Current and Pacific Equatorial Undercurrent divergence in body patterns which suggest that different provides a highly complex hydrological pattern that sig- populations of the Atlantic or other provinces can be found nificantly influences the insular ecosystem (Becker 2001).
    [Show full text]
  • A Revision of Selected Genera of the Family Carangidae (Pisces) from Australian Waters
    Records of the Australian Museum (1990) Supplement 12. ISBN 0 7305 7445 8 A Revision of Selected Genera of the Family Carangidae (Pisces) from Australian Waters JOHN S. GUNN Division of Fisheries, CSIRO Marine Laboratories, P.O. Box 1538, Hobart, 7001 Tas., Australia ABSTRACT. An annotated list of the 63 species in 23 genera of carangid fishes known from Australian waters is presented. Included in these 63 are eight endemic species, eight new Australian records (Alepes vari, Carangoides equula, C. plagiotaenia, C. talamparoides, Caranx lugubris, Decapterus kurroides, D. tabl and Seriola rivoliana) and a new species in the genus Alepes. A generic key and specific keys to Alectis, Alepes, Carangoides, Scomberoides, Selar, Ulua and Uraspis are given. The systematics of the 32 Australian species of Alectis, Alepes, Atule, Carangoides, "Caranx", Elagatis, Gnathanodon,Megalaspis,Pantolabus, Scomberoides, Selar, Selaroides, Seriolina, Ulua and Uraspis are covered in detail. For each species a recommended common name, other common names, Australian secondary synonymy, diagnosis, colour notes, description, comparison with other species, maximum recorded size, ecological notes and distribution are given. Specific primary synonymies are listed when the type locality is Australia or Papua New Guinea. Contents Introduction .............................................................................................................................................. 2 Materials and Methods .............................................................................................................................
    [Show full text]
  • CARANGIDAE Local Name: Naruvaa Handhi Order: Perciformes Size: Max
    Alectis ciliaris (Bloch, 1787) English Name: African pompano Family: CARANGIDAE Local Name: Naruvaa handhi Order: Perciformes Size: Max. 1.3 m Specimen: MRS/0501/97 Distinctive Characters: Dorsal fin with 7 short spines (invisible in larger ones) followed by 1 spine and 18-22 rays. Anal fin with 2 spines (embedded in larger ones) followed by 1 spine and 18-20 rays. Gill rakers lower limb first gill arch 12-17, excluding rudiments. Anterior rays long and filamentous injuveniles. Body deep and compressed. Forehead rounded. Colour: Silvery, with touch of metallic blue dorsally. Juveniles with 5 dark bars on body. Habitat and Biology: Adults solitary in coastal waters to depths of 100 m. Young usually pelagic and drifting. Feeds mainly on sedentary crustaceans. Distribution: Circumtropical. Remarks: The similar A. indicus also occurs in the Indian Ocean. Unlike Alectis ciliaris, A. indicus has an angularforehead, more gill rakers on lowerlimb of first gill arch (21-26 excluding rudiment), and is coloured silver with a green tinge dorsally. 124 Carangoides caeruleopinnatus (Ruppell, 1830) English Name: Coastal trevally Family: CARANGIDAE Local Name: Vabboa handhi Order: Perciformes Size: Max. 40 cm Specimen: MRS/P0l46/87 Distinctive Characters: First dorsal fin with 8 spines, second dorsal fin with I spine and 20-23 rays. Anal fin with 2 spines followed by 1 spine and 16-20 rays. Gill rakers on first gill arch including the rudiments, 2 1-25. Naked area of breast extends well beyond pelvic fins. Soft dorsal lobe filamentous in young, but shorter than the head length in adults. Colour: Silvery, somewhat darker above than below.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Gwilliam Michael
    Assessing the role of the Benguela Current as a major biogeographic barrier to marine coastal fishes. Michael Gwilliam A thesis submitted to Aberystwyth University in partial fulfilment for the degree of Doctor of Philosophy. Institute of Biological, Environmental and Rural Sciences Aberystwyth University 2016 Declaration Word Count of thesis: 55,923 This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Candidate name MICHAEL GWILLIAM Signature: Date 25/12/2016 STATEMENT 1 This thesis is the result of my own investigations, except where otherwise stated. Where *correction services have been used, the extent and nature of the correction is clearly marked in a footnote(s). Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended. Signature: Date 25/12/2016 [*this refers to the extent to which the text has been corrected by others] STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signature: Date 25/12/2016 2 Acknowledgements I would like to thank first and foremost my Supervisor Professor Paul Shaw and Dr Niall McKeown. They have both been of exceptional help in writing this thesis in what at times were not ideal circumstances for me. Additionally they have ensured I haven’t gone too far off the academic rails over the last few years. I would also like to thank the help of my colleagues in the Shaw Lab namely Dr Max Blake (soon to be Dr) and Amy Rainbow Unicorn Moonchild Healey for all their help and discussions during the last few years.
    [Show full text]
  • Poisoning by Edible Fish
    246 JAccid Emerg Med 1997;14:246-251 REVIEW J Accid Emerg Med: first published as 10.1136/emj.14.4.246 on 1 July 1997. Downloaded from Ichthyosarcotoxism: poisoning by edible fish Iain C Grant The term ichthyosarcotoxism describes a variety cause different syndromes, and even within a of conditions arising as the result of poisoning recognised single disease entity there may be by fish flesh. Poisoning by shellfish and other wide variation in symptoms depending on the invertebrates is excluded, as is bacterial food fish eaten or the geographical area. All of this poisoning from contaminated fish. Although makes classification very difficult and conse- most of the conditions are experienced mainly quently no recognised classification exists. in warmer climates than Britain's, one form of Table 1 shows an attempt to classify the condi- fish poisoning is relatively common here, and tions by the type of clinical features and symp- others may be imported, either through toms usually seen. This arrangement is simpli- imported fish or by travellers. The conditions fied and there is some overlap between could present to any accident and emergency conditions, but for the physician faced with a (A&E) department, and increased awareness patient with likely fish poisoning it gives some of these disease entities may improve diagnosis guidance towards a specific diagnosis. and management. It has been suggested that the features of It has long been known that some normally ciguatera, tetraodon, and paralytic shellfish edible fish species may from time to time cause poisoning are similar and that these should be poisoning.
    [Show full text]
  • SWFSC Archive
    I AN IMMUNOLOGICAL APPROACH FOR CTX by Y. Hokama', L.H. Kimura', K. Shiraki', of study such as tissue distribution, synthesis and R. Shomura2, R. Uchida2, B. lto2, in some cases the structure and function of the B. Takenaka3, and J. Miyahara4 haptenic molecule. The application of the sensitive immuno- I NT RO D UCTl0 N logical methods for the detection of marine The application of immunological techniques toxins, such as saxitoxin, ciguatoxin, and tetrado- for the detection of low molecular weight, non- toxin, merits strong consideration in light of the immunogenic compounds has increased markedly minute amounts of these toxins in the natural in the past decade. The ability to conjugate these environment. The minute amount in tissues has haptenic small molecules covalently to appro- constituted serious hazards to the consumer and priate immunogenic carriers via their functional has created anxiety within the fishing and shell- groups has led to the production of specific anti- fish industries. bodies to the haptenic molecules following This study discusses the immunological administration into appropriate animals. Primary approaches for the development of a radio- functional groups or moieties amenable to conju- immunoassay procedure for the detection of gation, provided they are accessible to chemical ciguatoxin (Hokama et al., 1977). The method- coupling, include amino, hydroxyl, and carboxyl ology presented is applicable for the development groups. Some common methods for coupling of immunological procedures for the other low include carbodiimide, nucleophilic substitution, molecular weight marine toxins such as saxitoxin, diazo and azide coupling. In some cases, for tetradotoxin, and Gymnodinium breve toxins. In example with lipid antigens, noncovalent com- addition, for correlative analysis, the guinea pig plexes have been utilized using methylated bovine atrium procedure (Miyahara et al., 1979) for serum albumin as the carrier (Butler et al., 1973; quantitation of ciguatoxin and maitotoxin from Becher, 1976).
    [Show full text]
  • Parasitic Copepods (Crustacea, Hexanauplia) on Fishes from the Lagoon Flats of Palmyra Atoll, Central Pacific
    A peer-reviewed open-access journal ZooKeys 833: 85–106Parasitic (2019) copepods on fishes from the lagoon flats of Palmyra Atoll, Central Pacific 85 doi: 10.3897/zookeys.833.30835 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Parasitic copepods (Crustacea, Hexanauplia) on fishes from the lagoon flats of Palmyra Atoll, Central Pacific Lilia C. Soler-Jiménez1, F. Neptalí Morales-Serna2, Ma. Leopoldina Aguirre- Macedo1,3, John P. McLaughlin3, Alejandra G. Jaramillo3, Jenny C. Shaw3, Anna K. James3, Ryan F. Hechinger3,4, Armand M. Kuris3, Kevin D. Lafferty3,5, Victor M. Vidal-Martínez1,3 1 Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV- IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán C.P. 97310, México 2 CONACYT, Centro de Investigación en Alimentación y Desarrollo, Unidad Académica Mazatlán en Acuicultura y Manejo Ambiental, Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, México 3 Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara CA 93106, USA 4 Scripps Institution of Oceanography-Marine Biology Research Division, University of California, San Diego, La Jolla, California 92093 USA 5 Western Ecological Research Center, U.S. Geological Survey, Marine Science Institute, University of California, Santa Barbara CA 93106, USA Corresponding author: Victor M. Vidal-Martínez ([email protected]) Academic editor: Danielle Defaye | Received 25 October 2018 |
    [Show full text]
  • FAO SPECIES IDENTIFICATION SHEETS FAMILY: CARANGIDAE FISHING AREA 51 (W. Indian Ocean) Carangoides Ferdau (Forsskål, 1775) OTHE
    click for previous page CARAN Carang 4 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: CARANGIDAE FISHING AREA 51 (W. Indian Ocean) Carangoides ferdau (Forsskål, 1775) OTHER SCIENTIFIC NAMES STILL IN USE: Caranx ferdau (Forsskål, 1775) Carangoides hemigymnostethus Bleeker, 1851 Caranx gilberti Jordan & Seale, 1906 VERNACULAR NAMES FAO : En - Blue trevally Fr - Carangue tachetée Sp - Jurel manchado NATIONAL: DISTINCTIVE CHARACTERS Body oblong and compressed; dorsal profile more convex than ventral profile; snout bluntly rounded. Upper jaw highly protractile; lips of large adults not noticeably fleshy; both jaws with narrow bands of villiform teeth, becoming obsolescent with age; vomerine tooth patch naked area ovate, without a posteromedian extension; gillrakers (including rudi- ments) 7 to 10 upper, 17 to 20 lower and 24 to 29 total on first gill arch. Two separate dorsal fins, the first with 8 spines, the second with 1 spine and 26 to 34 soft rays; anal fin with 2 detached spines followed by 1 spine and 21 to 26 soft rays; lobe of second dorsal fin falcate, especially in small adults, but usually shorter than head length. Lateral line anteriorly with a very slight arch, with junction of curved and straight parts below second dorsal fin between 15th to 20th soft rays; chord of curved part of lateral line longer than straight part of lateral line, contained 0.6 to 0.85 times in straight part; straight part of lateral line with 10 to 30 scales followed by 21 to 37 small scutes. Breast naked ventrally to origin of pelvic fins; laterally, naked area of breast separated from naked base of pectoral fin by a moderate band of scales.
    [Show full text]