12860564 a Computer Virus and Anti Virus System

Total Page:16

File Type:pdf, Size:1020Kb

12860564 a Computer Virus and Anti Virus System COMPUTER VIRUS & ANTIVIRUS SYSTEMS INDEX 1. Introduction General information How to deal with Viruses How to protect from Viruses How Viruses spread around the world? Computer Viruses & Network Security AntiVirus AntiVirus Databases Statistics 2. 3. 4. 5. 6. 7. 8. 9. 10.Conclusion 11.Forecast Introduction to Computer Viruses Computer virus A computer virus is a computer program that can copy itself and infect a computer without permission or knowledge of the user. The term "virus" is also commonly used, albeit erroneously, to refer to many different types of malware and adware programs. The original virus may modify the copies, or the copies may modify themselves, as occurs in a metamorphic virus. A virus can only spread from one computer to another when its host is taken to the uninfected computer, for instance by a user sending it over a network or the Internet, or by carrying it on a removable medium such as a floppy disk, CD, or USB drive. Meanwhile viruses can spread to other computers by infecting files on a network file system or a file system that is accessed by another computer. Viruses are sometimes confused with computer worms and Trojan horses. A worm can spread itself to other computers without needing to be transferred as part of a host, and a Trojan horse is a file that appears harmless. Worms and Trojans may cause harm to either a computer system's hosted data, functional performance, or networking throughput, when executed. In general, a worm does not actually harm either the system's hardware or software, while at least in theory, a Trojan's payload may be capable of almost any type of harm if executed. Some can't be seen when the program is not running, but as soon as the infected code is run, the Trojan horse kicks in. That is why it is so hard for people to find viruses and other malware themselves and why they have to use spyware programs and registry processors. Most personal computers are now connected to the Internet and to local area networks, facilitating the spread of malicious code. Today's viruses may also take advantage of network services such as the World Wide Web, e-mail, Instant Messaging and file sharing systems to spread, blurring the line between viruses and worms. Furthermore, some sources use an alternative terminology in which a virus is any form of self-replicating malware. Some malware is programmed to damage the computer by damaging programs, deleting files, or reformatting the hard disk. Other malware programs are not designed to do any damage, but simply replicate themselves and perhaps make their presence known by presenting text, video, or audio messages. Even these less sinister malware programs can create problems for the computer user. They typically take up computer memory used by legitimate programs. As a result, they often cause erratic behavior and can result in system crashes. In addition, much malware is bug-ridden, and these bugs may lead to system crashes and data loss. Many CiD programs are programs that have been downloaded by the user and pop up every so often. This results in slowing down of the computer, but it is also very difficult to find and stop the problem. The person might have a computer virus infection when the computer starts acting differently. For instance getting slow or when they turn the computer on, it says that all the data is erased or when they start writing a document, it looks different, some chapters might be missing or something else ubnormal has happened. The next thing usually the person whose computer might be infected with virus, panics. The person might think that all the work that have been done is missing. That could be true, but in most cases viruses have not done any harm jet, but when one start doing something and are not sure what you do, that might be harmful. When some people try to get rid of viruses they delete files or they might even format the whole hard disk like my cousin did. That is not the best way to act when the person think that he has a virus infection. What people do when they get sick? They go to see a doctor if they do not know what is wrong with them. It is the same way with viruses, if the person does not know what to do they call someone who knows more about viruses and they get professional help. If the person read email at their PC or if they use diskettes to transfer files between the computer at work and the computer at home, or if they just transfer files between the two computers they have a good possibility to get a virus. They might get viruses also when they download files from any internet site. There was a time when people were able to be sure that some sites we secure, that those secure sites did not have any virus problems, but nowadays the people can not be sure of anything. There has been viruses even in Microsoft's download sites. In this report I am going to introduce different malware types and how they spread out and how to deal with them. Most common viruses nowadays are macro viruses and I am going to spend a little more time with them. I am going to give an example of trojan horses stealing passwords. Computer virus timeline 1949 Theories for self-replicating programs are first developed. 1981 Apple Viruses 1, 2, and 3 are some of the first viruses in the world or in the public domain. Found on the Apple II operating system, the viruses spread through Texas A&M via pirated computer games. 1983 Fred Cohen, while working on his dissertation, formally defines a computer virus as “a computer program that can affect other computer programs by modifying them in such a way as to include a (possibly evolved) copy of itself.” 1986 Two programmers named Basit and Amjad replace the executable code in the boot sector of a floppy disk with their own code designed to infect each 360kb floppy accessed on any drive. Infected floppies had “© Brain” for a volume label. 1987 The Lehigh virus, one of the first file viruses, infects command.com files. 1988 One of the most common viruses, Jerusalem, is unleashed. Activated every Friday the 13th, the virus affects both .exe and .com files and deletes any programs run on that day. MacMag and the Scores virus cause the first major Macintosh outbreaks. 1990 Symantec launches Norton AntiVirus, one of the first antivirus programs developed by a large company. 1991 Tequila is the first widespread polymorphic virus found in the wild. Polymorphic viruses make detection difficult for virus scanners by changing their appearance with each new infection. 1992 1300 viruses are in existence, an increase of 420% from December of 1990. The Dark Avenger Mutation Engine (DAME) is created. It is a toolkit that turns ordinary viruses into polymorphic viruses. The Virus Creation Laboratory (VCL) is also made available. It is the first actual virus creation kit. 1994 Good Times email hoax tears through the computer community. The hoax warns of a malicious virus that will erase an entire hard drive just by opening an email with the subject line “Good Times.” Though disproved, the hoax resurfaces every six to twelve months. 1995 Word Concept becomes one of the most prevalent viruses in the mid1990s. It is spread through Microsoft Word documents. 1996 Baza, Laroux (a macro virus), and Staog viruses are the first to infect Windows95 files, Excel, and Linux respectively. 1998 Currently harmless and yet to be found in the wild, StrangeBrew is the first virus to infect Java files. The virus modifies CLASS files to contain a copy of itself within the middle of the file's code and to begin execution from the virus section. The Chernobyl virus spreads quickly via .exe files. As the notoriety attached to its name would suggest, the virus is quite destructive, attacking not only files but also a certain chip within infected computers. Two California teenagers infiltrate and take control of more than 500 military, government, and private sector computer systems. 1999 The Melissa virus, W97M/Melissa, executes a macro in a document attached to an email, which forwards the document to 50 people in the user's Outlook address book. The virus also infects other Word documents and subsequently mails them out as attachments. Melissa spread faster than any previous virus, infecting an estimated 1 million PCs. Bubble Boy is the first worm that does not depend on the recipient opening an attachment in order for infection to occur. As soon as the user opens the email, Bubble Boy sets to work. Tristate is the first multi-program macro virus; it infects Word, Excel, and PowerPoint files. 2000 The Love Bug, also known as the ILOVEYOU virus, sends itself out via Outlook, much like Melissa. The virus comes as a VBS attachment and deletes files, including MP3, MP2, and .JPG. It also sends usernames and passwords to the virus's author. W97M.Resume.A, a new variation of the Melissa virus, is determined to be in the wild. The “resume” virus acts much like Melissa, using a Word macro to infect Outlook and spread itself. The “Stages” virus, disguised as a joke email about the stages of life, spreads across the Internet. Unlike most previous viruses, Stages is hidden in an attachment with a false “.txt” extension, making it easier to lure recipients into opening it. Until now, it has generally been safe to assume that text files are safe.
Recommended publications
  • A the Hacker
    A The Hacker Madame Curie once said “En science, nous devons nous int´eresser aux choses, non aux personnes [In science, we should be interested in things, not in people].” Things, however, have since changed, and today we have to be interested not just in the facts of computer security and crime, but in the people who perpetrate these acts. Hence this discussion of hackers. Over the centuries, the term “hacker” has referred to various activities. We are familiar with usages such as “a carpenter hacking wood with an ax” and “a butcher hacking meat with a cleaver,” but it seems that the modern, computer-related form of this term originated in the many pranks and practi- cal jokes perpetrated by students at MIT in the 1960s. As an example of the many meanings assigned to this term, see [Schneier 04] which, among much other information, explains why Galileo was a hacker but Aristotle wasn’t. A hack is a person lacking talent or ability, as in a “hack writer.” Hack as a verb is used in contexts such as “hack the media,” “hack your brain,” and “hack your reputation.” Recently, it has also come to mean either a kludge, or the opposite of a kludge, as in a clever or elegant solution to a difficult problem. A hack also means a simple but often inelegant solution or technique. The following tentative definitions are quoted from the jargon file ([jargon 04], edited by Eric S. Raymond): 1. A person who enjoys exploring the details of programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn only the minimum necessary.
    [Show full text]
  • Intelligent Malware Detection Using File-To-File Relations and Enhancing Its Security Against Adversarial Attacks
    Graduate Theses, Dissertations, and Problem Reports 2019 Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks Lingwei Chen [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Information Security Commons Recommended Citation Chen, Lingwei, "Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks" (2019). Graduate Theses, Dissertations, and Problem Reports. 3844. https://researchrepository.wvu.edu/etd/3844 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks Lingwei Chen Dissertation submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Yanfang Ye, Ph.D., Committee Chairperson Donald Adjeroh, Ph.D. Elaine M.
    [Show full text]
  • Leveraging Advanced Linux Debugging Techniques for Malware Hunting
    Beyond Whitelisting: Fileless Attacks Against Linux Shlomi Boutnaru ./whomai • Currently: − CTO & Co-Founder, Rezilion • Previous: − Chief Technologist Cybersecurity, PayPal − CTO & Co-Founder, CyActive − Acquired by PayPal (2015) Fileless Malware - Definition “… a variant of computer related malicious software that exists exclusively as a computer memory-based artifact i.e. in RAM. It does not write any part of its activity to the computer's hard drive meaning that it's very resistant to existing Anti-computer forensic strategies that incorporate file-based whitelisting, signature detection, hardware verification, pattern-analysis, time-stamping, etc., and leaves very little by way of evidence that could be used by digital forensic investigators to identify illegitimate activity. As malware of this type is designed to work in-memory, its longevity on the system exists only until the system is rebooted…” https://en.wikipedia.org/wiki/Fileless_malware In the News… https://www.techradar.com/news/why-fileless-malware-is-the-biggest-new-threat-to-your-business https://securelist.com/fileless-attacks-against-enterprise-networks/77403/ https://threatpost.com/threatlist-ransomware-attacks-down-fileless-malware-up-in-2018/136962/ And More… Statistics https://www.barkly.com/ponemon-2018-endpoint-security-statistics-trends “…77% of attacks that successfully compromised organizations in 2017 utilized fileless techniques…” https://blog.barkly.com/2018-cybersecurity-statistics A third of all attacks are projected to utilize fileless techniques in 2018.
    [Show full text]
  • Linux Viruses by Aaron Grothe March 18, 2009
    Linux Virus Writing: A How To Linux Viruses by Aaron Grothe March 18, 2009 1 Disclaimer #1 ■ This presentation will give some hints about how to write very simple viruses and other malware that run under the GNU/Linux and other operating systems. ■ As part of this we'll be looking at several example viruses which can be dangerous to do 2 Disclaimer #2 ■ This talk is based on my opinions and experiences and nothing else. It does not reflect the views or opinions of any place I work or organization that I may be a part of. 3 Reactions The following is the rough breakdown of Reactions when I announced the talk broke down as follows ■ Wow! Couldn't you get Bob McCoy to Talk? - 50% ■ Linux doesn't have viruses. Duh!!! - 30% ■ Meow - 20% 4 What is a Computer Virus? ■ One classic definition is a self-reproducing program that requires user interaction to propagate It is not by the classic definition able to propagate to remote systems without human interaction. 5 First Linux Virus??? ■ Staog – 1996 Staog appears to have been the first public seen virus ■ Bliss – 1996/Early 1997 Bliss was the first “popular” virus. It got quite a bit of press. The source code to bliss is still available in the comp.security.unix archives Both of these needed specific versions of libraries/kernels etc. So they were version specific and neither runs on a modern system anymore 6 Linux Doesn't Have Viruses ■ This must be true. Everybody says this!!! ■ A lot of Linux distros don't install any anti-virus ■ People switch to Linux at work to avoid anti-virus programs 7
    [Show full text]
  • Computer Virus Tutorial
    Computer Virus Tutorial Computer Virus Tutorial License Copyright 1996-2005, Computer Knowledge. All Rights Reserved The Computer Knowledge Virus Tutorial is a copyright product of Computer Knowledge. It also contains copyrighted material from others (used with permission). Please honor the copyrights. Read the tutorial, learn from the tutorial, download and run the PDF version of the tutorial on your computer, link to the tutorial. But, please don't copy it and claim it as your own in whole or part. The PDF version of the Computer Knowledge Virus Tutorial is NOT in the public domain. It is copyrighted by Computer Knowledge and it and all accompanying materials are protected by United States copyright law and also by international treaty provisions. The tutorial requires no payment of license fees for its use as an educational tool. If you are paying to use the tutorial please advise Computer Knowledge (PO Box 5818,www.co-bw.com Santa Maria, CA 93456 USA). Please provide contact information for those charging the fee; even a distribution fee. License for Distribution of the PDF Version No royalties are required for distribution. No fees may be charged for distribution of the tutorial. You may not use, copy, rent, lease, sell, modify, decompile, disassemble, otherwise reverse engineer, or transfer the licensed program except as provided in this agreement. Any such unauthorized use shall result in immediate and automatic termination of this license. In no case may this product be bundled with hardware or other software without written permission from Computer Knowledge (PO Box 5818, Santa Maria, CA 93456 USA).
    [Show full text]
  • The Ultimate Cybersecurity Guide for the It Professional
    THE ULTIMATE CYBERSECURITY GUIDE FOR THE IT PROFESSIONAL { 01101000 01110100 01110100 01110000 01110011 00111010 00101111 00101111 01110111 01110111 01110111 00101110 01100011 01100001 01110010 01100010 01101111 01101110 01100010 01101100 01100001 01100011 01101011 00101110 01100011 01101111 01101101 } THE ULTIMATE CYBERSECURITY GUIDE FOR THE IT PROFESSIONAL 2019 Welcome to our comprehensive guide on the basics of cybersecurity. Whether you've been in IT for a long time or are just starting out, there is an expectation that everyone in IT should have some degree of expo- sure to InfoSec. A good way to do that is to learn from and get connected in the community. Cybersecurity is a fascinating and rapidly evolving area of IT. And those that are involved are friendly people who care passionately about keeping us all safe. With information from over 150 sourced references, and personal input from The Howler Hub community of security experts, this guide contains the key information to help you: • Understand key concepts that drive the security professional. • Learn a common language to engage with cybersecurity professionals. • Connect with sources to stay up-to-date on this evolving field. • Engage with cybersecurity experts and the threat hunting community at large. CONTENTS 01 02 03 History of Attackers + Common Cybersecurity Their Motives Attacks <pg num="001" /> <pg num="005" /> <pg num="007" /> 04 05 06 Terms to Know Experts to Blogs to Read <pg num="009" /> Follow <pg num="014" /> <pg num="013" /> 07 08 09 Events to Books to Read Movies + Shows Attend <pg num="017" /> to Watch <pg num="015" /> <pg num="019" /> 10 11 12 Communities Become a References to Engage Threat Hunter <pg num="023" /> <pg num="021" /> <pg num="022" /> 13 Appendices <pg num="024" /> <pg num="001" /> SEC.
    [Show full text]
  • A Seminar Report on Computer Viruses
    www.studymafia.org A Seminar report On Computer Viruses Submitted in partial fulfillment of the requirement for the award of degree Of CSE SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org 1 www.studymafia.org Preface I have made this report file on the topic Computer Viruses, I have tried my best to elucidate all the relevant detail to the topic to be included in the report. While in the beginning I have tried to give a general view about this topic. My efforts and wholehearted co-corporation of each and everyone has ended on a successful note. I express my sincere gratitude to …………..who assisting me throughout the preparation of this topic. I thank him for providing me the reinforcement, confidence and most importantly the track for the topic whenever I needed it. 2 www.studymafia.org Acknowledgement I would like to thank respected Mr…….. and Mr. ……..for giving me such a wonderful opportunity to expand my knowledge for my own branch and giving me guidelines to present a seminar report. It helped me a lot to realize of what we study for. Secondly, I would like to thank my parents who patiently helped me as i went through my work and helped to modify and eliminate some of the irrelevant or un-necessary stuffs. Thirdly, I would like to thank my friends who helped me to make my work more organized and well-stacked till the end. Next, I would thank Microsoft for developing such a wonderful tool like MS Word. It helped my work a lot to remain error-free.
    [Show full text]
  • The Administrator Shortcut Guide to Email Protection
    Chapter 1 Introduction By Sean Daily, Series Editor Welcome to The Administrator Shortcut Guide to Email Protection! The book you are about to read represents an entirely new modality of book publishing and a major first in the publishing industry. The founding concept behind Realtimepublishers.com is the idea of providing readers with high-quality books about today’s most critical IT topics—at no cost to the reader. Although this may sound like a somewhat impossible feat to achieve, it is made possible through the vision and generosity of corporate sponsors such as Sybari, who agree to bear the book’s production expenses and host the book on its Web site for the benefit of its Web site visitors. It should be pointed out that the free nature of these books does not in any way diminish their quality. Without reservation, I can tell you that this book is the equivalent of any similar printed book you might find at your local bookstore (with the notable exception that it won’t cost you $30 to $80). In addition to the free nature of the books, this publishing model provides other significant benefits. For example, the electronic nature of this eBook makes events such as chapter updates and additions, or the release of a new edition of the book possible to achieve in a far shorter timeframe than is possible with printed books. Because we publish our titles in “real- time”—that is, as chapters are written or revised by the author—you benefit from receiving the information immediately rather than having to wait months or years to receive a complete product.
    [Show full text]
  • Computer Virus Tutorial
    Computer Virus Tutorial Computer Virus Tutorial License Copyright 1996-2005, Computer Knowledge. All Rights Reserved The Computer Knowledge Virus Tutorial is a copyright product of Computer Knowledge. It also contains copyrighted material from others (used with permission). Please honor the copyrights. Read the tutorial, learn from the tutorial, download and run the PDF version of the tutorial on your computer, link to the tutorial. But, please don't copy it and claim it as your own in whole or part. The PDF version of the Computer Knowledge Virus Tutorial is NOT in the public domain. It is copyrighted by Computer Knowledge and it and all accompanying materials are protected by United States copyright law and also by international treaty provisions. The tutorial requires no payment of license fees for its use as an educational tool. If you are paying to use the tutorial please advise Computer Knowledge (PO Box 5818, Santa Maria, CA 93456 USA). Please provide contact information for those charging the fee; even a distribution fee. License for Distribution of the PDF Version No royalties are required for distribution. No fees may be charged for distribution of the tutorial. You may not use, copy, rent, lease, sell, modify, decompile, disassemble, otherwise reverse engineer, or transfer the licensed program except as provided in this agreement. Any such unauthorized use shall result in immediate and automatic termination of this license. In no case may this product be bundled with hardware or other software without written permission from Computer Knowledge (PO Box 5818, Santa Maria, CA 93456 USA). All distribution of the Computer Knowledge Virus Tutorial is further restricted with regard to sources which also distribute virus source code and related virus construction/creation materials.
    [Show full text]
  • Living with Malware by Gary Wiggins Security Essentials Version 1.2D
    Living with MalWare By Gary Wiggins Security Essentials version 1.2d Code Red worm, SirCam, AnnaKournikova, LoveLetter, Melissa, Pretty Park…. The list goes on forever. With each passing week, the various forms of trojans, worms and viruses seem to spread in the wild more quickly and have become more destructive. How did we get to this point? How can we defend ourselves against Malware and where do we go from here? KeyIn this fingerprint paper, = IAF19 will defineFA27 2F94 exactly 998D what FDB5 Malware DE3D F8B5 is 06andE4 describeA169 4E46 the different types. I will briefly examine the history of viruses and look at the various techniques employed to propagate them. I will recommend a comprehensive plan to combat viruses and reduce the damage to your networks in addition to the energy spent on the never-ending defense. Finally, I will look at future technologies as solutions towards fighting viruses. The following terms and definitions come from www.webopedia.com1 § Malware – short for malicious software. Software designed specifically to damage or disrupt a system, such as a virus or a Trojan horse. § Worm – A program or algorithm that replicates itself over a computer network and usually performs malicious action, such as using up the computers resources and possibly shutting the system down. § Trojan Horse – A destructive program that masquerades as a benign application. Unlike a virus, Trojan horses do not replicate themselves but they can be just as destructive. § Macro Virus – A type of computer virus that is encoded as a macro embedded in a document. Many applications, such a Microsoft Word and Excel, support powerful macro languages.
    [Show full text]
  • A L33t Speak
    A l33t Speak The term “l33t Speak” (pronounced “leet”) refers to a language or a notational system widely used by hackers. This notation is unique because it cannot be handwritten or spoken. It is an Internet-based notation that relies on the keyboard. It is simple to learn and has room for creativity. Web site [bbc 04] is just one of many online references to this topic. Many other artificial languages or notational rules have been described or used in literature. The following are a few examples. Elvish in J. R. R. Tolkien’s The Lord of the Rings. Newspeak in George Orwell’s Nineteen Eighty-Four. Ptydepe in V´aclav Havel’s The Memorandum. Nadsat in Anthony Burgess’ A Clockwork Orange. Marain in Iain M. Banks’ The Player of Games and his other Culture novels. Pravic in Ursula K. LeGuin’s The Dispossessed. The history of l33t speak is tied up with the Internet. In the early 1980s, as the Internet started to become popular, hackers became aware of themselves as a “species.” They wanted a notation that will both identify them as hackers and will make it difficult for others to locate hacker Web sites and newsgroups on the Internet with a simple search. Since a keyboard is one of the chief tools used by a hacker, it is no wonder that the new notation developed from the keyboard. The initial, tentative steps in the development of l33t speak have simply replaced certain letters (mostly vowels) by digits with similar glyphs, so A was replaced by 4 and E was replaced by 3.
    [Show full text]
  • Computer Security 37 8.1 Vulnerabilities
    Contents 1 Antivirus software 1 1.1 History ................................................ 1 1.1.1 1949-1980 period (pre-antivirus days) ............................ 1 1.1.2 1980-1990 period (early days) ................................ 2 1.1.3 1990-2000 period (emergence of the antivirus industry) ................... 2 1.1.4 2000-2005 period ...................................... 3 1.1.5 2005 to present ........................................ 3 1.2 Identification methods ........................................ 4 1.2.1 Signature-based detection .................................. 4 1.2.2 Heuristics ........................................... 4 1.2.3 Rootkit detection ....................................... 5 1.2.4 Real-time protection ..................................... 5 1.3 Issues of concern ........................................... 5 1.3.1 Unexpected renewal costs ................................... 5 1.3.2 Rogue security applications .................................. 5 1.3.3 Problems caused by false positives .............................. 5 1.3.4 System and interoperability related issues ........................... 6 1.3.5 Effectiveness ......................................... 6 1.3.6 New viruses .......................................... 6 1.3.7 Rootkits ............................................ 6 1.3.8 Damaged files ......................................... 6 1.3.9 Firmware issues ........................................ 7 1.4 Performance and other drawbacks .................................. 7 1.5 Alternative solutions
    [Show full text]