Supplementary Table 1 List of Modulated Transcripts Following Mir-129-5P Overexpression in TPC-1 Cells

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table 1 List of Modulated Transcripts Following Mir-129-5P Overexpression in TPC-1 Cells Supplementary Table 1 List of modulated transcripts following miR-129-5p overexpression in TPC-1 cells. ID Symbol Genbank ID AveExpr log_FC adj.P.Val Target Scan Description 92585 EMP1 2012 12.15 -3.71 1.06E-04 X Homo sapiens epithelial membrane protein 1 (EMP1), mRNA. Homo sapiens vacuolar protein sorting 26 homolog A (S. pombe) (VPS26A), 10111 VPS26A 9559 11.92 -2.27 1.70E-04 X transcript variant 2, mRNA. 186912 KRT80 144501 11.97 2.62 1.70E-04 Homo sapiens keratin 80 (KRT80), transcript variant 2, mRNA. 92202 LBR 3930 11.86 -1.75 1.70E-04 X Homo sapiens lamin B receptor (LBR), transcript variant 1, mRNA. 33816 KRT34 3885 7.87 1.62 2.48E-04 Homo sapiens keratin 34 (KRT34), mRNA. 121520 CCNA1 8900 9.50 -1.80 2.48E-04 Homo sapiens cyclin A1 (CCNA1), transcript variant 4, mRNA. 211 DPY19L1 23333 10.32 -1.78 2.48E-04 X Homo sapiens mRNA for KIAA0877 protein, partial cds. 15854 CKAP4 10970 13.04 -1.36 2.66E-04 X Homo sapiens cytoskeleton-associated protein 4 (CKAP4), mRNA. 63392 RBM24 221662 10.83 2.39 3.09E-04 Homo sapiens RNA binding motif protein 24 (RBM24), transcript variant 2, mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- 36665 GALNT1 2589 9.61 -1.52 3.09E-04 X acetylgalactosaminyltransferase 1 (GalNAc-T1) (GALNT1), mRNA. 18614 C12orf24 29902 10.57 1.76 5.02E-04 Homo sapiens chromosome 12 open reading frame 24 (C12orf24), mRNA. 126848 MCAM 4162 8.72 2.05 5.02E-04 X Homo sapiens melanoma cell adhesion molecule (MCAM), mRNA. 178839 AK2 204 10.31 -1.40 5.02E-04 X Homo sapiens adenylate kinase 2 (AK2), transcript variant AK2C, mRNA. Homo sapiens SH3-domain kinase binding protein 1 (SH3KBP1), transcript variant 43169 SH3KBP1 30011 11.06 -1.32 5.02E-04 X 1, mRNA. 79008 CDK6 1021 9.77 -2.20 6.60E-04 X Homo sapiens cyclin-dependent kinase 6 (CDK6), mRNA. 19367 CACYBP 27101 10.36 -1.61 6.60E-04 X Homo sapiens calcyclin binding protein (CACYBP), transcript variant 2, mRNA. Homo sapiens ATP-binding cassette, sub-family B (MDR/TAP), member 1 90456 ABCB1 5243 8.61 1.19 6.60E-04 X (ABCB1), mRNA. Homo sapiens potassium inwardly-rectifying channel, subfamily J, member 2 118962 KCNJ2 3759 9.21 -1.86 1.18E-03 (KCNJ2), mRNA. 10643 GFRA1 2674 9.87 1.80 1.30E-03 Homo sapiens GDNF family receptor alpha 1 (GFRA1), transcript variant 2, mRNA. 93689 KRT81 3887 14.31 2.03 1.32E-03 Homo sapiens keratin 81 (KRT81), mRNA. Homo sapiens potassium channel tetramerisation domain containing 1 (KCTD1), 157648 KCTD1 284252 8.91 -0.98 1.34E-03 X transcript variant 2, mRNA. Homo sapiens pirin (iron-binding nuclear protein) (PIR), transcript variant 1, 100148 PIR 8544 10.61 -1.21 1.34E-03 mRNA. 183103 LOC375681 0 9.54 1.08 1.34E-03 Homo sapiens LOC375681 (LOC375681), mRNA. Homo sapiens cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 57444 CDKN2C 1031 11.28 -1.19 1.34E-03 (CDKN2C), transcript variant 2, mRNA. Homo sapiens Ras association (RalGDS/AF-6) domain family 5 (RASSF5), 46203 RASSF5 83593 9.43 -1.22 1.34E-03 X transcript variant 4, mRNA. 77345 MORN4 118812 8.45 1.24 1.34E-03 Homo sapiens MORN repeat containing 4 (MORN4), transcript variant 2, mRNA. 27649 DTL 51514 10.14 -1.65 1.34E-03 X Homo sapiens denticleless homolog (Drosophila) (DTL), mRNA. 13581 NPEPPS 9520 11.71 -2.55 1.34E-03 X Homo sapiens aminopeptidase puromycin sensitive (NPEPPS), mRNA. Homo sapiens RAB34, member RAS oncogene family (RAB34), transcript variant 46380 RAB34 83871 11.52 -0.97 1.34E-03 1, mRNA. 42538 ULBP2 80328 10.44 1.50 1.34E-03 Homo sapiens UL16 binding protein 2 (ULBP2), mRNA. 162188 KLHL24 54800 9.29 -1.68 1.34E-03 X Homo sapiens cDNA FLJ14208 fis, clone NT2RP3003264. Homo sapiens cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), 84751 CDKN1C 1028 8.77 -1.25 1.34E-03 X transcript variant 1, mRNA. Homo sapiens G protein-coupled receptor, family C, group 5, member C (GPRC5C), 102782 GPRC5C 55890 11.35 -1.04 1.49E-03 transcript variant 2, mRNA. 187003 NF2 4771 13.14 1.46 1.49E-03 Homo sapiens neurofibromin 2 (merlin) (NF2), transcript variant 6, mRNA. 54971 LOC152217 152217 11.89 1.28 1.49E-03 Homo sapiens hypothetical protein BC007882 (LOC152217), mRNA. Homo sapiens hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), transcript 12573 HSD11B1 3290 7.77 -0.89 1.49E-03 variant 2, mRNA. Homo sapiens ankyrin repeat domain 10, mRNA (cDNA clone IMAGE:5752308), 82898 ANKRD10 55608 11.02 1.03 1.51E-03 complete cds. 81193 KRTAP2-1 81872 8.72 2.24 1.57E-03 Homo sapiens cDNA clone IMAGE:4472166, with apparent retained intron. 36649 ATP10D 57205 11.13 0.99 1.57E-03 Homo sapiens ATPase, class V, type 10D (ATP10D), mRNA. 42539 ULBP2 80328 9.85 1.40 1.73E-03 Homo sapiens UL16 binding protein 2 (ULBP2), mRNA. Homo sapiens phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange 33693 PREX1 57580 9.42 -1.21 1.70E-03 factor 1 (PREX1), mRNA. Homo sapiens cell division cycle 25 homolog B (S. pombe) (CDC25B), transcript 6256 CDC25B 994 12.59 -1.14 1.73E-03 variant 2, mRNA. 159832 na 0 10.91 -1.10 1.73E-03 Homo sapiens cDNA FLJ34585 fis, clone KIDNE2008758. Homo sapiens pyridoxal-dependent decarboxylase domain containing 1 (PDXDC1), 78558 PDXDC1 23042 10.79 -1.16 1.73E-03 X mRNA. 30929 HYPK 25764 12.88 1.16 1.73E-03 Homo sapiens Huntingtin interacting protein K (HYPK), mRNA. 88522 IL13RA2 3598 9.16 -2.55 1.73E-03 Homo sapiens interleukin 13 receptor, alpha 2 (IL13RA2), mRNA. Homo sapiens actin related protein 2/3 complex, subunit 5, 16kDa (ARPC5), 11313 ARPC5 10092 12.73 -1.70 1.73E-03 X mRNA. Homo sapiens cell division cycle associated 7-like (CDCA7L), transcript variant 1, 34411 CDCA7L 55536 10.61 -1.11 1.73E-03 mRNA. 39384 AEN 64782 11.43 0.83 1.89E-03 Homo sapiens apoptosis enhancing nuclease (AEN), mRNA. 51421 na 0 7.74 1.31 1.89E-03 Homo sapiens clone HQ0514 PRO0514 mRNA, complete cds. 236 CIT 11113 10.73 -1.26 1.97E-03 X Homo sapiens citron (rho-interacting, serine/threonine kinase 21) (CIT), mRNA. 87542 ACTN1 87 12.88 -1.12 1.97E-03 X Homo sapiens actinin, alpha 1 (ACTN1), transcript variant 2, mRNA. 78491 na 0 7.86 1.33 2.00E-03 Homo sapiens, clone IMAGE:4042121, mRNA, partial cds. 37093 SRPRB 58477 12.11 0.84 2.00E-03 Homo sapiens signal recognition particle receptor, B subunit (SRPRB), mRNA. 28946 HHAT 55733 8.34 1.05 2.07E-03 Homo sapiens hedgehog acyltransferase (HHAT), transcript variant 1, mRNA. 155523 UCA1 652995 10.58 1.97 2.07E-03 Homo sapiens cDNA FLJ35082 fis, clone PLACE6005351. 66999 CYorf16 252946 11.43 -1.39 2.18E-03 Homo sapiens chromosome Y open reading frame 16 (CYorf16), non-coding RNA. Homo sapiens sorbin and SH3 domain containing 1 (SORBS1), transcript variant 6, 164602 SORBS1 10580 9.22 -0.96 2.14E-03 X mRNA. Homo sapiens PH domain and leucine rich repeat protein phosphatase-like 1517 PHLPPL 23035 10.64 1.00 2.24E-03 (PHLPPL), mRNA. 57652 C20orf108 116151 8.33 -1.21 2.26E-03 X Homo sapiens chromosome 20 open reading frame 108 (C20orf108), mRNA. 19979 MMD 23531 12.34 -1.09 2.26E-03 Homo sapiens monocyte to macrophage differentiation-associated (MMD), mRNA. 31972 TMEM51 55092 11.49 -0.87 2.37E-03 Homo sapiens transmembrane protein 51 (TMEM51), transcript variant 4, mRNA. Homo sapiens leucine zipper-EF-hand containing transmembrane protein 2 57073 LETM2 137994 11.47 0.71 2.42E-03 (LETM2), mRNA. Homo sapiens vesicle-associated membrane protein 2 (synaptobrevin 2) (VAMP2), 22197 VAMP2 6844 10.22 -1.13 2.49E-03 X mRNA. Homo sapiens CD44 molecule (Indian blood group) (CD44), transcript variant 4, 88479 CD44 960 13.27 -1.35 2.49E-03 mRNA. Homo sapiens KTI12 homolog, chromatin associated (S. cerevisiae) (KTI12), 111485 KTI12 112970 10.57 0.93 2.72E-03 mRNA. 112155 CA12 771 10.77 -2.17 2.72E-03 X Homo sapiens carbonic anhydrase XII (CA12), transcript variant 1, mRNA. 149544 na 0 8.33 -0.84 2.72E-03 Homo sapiens, clone IMAGE:3922927, mRNA. 50293 ATOH8 84913 8.60 -2.17 2.86E-03 Homo sapiens atonal homolog 8 (Drosophila) (ATOH8), mRNA. 5380 STX8 9482 10.54 -1.26 2.86E-03 Homo sapiens syntaxin 8 (STX8), mRNA. Homo sapiens arginase, type II (ARG2), nuclear gene encoding mitochondrial 89225 ARG2 384 10.08 -1.32 2.95E-03 protein, mRNA. 148430 na 0 9.83 -1.08 2.90E-03 Homo sapiens clone 24405 mRNA sequence. Homo sapiens calcium/calmodulin-dependent protein kinase II inhibitor 1 81605 CAMK2N1 55450 12.24 -0.82 3.03E-03 X (CAMK2N1), mRNA. 12744 ZNF239 8187 8.50 0.80 3.03E-03 Homo sapiens zinc finger protein 239 (ZNF239), transcript variant 4, mRNA. 107847 SDC2 6383 12.06 1.90 3.09E-03 X Homo sapiens syndecan 2 (SDC2), mRNA. Homo sapiens non-SMC element 2, MMS21 homolog (S. cerevisiae) (NSMCE2), 84950 NSMCE2 286053 10.56 -0.77 3.09E-03 mRNA. 95084 HMGB1 3146 13.57 -1.69 3.09E-03 X Homo sapiens high-mobility group box 1 (HMGB1), mRNA.
Recommended publications
  • Supp Material.Pdf
    Legends for Supplemental Figures and Tables Figure S1. Expression of Tlx during retinogenesis. (A) Staged embryos were stained for β- galactosidase knocked into the Tlx locus to indicate Tlx expression. Tlx was expressed in the neural blast layer in the early phase of neural retina development (blue signal). (B) Expression of Tlx in neural retina was quantified using Q-PCR at multiple developmental stages. Figure S2. Expression of p27kip1 and cyclin D1 (Ccnd1) at various developmental stages in wild-type or Tlx-/- retinas. (A) Q-PCR analysis of p27kip1 mRNA expression. (B) Western blotting analysis of p27kip1 protein expression. (C) Q-PCR analysis of cyclin D1 mRNA expression. Figure S3. Q-PCR analysis of mRNA expression of Sf1 (A), Lrh1 (B), and Atn1 (C) in wild-type mouse retinas. RNAs from testis and liver were used as controls. Table S1. List of genes dysregulated both at E15.5 and P0 Tlx-/- retinas. Gene E15.5 P0 Cluste Gene Title Fold Fold r Name p-value p-value Change Change nuclear receptor subfamily 0, group B, Nr0b1 1.65 0.0024 2.99 0.0035 member 1 1 Pou4f3 1.91 0.0162 2.39 0.0031 POU domain, class 4, transcription factor 3 1 Tcfap2d 2.18 0.0000 2.37 0.0001 transcription factor AP-2, delta 1 Zic5 1.66 0.0002 2.02 0.0218 zinc finger protein of the cerebellum 5 1 Zfpm1 1.85 0.0030 1.88 0.0025 zinc finger protein, multitype 1 1 Pten 1.60 0.0155 1.82 0.0131 phospatase and tensin homolog 2 Itgb5 -1.85 0.0063 -1.85 0.0007 integrin beta 5 2 Gpr49 6.86 0.0001 15.16 0.0001 G protein-coupled receptor 49 3 Cmkor1 2.60 0.0007 2.72 0.0013
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Gene Expression Profiles of Estrogen Receptor–Positive and Estrogen Receptor–Negative Breast Cancers Are Detectable in Histologically Normal Breast Epithelium
    Published OnlineFirst November 8, 2010; DOI: 10.1158/1078-0432.CCR-10-1369 Clinical Cancer Human Cancer Biology Research Gene Expression Profiles of Estrogen Receptor–Positive and Estrogen Receptor–Negative Breast Cancers Are Detectable in Histologically Normal Breast Epithelium Kelly Graham1, Xijin Ge4, Antonio de las Morenas2, Anusri Tripathi3, and Carol L. Rosenberg1,2,3 Abstract Purpose: Previously, we found that gene expression in histologically normal breast epithelium (NlEpi) from women at high breast cancer risk can resemble gene expression in NlEpi from cancer-containing breasts. Therefore, we hypothesized that gene expression characteristic of a cancer subtype might be seen in NlEpi of breasts containing that subtype. Experimental Design: We examined gene expression in 46 cases of microdissected NlEpi from untreated women undergoing breast cancer surgery. From 30 age-matched cases [15 estrogen receptor (ER)þ,15ERÀ] we used Affymetryix U133A arrays. From 16 independent cases (9 ERþ,7ERÀ), we validated selected genes using quantitative real-time PCR (qPCR). We then compared gene expression between NlEpi and invasive breast cancer using four publicly available data sets. Results: We identified 198 genes that are differentially expressed between NlEpi from breasts with ERþ (NlEpiERþ) compared with ERÀ cancers (NlEpiERÀ). These include genes characteristic of ERþ and ERÀ cancers (e.g., ESR1, GATA3, and CX3CL1, FABP7). qPCR validated the microarray results in both the 30 original cases and the 16 independent cases. Gene expression in NlEpiERþ and NlEpiERÀ resembled gene expression in ERþ and ERÀ cancers, respectively: 25% to 53% of the genes or probes examined in four external data sets overlapped between NlEpi and the corresponding cancer subtype.
    [Show full text]
  • Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
    G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A.
    [Show full text]
  • A Proteomic and Genomic Approach to in Vivo Chemoresistance Using
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München A proteomic and genomic approach to in vivo chemoresistance using spheroid and xenograft cancer models vorgelegt von Lilja Thoenes aus Starnberg 2009 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Ernst Wagner betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 23.6.2009 …………………………... (Lilja Thoenes) Dissertation eingereicht am 23.6.2009 1. Gutachter: Prof Dr. Ernst Wagner 2. Gutachter: Prof Dr. Christian Wahl-Schott Mündliche Prüfung am 21.07.2009 Table of Contents Table of Contents 1. Introduction............................................................................................................ 1 1.1. Colon cancer ................................................................................................... 1 1.1.1. Low passage colon cancer cell lines ........................................................ 1 1.1.2. Threedimensional culture systems........................................................... 1 1.1.3. Proteomic profiling of multicellular spheroids of low passage colon carcinoma cells......................................................................................... 2 1.1.4. Chemoresistance to 5-fluorouracil in colon cancer .................................. 4 1.1.5. Chemoresistance of low passage colon carcinoma cells towards 5- fluorouracil
    [Show full text]
  • RSC Advances
    RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 8 RSC Advances The Effects of Solvent Composition on the Affinity of a Peptide towards Hair Keratin: Experimental and Molecular Dynamics Data. Egipto Antunes a, Célia F. Cruz a, Nuno G. Azoia a, Artur Cavaco-Paulo a* a CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal Table of Contents Manuscript Accepted Molecular dynamics simulations with a developed hair protofibril model demonstrated capability to improve a peptide uptake by hair shafts. Advances RSC RSC Advances Page 2 of 8 RSC Advances RSCPublishing ARTICLE The Effects of Solvent Composition on the Affinity of a Peptide towards Hair Keratin: Experimental and Cite this: DOI: 10.1039/x0xx00000x Molecular Dynamics Data.
    [Show full text]
  • Deimination, Intermediate Filaments and Associated Proteins
    International Journal of Molecular Sciences Review Deimination, Intermediate Filaments and Associated Proteins Julie Briot, Michel Simon and Marie-Claire Méchin * UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; [email protected] (J.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +33-5-6115-8425 Received: 27 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes. Keywords: citrullination; post-translational modification; cytoskeleton; keratin; filaggrin; peptidylarginine deiminase 1. Introduction Intermediate filaments (IF) constitute a unique macromolecular structure with a diameter (10 nm) intermediate between those of actin microfilaments (6 nm) and microtubules (25 nm). In humans, IF are found in all cell types and organize themselves into a complex network. They play an important role in the morphology of a cell (including the nucleus), are essential to its plasticity, its mobility, its adhesion and thus to its function.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Haploinsufficiency of Cardiac Myosin Binding Protein-C in the Development of Hypertrophic Cardiomyopathy
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2014 Haploinsufficiency of Cardiac Myosin Binding Protein-C in the Development of Hypertrophic Cardiomyopathy David Barefield Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Physiology Commons Recommended Citation Barefield, David, "Haploinsufficiency of Cardiac Myosin Binding Protein-C in the Development of Hypertrophic Cardiomyopathy" (2014). Dissertations. 1249. https://ecommons.luc.edu/luc_diss/1249 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2014 David Barefield LOYOLA UNIVERSITY CHICAGO HAPLOINSUFFICIENCY OF CARDIAC MYOSIN BINDING PROTEIN-C IN THE DEVELOPMENT OF HYPERTROPHIC CARDIOMYOPATHY A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN CELL AND MOLECULAR PHYSIOLOGY BY DAVID YEOMANS BAREFIELD CHICAGO, IL AUGUST 2014 Copyright by David Yeomans Barefield, 2014 All Rights Reserved. ii ACKNOWLEDGEMENTS The completion of this work would not have been possible without the support of excellent mentors, colleagues, friends, and family. I give tremendous thanks to my mentor, Dr. Sakthivel Sadayappan, who has facilitated my growth as a scientist and as a human being over the past five years. I would like to thank my dissertation committee: Drs. Pieter de Tombe, Kenneth Byron, Leanne Cribbs, Kyle Henderson, and Christine Seidman for their erudite guidance of my project and my development as a scientist.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]